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Abstract
The Fisher–Rao distance is the geodesic distance between probability distributions in
a statistical manifold equipped with the Fisher metric, which is a natural choice of
Riemannian metric on such manifolds. It has recently been applied to supervised and
unsupervised problems in machine learning, in various contexts. Finding closed-form
expressions for the Fisher–Rao distance is generally a non-trivial task, and those are
only available for a few families of probability distributions. In this survey, we collect
examples of closed-form expressions for the Fisher–Rao distance of both discrete and
continuous distributions, aiming to present them in a unified and accessible language.
In doing so, we also: illustrate the relation between negative multinomial distributions
and the hyperbolic model, include a few new examples, and write a few more in the
standard form of elliptical distributions.
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1 Introduction

Information geometry [1–3] uses the tools of differential geometry to study spaces of
probability distributions by regarding them as differential manifolds, called statisti-
cal manifolds. When these distributions are parametric, a structure of interest is the
Fisher metric, a Riemannian metric induced by the Fisher information matrix. This
is essentially the unique Riemannian metric on statistical manifolds that is invari-
ant by sufficient statistics [4, 5], making it a natural choice to study the geometry of
these manifolds. Moreover, this structure allows one to define the Fisher–Rao distance
between two probability distributions on the same statistical manifold as the geodesic
distance between them, i.e., the length of the minimising path, according to the Fisher
metric.

The idea of considering the geodesic distance in Riemannian manifolds equipped
with the Fisher metric was first suggested by Hotelling in 1930 [6] (reprinted in [7]),
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and later in 1945 in a landmark paper by Rao [8] (reprinted in [9]). This has influenced
many authors to study the Fisher–Rao distance in different families of probability
distributions in the following years [10–23]. It is important to note that, contrary to
commonly used divergence measures, such as the Kullback–Leibler divergence, the
Fisher–Rao distance is a proper distance, i.e., it is symmetric and the triangle inequality
holds—properties that could be requiredwhen comparing twodistributions, depending
on the application.

More recently, the Fisher–Rao distance has gained attention especially in applica-
tions tomachine learning problems. In the context of unsupervised learning, it has been
used for clustering different types of data: shape clustering applied to morphometry
[24], clustering of financial returns [25], image segmentation [20] and identification of
diseases frommedical data [26, 27]. When it comes to supervised learning, it has been
used to analyse the geometry in the latent space of generative models [28], to enhance
robustness against adversarial attacks [29, 30], in detection of out-of-distribution sam-
ples [31], as a loss function for learning under label noise [32], and to classify EEG
signals of brain-computer interfaces [33].

However, finding closed-form expressions for the Fisher–Rao distance of arbitrary
distributions is not a trivial task—as a matter of fact, more generally, finding geodesics
in an arbitrary manifold is a difficult problem in differential geometry. Having that in
mind, in this work, we collect examples of statistical models for which closed-form
expressions for the Fisher–Rao distance are available. Most of them have been pub-
lished over the last decades, in different places, and we aim to present these results
in a unified and accessible language, hoping to bring them to a broader audience.
In curating this collection, we also add a few contributions, such as: illustrating the
relation between the manifold of negative multinomial distributions and the hyper-
bolic model; including a few new examples (Rayleigh, Erlang, Laplace, generalised
Gaussian, power function, inverse Wishart), to the best of the authors’ knowledge;
and writing more examples in the standard form of univariate elliptical distributions
(Laplace, generalised Gaussian, logistic). Finally, we note that numerical methods
have been proposed to compute the Fisher–Rao distance when no closed-form expres-
sion is available, as in [26, 27, 34–38], but those techniques are beyond the scope of
the present work.

We reviewpreliminaries of information geometry in Sect. 2 and of hyperbolic geom-
etry in Sect. 3. We then collect closed-form expressions for discrete distributions in
Sect. 4, and for continuous distributions in Sect. 5. Product distributions are discussed
in Sect. 6, and Sect. 7 concludes the paper.
Notation.

We denote the sets N = {0, 1, 2, . . . }, N∗ = {1, 2, 3, . . . }, R+ = [0,∞[, and
R

∗+ =]0,∞[. 1A(x) is the indicator function, that takes value 1 if x ∈ A, and 0
otherwise. δi j := 1{ j}(i) denotes the Kronecker delta. We denote ẋ(t) := d

dt x(t).
Pn(R) denotes the cone of n × n real symmetric definite-positive matrices.
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2 Information geometry preliminaries

Let (�,G, P) be a probability space and X : � → X a random variable in the σ -
finite measure space (X ,F , μ). The push-forward measure of P by X is given by
X∗P(E) := P(X−1(E)), for E ∈ F , and we assume that X∗P is absolutely contin-
uous with respect to μ. The Radon–Nikodym derivative p := dX∗P

dμ : X → R can be
seen as the probability mass or density function (p.m.f. or p.d.f.), respectively, in the
cases that X is discrete or continuous. When X is discrete, we take μ as the counting
measure, and the integral with respect to μ becomes a summation; when X = R

n , we
take μ as the Lebesgue measure.

A statistical model [1]

S :=
{
pξ = p(x; ξ)

∣∣∣ ξ = (ξ1, . . . , ξn) ∈ � ⊆ R
n
}

(1)

is a family of probability distributions pξ parametrised by n-dimensional vectors
ξ = (

ξ1, . . . , ξn
)
such that the mapping ξ �→ pξ is injective and � is an open set

of Rn . We consider statistical models in which the support of pξ does not depend
on ξ and we take X = supp pξ , unless otherwise stated. Note that S is contained
in the infinite-dimensional space P(X ) := {

p ∈ L1(μ)
∣∣ p > 0,

∫
X p dμ = 1

}
of

positive, μ-integrable functions of unit total measure.
To introduce a differentiable structure in S, we consider the following assumptions:

1) the parametrisation ϕ : � → P(X ), ϕ(ξ) = pξ is a homeomorphism on its image;
2) denoting ∂i := ∂

∂ξ i
, the functions

{
∂1 pξ , . . . , ∂n pξ

}
are linearly independent; 3) the

mapping ξ �→ pξ (x) is smooth, for all x ∈ X ; 4) the partial derivatives ∂i pξ (x)
commutewith the integrals.Moreover, by considering diffeomorphic parametrisations
as equivalent, S becomes a differentiable manifold, that we may call a statistical
manifold.1 Note that the parametrisation ξ �→ pξ is a global coordinate system for
this manifold (see Fig. 1).

We can further equip the statistical manifold S with a Riemannian metric. Denoting
	(ξ) := log pξ the log-likelihood function, the elements of the Fisher information
matrix (or simply Fisher matrix) G(ξ) = [gi j (ξ)

]
i, j are defined as

gi j := gi j (ξ) := E
[
∂i	(ξ)∂ j	(ξ)

]
, (2)

for 1 ≤ i, j ≤ n, where the expectation is taken with respect to pξ . Explicitly,

gi j (ξ) =
∫

X
pξ

(
∂

∂ξ i
log pξ

)(
∂

∂ξ j
log pξ

)
dμ.

Alternatively, the Fisher matrix can be written as the negative expectation of the
Hessian of the log-likelihood function, a result that can make the computation of the
Fisher matrix easier in some cases:

1 We follow the nomenclature from [1], but remark that, more generally, statistical manifold refers to a
manifold equipped with a Riemannian metric and a 3-symmetric tensor, from a purely geometric point
of view [39] (see also [40, § 4.5]). We will restrict ourselves to the case of parametric statistical models
presented above.
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Fig. 1 Schematic representing
the parametrisation ϕ from the
parameter space � to the
statistical manifold S. The
curve γ (t) joins two points in the
manifold, which are probability
density (or mass) functions

Proposition 1 ([2, Prop. 1.6.3]) The elements of the Fisher matrix can be expressed
as

gi j (ξ) = −E
[
∂ j∂i	(ξ)

]
. (3)

Proof As
∫
X pξ dμ = 1, taking the derivative yields

∫
X pξ ∂i log pξ dμ =∫

X ∂i pξ dμ = 0. By taking the derivative again, we have

0 = ∂ j

∫

X
pξ ∂i log pξ dμ =

∫

X
∂ j pξ ∂i log pξ dμ +

∫

X
pξ ∂ j∂i log pξ dμ

=
∫

X
pξ (∂ j log pξ )(∂i log pξ ) dμ +

∫

X
pξ ∂ j∂i log pξ dμ

= E
[
(∂ j log pξ )(∂i log pξ )

]+ E
[
∂ j∂i log pξ

]
.

	

Since the Fisher matrix is symmetric and positive-definite, it defines a Riemannian

metric gpξ (also denoted simply gξ ), called the Fisher metric; that is, a family of
inner products gξ : TpξS × TpξS → R that vary smoothly on the statistical manifold.
Applying the Fisher metric to two vectors v1 = dϕpξ (ξ1) and v2 = dϕpξ (ξ2) in the
tangent space TpξS is equivalent to computing an inner product mediated by the Fisher
matrix G(ξ) between the respective local-coordinate vectors ξ1, ξ2 ∈ R

n :

〈v1, v2〉G(ξ) := gξ (v1, v2) := gpξ (v1, v2) = ξT1 G(ξ) ξ2. (4)

The following results will help some derivations in the rest of the text. First, we note
that, as any Riemannian metric, the Fisher metric is covariant under reparametrisation
of the parameter space:
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Proposition 2 ([2, Thm. 1.6.5]) The Fisher matrix is covariant under reparametrisa-
tion of the parameters space, that is, given two coordinate systems ξ = (ξ1, . . . , ξn)

and θ = (θ1, . . . , θn), related by the bijection ξ = ξ(θ), the Fisher matrix transforms
its coordinates as

G̃(θ) =
[
dξ

dθ

]T
G (ξ(θ))

[
dξ

dθ

]
, (5)

where
[
dξ
dθ

]
denotes the Jacobian matrix of the transformation θ �→ ξ .

Proof Denote p̃θ := pξ(θ) = ϕ(ξ(θ)) and note that, by the chain rule, ∂ p̃θ

∂θ i
=

∑n
k=1

∂ξ k

∂θ i
∂ pξ

∂ξ k
and ∂ p̃θ

∂θ j =∑n
r=1

∂ξ r

∂θ j
∂ pξ

∂ξ r
. Thus

g̃i j (θ) =
∫

X
p̃θ

(
∂

∂θ i
log p̃θ

)(
∂

∂θ j
log p̃θ

)
dμ =

∫

X
1

p̃θ

∂ p̃θ

∂θ i

∂ p̃θ

∂θ j
dμ

=
n∑

k=1

n∑
r=1

(∫

X
1

pξ(θ)

∂ pξ

∂ξ k

∂ pξ

∂ξ r
dμ

)
∂ξ k

∂θ i

∂ξ r

∂θ j
=

n∑
k=1

n∑
r=1

gkr (ξ(θ))
∂ξ k

∂θ i

∂ξ r

∂θ j
.

	

Second, we state an invariance property specific to the Fisher metric:

Proposition 3 ([2, Thm. 1.6.4]) Let X : � → X ⊆ R
n be a random variable dis-

tributed according to pξ . The Fisher metric is invariant under reparametrisations of
the sample space X .

Proof Consider the reparametrisation by the bijection f : X → Y ⊆ R
n and denote

p̃ξ the distribution associated to the random variable Y := f (X). The Jacobian

determinant
∣∣∣ d fdx
∣∣∣ of the transformation f relates the relation between the densities:

pξ (x) = p̃ξ (y)

∣∣∣∣
d f

dx

∣∣∣∣ . (6)

The log-likelihood functions are 	̃(ξ) = log p̃ξ (y) = log p̃ξ ( f (x)) and 	(ξ) =
log pξ (x) = log p̃ξ (y)+ log

∣∣∣ d fdx
∣∣∣. As f does not depend on the parameter ξ , we have

∂i	(ξ) = ∂i 	̃(ξ), whence

gi j (ξ) =
∫

X
pξ ∂i	(ξ)∂i	(ξ) dμ =

∫

X
( p̃ξ ◦ f )

∣∣∣∣
d f

dx

∣∣∣∣ ∂i 	̃(ξ)∂i 	̃(ξ) dμ

=
∫

Y
p̃ξ ∂i 	̃(ξ)∂i 	̃(ξ) d( f∗μ) = g̃i j (ξ).
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Furthermore, it can be shown that the Fisher metric is the unique Riemannian
metric (up to a multiplicative constant) in statistical manifolds that is invariant under
sufficient statistics [4, Thm. 1.2] (see also [5]). This invariance characterisation justifies
the choice of this metric to study the geometry of statistical models.

The Fishermetric induces a notion of distance between two distributions in the same
statistical manifold, called Fisher–Rao distance, and given by the geodesic distance
between these points. Specifically, consider a curve ξ : [0, 1] → � in the parameter
space and its image γ : [0, 1] → S by the parametrisation ϕ, i.e., γ (t) = (ϕ ◦ ξ)(t),
for t ∈ [0, 1]. Since γ̇ (t) = dϕξ(t)

(
ξ̇ (t)

)
, in the Fisher geometry, the length of γ can

be computed as

l(γ ) :=
∫ 1

0

√
〈γ̇ (t), γ̇ (t)〉G(ξ(t)) dt =

∫ 1

0

√
ξ̇ (t)T G(ξ(t)) ξ̇ (t) dt . (7)

Then, given two distributions pξ1 and pξ2 in S, the Fisher–Rao distance between
them2 is the infimum of the length of piecewise differentiable curves γ joining these
two points:

dFR(ξ1, ξ2) := dFR(pξ1 , pξ2) := inf
γ

{
l(γ )

∣∣ γ (0) = pξ1 , γ (1) = pξ2

}
. (8)

A curve γ (t) = (ϕ ◦ ξ)(t) is a geodesic if, in local coordinates ξ = (ξ1, . . . , ξn),
the curve ξ(t) is a solution to the geodesic differential equations

ξ̈ k(t) +
n∑

i=1

n∑
j=1

�k
i j ξ̇

i (t)ξ̇ j (t) = 0, k ∈ {1, . . . , n}, (9)

where �k
i j are the Christoffel symbols of the second kind, which can be obtained from

the equations

n∑
k=1

g	k�
k
i j = 1

2

(
∂

∂ξ i
g j	 + ∂

∂ξ j
g	i − ∂

∂ξ	
gi j

)
, i, j, 	 ∈ {1, . . . , n}

The Hopf–Rinow theorem (e.g., [41, Thm. 6.4.6]) provides a sufficient condition
for the minimum length, as in (8), to be realised by a geodesic: if (S, dFR) is connected
and complete as a metric space, then any two points p, q in the manifold S can be
joined by a minimising curve which is a geodesic, that is, a curve whose length is
equal to the Fisher–Rao distance dFR(p, q). This condition is satisfied in all statistical
manifolds considered in this paper.

Remark 1 The Fisher–Rao distance is related to the Kullback–Leibler divergence [2,
Thm. 4.4.5]:

DKL(pξ1‖pξ2) = 1

2
d2FR(pξ1 , pξ2) + o

(
d2FR(pξ1 , pξ2)

)
,

2 We shall also refer to the Fisher–Rao distance between two parametric distributions as the distance
between their respective parameters.
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where o(x) represents a quantity such that limx→0
o(x)
x = 0. This means that the

Kullback–Leibler divergence locally behaves as a ‘squared distance’. Differently from
general statistical divergences, the Fisher–Rao distance is a proper distance, i.e., it is
symmetric and the triangle inequality holds.

Unfortunately, finding the Fisher–Rao distance between two distributions in a sta-
tistical manifold usually is a non-trivial task, since it involves finding the minimising
geodesics, potentially by solving the geodesics differential equations (9), and then
evaluating the integral in (7). In the case of one-dimensional manifolds, i.e., those
which are parametrised by a single real number, computing the Fisher–Rao distance
is easier, since the geodesics are immediately given. In such cases, the Fisher matrix
G(ξ) = [g11(ξ)] contains a single element (also called Fisher information). Given
two parameters ξ1 and ξ2, there is only one path joining them, whose length does not
depend on the chosen parametrisation. In particular, we can consider the arc length
parametrisation ξ(t) = t , with t ∈ [ξ1, ξ2], so that

∣∣ξ̇ (t)
∣∣ = 1. Thus the expression for

the length of the curve γ (t) = (ϕ ◦ ξ)(t) in (7) becomes

l(γ ) =
∫ ξ2

ξ1

√
g11(ξ(t)) dt =

∫ ξ2

ξ1

√
g11(ξ) dξ,

and the Fisher–Rao distance between distributions parametrised by ξ1 and ξ2 is

dFR(ξ1, ξ2) =
∣∣∣∣
∫ ξ2

ξ1

√
g11(ξ) dξ

∣∣∣∣ . (10)

For higher-dimensional manifolds, the techniques to find the geodesics and the
Fisher–Rao distance consist in directly solving the geodesic differential equations, or
in doing an analogy with some well-known geometry (e.g., spherical, hyperbolic), as
we shall see in the next sections.

Remark 2 The expression (10) allows one to find the Fisher–Rao distance in one-
dimensional submanifolds of higher dimensional statistical manifolds, i.e., when only
one parameter is allowed to vary and the others are fixed. This has been done for
Gamma, Weibull and power function distributions in [10, 12].

3 Hyperbolic geometry results

We recall in this section some classical results from hyperbolic geometry [42–44],
sincemany of the statistical manifolds studied in this work are related to that geometry.
These will be extensively used particularly in Sects. 4.7 and 5.4–5.9. If desired, the
reader may skip this section for now, and return to it when reading those subsections
to get the details of the derivations.

We start with the hyperbolic geometry in dimension two, to be used in the approach
of the statistical manifolds in Sects. 5.4–5.9, analogously to what is done in [45].
In this case, we consider the Poincaré half-plane H2 := {

(x, y) ∈ R
2
∣∣ y > 0

}
as a
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model for hyperbolic geometry, with the metric given in matrix form by

GH2(x, y) =
(

1
y2

0

0 1
y2

)
. (11)

The geodesics in this manifold are vertical half-lines and half-circles centred at y =
0, and the geodesic distance between two points is given by the following equivalent
expressions:

dH2 ((x1, y1), (x2, y2))

= log

(√
(x1 − x2)2 + (y1 + y2)2 +√(x1 − x2)2 + (y1 − y2)2√
(x1 − x2)2 + (y1 + y2)2 −√(x1 − x2)2 + (y1 − y2)2

)

= arccosh

(
1 + (x1 − x2)2 + (y1 − y2)2

2y1y2

)

= 2 arctanh

⎛
⎝
√

(x1 − x2)2 + (y1 − y2)2

(x1 − x2)2 + (y1 + y2)2

⎞
⎠ .

The next lemma allows one to relate the geodesic distance in a class of
two-dimensional Riemannian manifold to that in the Poincaré half-plane.

Lemma 4 Consider the Poincaré half-planemodelH2 with the hyperbolic metric (11),
and a two-dimensional Riemannian manifold (M, gM), parametrised by a global
coordinate system ϕ : 
 ⊆ R × R

∗+ → M. If the metric gM is given in matrix form
by

GM(x, y) =
(

a
y2

0

0 b
y2

)
,

with a, b positive constants, then the geodesic distance between two points inM is

dM
(
ϕ(x1, y1), ϕ(x2, y2)

) = √
b dH2

(
(
√
ax1,

√
by1), (

√
ax2,

√
by2)

)
. (12)

Proof Consider a curve π(t) = (
x(t), y(t)

)
in the parameter space 
 and its image

α(t) = (ϕ ◦ π)(t) by the parametrisation. Applying the metric GM(x, y) to α̇(t) =
dϕπ(t)

(
π̇(t)

)
inM gives

〈α̇(t), α̇(t)〉G(π(t)) = (ẋ(t) ẏ(t)
) ( a

(y(t))2
0

0 b
(y(t))2

)(
ẋ(t)
ẏ(t)

)

= 1

(y(t))2

(
a(ẋ(t))2 + b(ẏ(t))2

)
.

On the other hand, consider the diffeomorphism ψ : M → H2, ϕ(x, y) �→
(
√
ax,

√
by), and the image curve β(t) := (ψ ◦α)(t) = (

√
ax(t),

√
by(t)). Applying
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GH2(β(t)) to β̇(t) = dψα(t)(α̇(t)) inH2 gives

〈
β̇(t), β̇(t)

〉
GH2 (β(t)) = (√aẋ(t)

√
bẏ(t)

) ( 1
b(y(t))2

0

0 1
b(y(t))2

)(√
aẋ(t)√
bẏ(t)

)

= 1

b(y(t))2

(
a(ẋ(t))2 + b(ẏ(t))2

)
.

Thus, 〈α̇(t), α̇(t)〉GM(α(t)) = b
〈
β̇(t), β̇(t)

〉
GH2 (β(t)), that is, ‖α̇(t)‖GM(α(t)) =√

b
∥∥β̇(t)

∥∥
GH2 (β(t)). This implies that a curve α(t) connecting two points in M is a

geodesic (minimises the length) if, and only if, its image β(t) is a geodesic in H2.
Taking (7) and (8) into account concludes the proof. 	

Remark 3 It is possible to deduce what the geodesics inM look like in the parameter
space
 (i.e., their preimages by ϕ), since they are the inverse image byψ of geodesics
in H2. Consider a geodesic in M connecting the points ϕ(x1, y1) and ϕ(x2, y2). Its
preimage in the parameter space is given either by the vertical line joining y1 to y2, if
x1 = x2, or, otherwise, by the arc of the half-ellipse joining (x1, y1) to (x2, y2), centred

at (C, 0) and given by
(

R√
a
cos(t) + C, R√

b
sin(t)

)
, whereC = a(x21−x22 )+b(y21−y22 )

2a(x1−x2)
and

R = 1
2

√
a (x1 − x2)2 + b2

a

(
y21−y22
x1−x2

)2

+ 2b
(
y21 + y22

)2
.

More generally, the n-dimensional hyperbolic half-space model is the Riemannian
manifold Hn := {(x1, . . . , xn) ∈ R

n | xn > 0}, equipped with the metric given in
matrix form by

GHn (x1, . . . , xn) =

⎛
⎜⎜⎜⎜⎜⎝

1
x2n

0 · · · 0

0 1
x2n

· · · 0
...

...
. . .

...

0 0 · · · 1
x2n

⎞
⎟⎟⎟⎟⎟⎠

, (13)

that is, 〈(u1, . . . , un), (v1, . . . , vn)〉GHn (x1,...,xn) = 1
x2n

∑n
i=1 uivi . This manifold has

constant negative curvature. The geodesics in this manifold are vertical half-lines
and vertical half-circles centred at the hyperplane xn = 0, and the geodesic distance
between two points in Hn is given by

dHn
(
(x1, . . . , xn), (y1, . . . , yn)

) = arccosh

(
1 +

∑n
i=1(xi − yi )2

2xn yn

)
. (14)

Restricted to points in the (n − 1)-dimensional unit half-sphere in Hn , that
is, Sn−1

1 := {
(x1, . . . , xn) ∈ Hn

∣∣ ∑n
i=1 x

2
i = 1

}
, the expression for the distance

becomes

d̃Sn−1
1

(
(x1, . . . , xn), (y1, . . . , yn)

) = arccosh

(
1 −∑n−1

i=1 xi yi
xn yn

)
. (15)
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From (14), we immediately see that the distance dHn is invariant by dilation or con-
traction, that is, denoting xxx := (x1, . . . , xn) ∈ Hn and yyy := (y1, . . . , yn) ∈ Hn ,
we have dHn (xxx, yyy) = dHn (λxxx, λyyy), for λ �= 0. For points xxx and yyy in the half-sphere
Sn−1
r := {(x1, . . . , xn) ∈ Hn

∣∣ ∑n
i=1 x

2
i = r2

}
of radius r , we can see that the distance

between them, restricted to the sphere Sn−1
r , is the distance given by (15) between their

projections onto the radius-1 sphere, that is,

d̃Sn−1
r

(xxx, yyy) = d̃Sn−1
1

(xxx
r
,
yyy

r

)
. (16)

The central projection π : Sn1 ⊆ Hn+1 → Hn given by (x1, . . . , xn, xn+1) �→(
2x2
x1+1 , . . . ,

2xn+1
x1+1

)
is an isometry between the unit half-sphere Sn1 ⊆ Hn+1, with the

restriction of the ambient hyperbolic metric, and the hyperbolic spaceHn . It provides
a hemisphere model in dimension n + 1 for the n-dimensional hyperbolic space [43].
The geodesics in the hemisphere model are the inverse image by f of the geodesics
inHn , namely, semicircles orthogonal to the hyperplane xn+1 = 0.

4 Discrete distributions

In the following, we begin with examples of one-dimensional statistical manifolds
(Sects. 4.1–4.4), and then consider high-dimensional manifolds (Sects. 4.5–4.7). The
results are summarised in Table 1.

4.1 Binomial

A binomial distribution [2, 10, 12] models the probability of having x successes in n
independent and identically distributed (i.i.d.) Bernoulli experimentswith parameter θ .
Its p.m.f. is given by p(x) = (n

x

)
θ x (1 − θ)n−x , defined for x ∈ {0, 1, . . . , n}, and

parametrised by θ ∈]0, 1[. In this case, ∂θ	(θ) = x
θ

− n−x
1−θ

, and the Fisher information
is

g11(θ) = E

[
(∂θ	(θ))2

]
= E

[(
X

θ
− n − X

1 − θ

)2
]

= E[X2]
θ2

+ 2E[X2] − 2nE[X ]
θ(1 − θ)

+ n − 2nE[X ] + E[X2]
(1 − θ)2

= n

θ(1 − θ)
, (17)

where we have used that E[X ] = nθ and E[X2] = nθ − nθ2 + n2θ2. The Fisher–Rao
distance is then

dFR(θ1, θ2) =
∣∣∣∣
∫ θ2

θ1

√
n

θ(1 − θ)
dθ

∣∣∣∣ = 2
√
n
∣∣∣arcsin

√
θ1 − arcsin

√
θ2

∣∣∣ . (18)
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4.2 Poisson

A Poisson distribution [2, 10, 12] has p.m.f. p(x) = λx e−λ

x ! , defined for x ∈ N, and
parametrised by λ ∈ R

∗+. In this case, we have ∂λ	(λ) = x
λ

− 1, and the Fisher
information is given by

g11(λ) = E

[
(∂λ	(λ))2

]
= E

[(
X

λ
− 1

)2]

= 1

λ2
E

[
X2
]

− 2

λ
E [X ] + 1

= 1

λ
, (19)

where we have used that E[X ] = λ and E[X2] = λ(λ + 1). Thus the Fisher–Rao
distance is

dFR(λ1, λ2) =
∣∣∣∣
∫ λ2

λ1

1√
λ
dλ

∣∣∣∣ = 2
∣∣∣
√

λ1 −√λ2

∣∣∣ . (20)

4.3 Geometric

A geometric distribution [2, 19] models the number of i.i.d. Bernoulli trials with
parameter θ needed to obtain one success. Its p.m.f. is p(x) = θ(1 − θ)x−1, defined
for x ∈ N

∗, and parametrised by θ ∈]0, 1[. We have ∂θ	(θ) = 1
θ
− x−1

1−θ
, and the Fisher

information is

g11(θ) = E

[
(∂θ	(θ))2

]
= E

[(
1

θ
− X − 1

1 − θ

)2
]

= 1

θ2
+ 2 − 2E[X ]

θ(1 − θ)
+ E[X2] − 2E[X ] + 1

(1 − θ2)

= 1

θ2(1 − θ)
, (21)

where we have used that E[X ] = 1
θ
and E[X2] = 2−θ

θ2
. The Fisher–Rao distance is

dFR(θ1, θ2) =
∣∣∣∣
∫ θ2

θ1

1

θ
√
1 − θ

dθ

∣∣∣∣ = 2
∣∣∣arctanh

√
1 − θ1 − arctanh

√
1 − θ2

∣∣∣ . (22)

4.4 Negative binomial

A negative binomial distribution [12, 19] models the excess of i.i.d. Bernoulli exper-
iments with parameter θ needed until a number of r successes occur. It has p.m.f.
p(x) = �(x+r)

x !�(r) θr (1 − θ)x , defined for x ∈ N, and is parametrised by θ ∈]0, 1[, for
a fixed r , that can be extend to r ∈ R

∗+. We have ∂θ	(θ) = r
θ

− x
1−θ

, and the Fisher
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information is

g11(θ) = E

[
(∂θ	(θ))2

]
= E

[(
r

θ
− X

1 − θ

)2
]

= r2

θ2
− 2rE[X ]

θ(1 − θ)
+ E[X2]

(1 − θ2)

= r

θ2(1 − θ)
, (23)

where we have used that E[X ] = r(1−θ)
θ

and E[X2] = r(1−θ)+r2(1−θ)2

(1−θ)2
. The Fisher–

Rao distance is then

dFR(θ1, θ2) =
∣∣∣∣
∫ θ2

θ1

√
r

θ
√
1 − θ

dθ

∣∣∣∣ = 2
√
r
∣∣∣arctanh

√
1 − θ1 − arctanh

√
1 − θ2

∣∣∣ .
(24)

4.5 Categorical

A categorical distribution [2, 4, 10, 12, 46] models a random variable taking values
in the sample space X = {1, 2, . . . , n} with probabilities p1, . . . , pn , and has p.m.f.
p(x) =∑n

i=1 pi1{i}(x). The associated (n − 1)-dimensional statistical manifold

S = {p =∑n
i=1 pi1{i}

∣∣ pi ∈]0, 1[, ∑n
i=1 pi = 1

}

is in correspondence with the interior of the probability simplex �̊n−1 :={
ppp = (p1, . . . , pn)

∣∣ pi ∈]0, 1[, ∑n
i=1 pi = 1

}
through the bijection ι : �̊n−1 → S,

given by (p1, . . . , pn) �→∑n
i=1 pi1{i}. Both these manifolds can be parametrised by

the set
� =

{
ξ = (ξ1, . . . , ξn−1) ∈ R

n−1
∣∣∣ ξ i > 0,

∑n−1
i=1 ξ i < 1

}
, (25)

by taking pi = ξ i , for 1 ≤ i ≤ n − 1, and pn = 1 −∑n−1
i=1 ξ i .

To compute the Fisher matrix, it is useful to write p(x) =∑n−1
i=1 ξ i1{i}(x) + (1 −∑n−1

i=1 ξ i
)
1{n}(x), so that

∂i	(ξ) = 1{i}(x) − 1{n}(x)∑n
k=1 pk1{k}(x)

,

with pk = pk(ξ) as above. The elements of the Fisher matrix are, for 1 ≤ i, j ≤ n−1,

gi j (ξ) = E
[
(∂i	(ξ))

(
∂ j	(ξ)

)] = E

[
(1{i}(X)−1{n}(X))(1{ j}(X)−1{n}(X))

(
∑

k pk1{k}(X))
2

]

= E

[
1{i}(X)1{ j}(X)

(
∑

k pk1{k}(X))
2 − 1{i}(X)1{n}(X)

(
∑

k pk1{k}(X))
2 − 1{ j}(X)1{n}(X)

(
∑

k pk1{k}(X))
2 + (1{n}(X))

2

(
∑

k pk1{k}(X))
2

]
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= δi j

pi
+ 1

pn

= δi j

ξ i
+ 1

1 −∑n−1
k=1 ξ k

, (26)

where we have used that E

[
1{i}(X)1{ j}(X)

(
∑

k pk1{k}(X))
2

]
= δi j

pi
.

To obtain the geodesics and the Fisher–Rao distance, it is convenient to consider the
mapping pi �→ 2

√
pi that takes the simplex �n−1 ⊆ R

n (in correspondence with the
statistical manifold) to the positive part of the radius-two Euclidean sphere, denoted
Sn−1
2,+ ⊆ R

n . In fact, this bijection is an isometry [40, 46]:

Proposition 5 The diffeomorphism

f : S ⊆ P(X ) → Sn−1
2,+ ⊆ R

n

p =
n∑

i=1

pi1{i} �→ (2
√
p1, . . . , 2

√
pn) (27)

is an isometry between the statistical manifold S equipped with the Fisher metric gp
and Sn−1

2,+ with the restriction of the ambient Euclidean metric.

Proof We will show that gp(u, v) = 〈
d f p(u), d f p(v)

〉
, for all p ∈ S, u, v ∈ TpS.

Let ϕ denote the parametrisation of the statistical manifold S. Consider the curve
αi (t) = ϕ

(
ξ1, . . . , ξ i + t, . . . , ξn−1

) ∈ S and take p = ϕ(ξ1, . . . , ξn−1). We have
that

βi (t) := ( f ◦ αi ) (t) =
(
2
√

ξ1, . . . , 2
√

ξ i + t, . . . , 2
√

ξn−1, 2
√
1 −∑n−1

k=1 ξ k − t

)
.

Now, we can compute the differential applied to the tangent vector ∂
∂ξ i

(p):

d f p

(
∂

∂ξ i
(p)

)
= d

dt
βi (t)

∣∣∣∣
t=0

=
⎛
⎝0, . . . , 0, 1√

ξ i
, 0, . . . , 0,

−1√
1 −∑n−1

k=1 ξ k

⎞
⎠ .

Therefore,

〈
d f p

(
∂

∂ξ i
(p)

)
, d f p

(
∂

∂ξ j
(p)

)〉
= δi j

ξ i
+ 1

1 −∑n−1
k=1 ξ k

,

which is equal to gi j (ξ) = gp
(

∂
∂ξ i

(p), ∂
∂ξ j (p)

)
in (26). Since{

∂
∂ξ1

(p), . . . , ∂
∂ξn−1 (p)

}
is a basis of TpS, this is enough to show that f is indeed an

isometry. 	
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Thus, the Fisher metric in S coincides with the Euclidean metric restricted to the
positive part of the sphere Sn−1

2,+ , that is, the Fisher–Rao distance between distributions
p = ϕ(p1, . . . , pn−1) and q = ϕ(q1, . . . , qn−1) in S is equal to the length of geodesic
joining f (p) and f (q) on the sphere, which is great circle arc. This length is double

the angle α between the vectors f (p) and f (q), i.e., 2α = 2 arccos
〈
f (p)
2 ,

f (q)
2

〉
=

2 arccos
(∑n

i=1
√
piqi

)
, with pn = 1 −∑n−1

i=1 pi and qn = 1 −∑n−1
i=1 qi . Therefore,

the Fisher–Rao distance between these two distributions is

dFR(p, q) = 2 arccos

(
n∑

i=1

√
piqi

)
. (28)

Note that the isometry f also allows extending the Fisher metric to the boundaries
of the statistical manifold S.

Remark 4 The reparametrisation to the sphere provides a nice geometrical interpreta-
tion for the relation between the Fisher–Rao distance and the Hellinger distance [47,

§ 2.4] dH(p, q) =
√∑n

i=1

(√
pi − √

qi
)2. While the Fisher–Rao distance between

distributions p and q is the length of the radius-two circumference arc between f (p)
and f (q), theHellinger distance is half theEuclidean distance between f (p) and f (q),
i.e., 2dH(p, q) = ‖ f (p) − f (q)‖2. In other words, double the Hellinger distance is
the arc-chord approximation for the Fisher–Rao distance.

4.6 Multinomial

Consider m i.i.d. experiments that follow a categorical distribution with n possible
outcomes and probabilities p1, . . . , pn . A multinomial distribution [2, 10, 12] gives
the probability of getting xi times the i-th outcome, for 1 ≤ i ≤ n and

∑n
i=1 xi = m.

Its p.m.f. is p(xxx) = p(x1, . . . , xn) = m!∏n
i=1

p
xi
i
xi ! and is defined on the sample space

X = {
xxx = (x1, . . . , xn) ∈ N

n
∣∣ ∑n

i=1 xi = m
}
. This distribution is parametrised by

the same ξ = (ξ1, . . . , ξn−1) ∈ � as in the categorical distribution, cf. (25), with
pi = ξ i , for 1 ≤ i ≤ n − 1 and pn = 1 −∑n−1

i=1 ξ i . In this case, we have ∂i	(ξ) =
xi
pi

− xn
pn

and ∂ j∂i	(ξ) = − xi
p2i

δi j − xn
p2n
. Thus, the elements of the Fisher matrix are

given by

gi j (ξ) = −E
[
∂ j∂i	(ξ)

] = E

[
Xi

p2i
δi j + Xn

p2n

]

= m

(
δi j

pi
+ 1

pn

)

= m

(
δi j

ξ i
+ 1

1 −∑n−1
k=1 ξ k

)
, (29)
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where we have used that E[Xi ] = mpi . Note that this is the same metric as for the
categorical distribution (26), up to the factor m. Therefore, the Fisher–Rao distance
between two distributions p = ϕ(p1, . . . , pn−1) and q = ϕ(q1, . . . , qn−1), with
pn = 1 −∑n−1

i=1 pi and qn = 1 −∑n−1
i=1 qi is

dFR(p, q) = 2
√
m arccos

(
n∑

i=1

√
piqi

)
. (30)

4.7 Negative multinomial

A negative multinomial distribution [12, 19, 48] generalises the negative binomial
distribution. Consider a sequence of i.i.d. categorical experiments with n possible out-
comes. A negative multinomial distribution models the number of times x1, . . . , xn−1
that the first n − 1 outcomes occur before the n-th outcome occurs xn times. It is

characterised by the p.m.f. p(xxx) = p(x1, . . . , xn−1) = pxnn
�(
∑n

i=1 xi )
�(xn)

∏n−1
i=1

p
xi
i
xi ! , and

defined for xxx = (x1, . . . , xn−1) ∈ N
n−1. It has the same parametrisation as the cate-

gorical distribution, cf. (25), with pi = ξ i , for 1 ≤ i ≤ n − 1 and pn = 1−∑n−1
i=1 ξ i ,

for a fixed xn that can be extended to xn ∈ R
∗+. In this case, we have ∂i	(ξ) = xi

pi
− xn

pn
and ∂ j∂i	(ξ) = − xi

p2i
δi j − xn

p2n
. The elements of the Fisher matrix are then

gi j (ξ) = −E
[
∂ j∂i	(ξ)

] = E

[
Xi

p2i
δi j + xn

p2n

]

= xn
pn

(
δi j

pi
+ 1

pn

)

= xn

1 −∑n−1
k=1 ξ k

(
δi j

ξ i
+ 1

1 −∑n−1
k=1 ξ k

)
, (31)

where we used that E[Xi ] = xn pi/pn .
To find the Fisher–Rao distance, we relate the geometry of this manifold to the

radius-two hemisphere model with hyperbolic metric (cf. Sect. 3) using a similar
diffeomorphism as (27). Consider

f : S ⊆ P(X ) → Sn−1
2,+ ⊆ Hn

p =
n∑

i=1

pi1{i} �→ (
2
√
p1, . . . , 2

√
pn
)
. (32)

Denote ϕ the parametrisation of the statistical manifold, and consider the point
p = ϕ(ξ1, . . . , ξn−1). Taking the curves αi (t) = ϕ(ξ1, . . . , ξ i + t, . . . , ξn−1) in S
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their images in Sn−1
2,+ are

βi (t) := ( f ◦ αi )(t) =
(
2
√

ξ1, . . . , 2
√

ξ i + t, . . . , 2
√

ξn−1, 2
√
1 −∑n−1

k=1 ξ k − t

)
.

We have

d f p

(
∂

∂ξ i
(p)

)
= d

dt
βi (t)

∣∣∣∣
t=0

=
⎛
⎝0, . . . , 0, 1√

ξ i
, 0, . . . ,

−1√
1 −∑n−1

k=1 ξ k

⎞
⎠ ,

therefore

〈
d f p

(
∂

∂ξ i
(p)

)
, d f p

(
∂

∂ξ j
(p)

)〉

GHn (p)
= 1

4
(
1 −∑n−1

k=1 ξk
)
(

δi j

ξ i
+ 1

1 −∑n−1
k=1 ξk

)
,

and we conclude that gi j (ξ) = gξ

(
∂

∂ξ i
(p), ∂

∂ξ j (p)
)

= 4xn
〈
d f p

(
∂

∂ξ i
(p)
)

,

d f p
(

∂
∂ξ j (p)

)〉
GHn (p)

. This means that, up to the factor 4xn , f in (32) is an isometry.

Then, using (16), we find that the Fisher–Rao distance between two distributions
p = ϕ(p1, . . . , pn−1) and q = ϕ(q1, . . . , qn−1), with pn = 1 − ∑n−1

i=1 pi and
qn = 1 −∑n−1

i=1 qi , is

dFR(p, q) = 2
√
xn d̃Sn−1

2

(
(2

√
p1, . . . , 2

√
pn), (2

√
q1, . . . , 2

√
qn)
)

= 2
√
xn arccosh

(
1 −∑n−1

i=1
√
piqi√

pnqn

)
. (33)

In the above equality, we used the fact that the hyperbolic distance in Sn−1
2,+ ⊆ Hn

is invariant to dilation and contraction, as remarked in Sect. 3. We also conclude that
the geodesics in the statistical manifold S are associated to orthogonal semicircles in
Sn−1
2,+ .
It is interesting to note that the similarmaps (27) and (32), respectively, for categori-

cal and negativemultinomial distributions are used to embed the statisticalmanifold (in
correspondence with the simplex) in the radius-two sphere, but with different metrics.
Figure2 illustrates the geodesics according to these two metrics.

5 Continuous distributions

In the following, we start presenting one-dimensional examples (Sects. 5.1–5.3), then
we consider two-dimensional statistical manifolds (Sects. 5.4–5.9), and multivariate
models (Sects. 5.10–5.11). The results are summarised in Table 2.
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Fig. 2 Geodesics joining points p = (0.7, 0.2, 0.1) and q = (0.1, 0.3, 0.6) according to categorical
(solid) and negative multinomial (dashed) metrics, seen in the parameter space, on the simplex, and on the
sphere. The distance between the categorical distributions is dcat(p, q) ≈ 1.432, and between the negative
multinomial distributions is dneg-mult(p, q) ≈ 2.637

√
xn

5.1 Exponential

An exponential distribution [10] has p.d.f. p(x) = λe−λx , defined for x ∈ R+, and
parametrised by λ ∈ R

∗+. In this case, we have ∂λ	(λ) = 1
λ

− x , and the Fisher
information is

g11(λ) = E

[
(∂λ	(λ))2

]

= E

[(
1

λ
− X

)2
]

= 1

λ2
− 2

λ
E[X ] + E[X2]

= 1

λ2
, (34)

where we have used that E[X ] = 1
λ
and E[X2] = 2

λ2
. The Fisher–Rao distance is

given by
dFR(λ1, λ2) =

∣∣∣∣
∫ λ2

λ1

1

λ
dλ

∣∣∣∣ = |log λ1 − log λ2| . (35)

5.2 Rayleigh

A Rayleigh distribution has p.d.f. p(x) = x
σ 2 exp

(
− x2

2σ 2

)
, defined for x ∈ R+, and

parametrised by σ ∈ R
∗+. We have ∂σ 	(σ ) = x2

σ 3 − 2
σ
, and the Fisher information is

g11(σ ) = E

[
(∂σ 	(σ ))2

]
= E

[(
X2

σ 3 − 2

σ

)2
]

= E[X4]
σ 6 − 2E[X2]

σ 4 + 4

σ 2
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= 4

σ 2 , (36)

where we have used that E[X2] = 4σ 2 and E[X4] = 8σ 4. Thus, the Fisher–Rao
distance is given by

dFR(σ1, σ2) =
∣∣∣∣
∫ σ2

σ1

2

σ
dσ

∣∣∣∣ = 2 |log σ1 − log σ2| . (37)

5.3 Erlang

An Erlang distribution has p.d.f. p(x) = λk xk−1e−λx

(k−1)! , defined for x ∈ R+, and
parametrised by λ ∈ R

∗+, for a fixed k ∈ N
∗. We have ∂λ	(λ) = k

λ
− x , so that

the Fisher information is

g11(λ) = E

[
(∂λ	(λ))2

]
= E

[(
k

λ
− X

)2
]

= E[X2] − 2kE[X ]
λ

+ k2

λ2

= k

λ2
, (38)

where we have used that E[X ] = k
λ
and E[X2] = k(k+1)

λ2
. The Fisher–Rao distance is

then

dFR(λ1, λ2) =
∣∣∣∣∣
∫ λ2

λ1

√
k

λ
dλ

∣∣∣∣∣ =
√
k |log λ1 − log λ2| . (39)

5.4 Univariate elliptical distributions

Elliptical distributions are a class of distributions that generaliseGaussian distributions
[51]. Here we focus on univariate elliptical distributions, which are defined for x ∈ R,
parametrised by (μ, σ ) ∈ R × R

∗+, and have p.d.f. of the form

p(x) = 1

σ
h

(
(x − μ)2

σ 2

)
, (40)

for a fixed measurable function h : R+ → R+ that satisfies
∫∞
−∞ h(z2) dz = 1

and limz→+∞ zh(z2) = 0. For a random variable X distributed according to (40),
provided its mean and variance exist, they are given by E[X ] = μ and Var(X) =
σ 2
∫∞
−∞ z2 h(z2) dz. For each function h, the set of distributions of the form (40)

forms a statistical manifold parametrised by (μ, σ ). Some examples of these mani-
folds have been studied in [17], andwewrite some other examples in the same standard
form.
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For these distributions, we have ∂μ	 := ∂μ	(μ, σ ) = − 2(x−μ)

σ 2
h′(σ−2(x−μ)2

)
h(σ−2(x−μ)2)

, and

∂σ 	 := ∂σ 	(μ, σ ) = − 1
σ

− 2(x−μ)2

σ 3
h′(σ−2(x−μ)2

)
h(σ−2(x−μ)2)

. Thus, the elements of the Fisher

matrix are

g11 = E

[(
∂μ	
)2]

=
∫ ∞

−∞

(
−2(x − μ)

σ 2

h′ (σ−2(x − μ)2
)

h
(
σ−2(x − μ)2

)
)2

1

σ
h

(
(x − μ)2

σ 2

)
dx

= 4

σ 2

∫ ∞

−∞
z2
[
h′(z2)

]2
h(z2)

dz,

g12 = g21 = E
[(

∂μ	
)
(∂σ 	)

]

=
∫ ∞

−∞

(
−2(x − μ)

σ 2

h′ (σ−2(x − μ)2
)

h
(
σ−2(x − μ)2

)
)(

− 1

σ
− 2(x − μ)2

σ 3

h′ (σ−2(x − μ)2
)

h
(
σ−2(x − μ)2

)
)

× 1

σ
h

(
(x − μ)2

σ 2

)
dx

= 2

σ 2

∫ ∞

−∞
z

(
h′(z2) + 2z2

[
h′(z2)

]2
h(z2)

)
dz

= 0,

g22 = E

[
(∂σ 	)2

]

=
∫ ∞

−∞

(
− 1

σ
− 2(x − μ)2

σ 3

h′ (σ−2(x − μ)2
)

h
(
σ−2(x − μ)2

)
)2

1

σ
h

(
(x − μ)2

σ 2

)
dx

=
∫ ∞

−∞

(
1

σ 2 + 4

σ 2 z
4
(
h′(z2)
h(z2)

)2

+ 4

σ 2 z
2 h

′(z2)
h(z2)

)
h(z2) dz

= 1

σ 2 + 4

σ 2

∫ ∞

−∞
z4
[
h′(z2)

]2
h(z2)

dz + 4

σ 2

∫ ∞

−∞
z2h′(z2) dz

= 4

σ 2

∫ ∞

−∞
z4
[
h′(z2)

]2
h(z2)

dz − 1

σ 2 .

The Fisher matrix for elliptical distributions has the form

G(μ, σ ) =
(

ah
σ 2 0

0 bh
σ 2

)
, (41)

where

ah := 4
∫ ∞

−∞
z2
[
h′(z2)

]2
h(z2)

dz,
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and

bh := 4
∫ ∞

−∞
z4
[
h′(z2)

]2
h(z2)

dz − 1.

Applying Lemma 4 to a statistical manifold formed by univariate elliptical distri-
butions (i.e., for a fixed h) equipped with the metric (41), we get an expression for the
Fisher–Rao distance in this manifold given by

dFR
(
(μ1, σ1), (μ2, σ2)

) = √bhdH2

(
(
√
ahμ1,

√
bhσ1), (

√
ahμ2,

√
bhσ2)

)

= 2
√
bh arctanh

⎛
⎝
√
ah(μ1 − μ2)2 + bh(σ1 − σ2)2

ah(μ1 − μ2)2 + bh(σ1 + σ2)2

⎞
⎠ .

(42)

Note that, if μ1 = μ2 =: μ, the expression simplifies to

dFR
(
(μ, σ1), (μ, σ2)

) = √bh |log σ1 − log σ2| . (43)

5.4.1 Gaussian

A Gaussian distribution [2, 10, 12, 17, 34, 45] is characterised by the p.d.f.

p(x) = 1
σ
√
2π

exp
(
− (x−μ)2

2σ 2

)
, defined for x ∈ R, and parametrised by the pair

(μ, σ ) ∈ R × R
∗+. Note that Gaussian distributions are elliptical distribution with

h(u) = 1√
2π

exp(−u/2), ah = 1, and bh = 2. Thus, by (41), the corresponding Fisher
matrix is

G(μ, σ ) =
(

1
σ 2 0
0 2

σ 2

)
. (44)

And, by (42), the Fisher–Rao distance is obtained as

dFR
(
(μ1, σ1), (μ2, σ2)

) = 2
√
2 arctanh

⎛
⎝
√

(μ1 − μ2)2 + 2(σ1 − σ2)2

(μ1 − μ2)2 + 2(σ1 + σ2)2

⎞
⎠ . (45)

5.4.2 Laplace

A Laplace distribution has p.d.f. p(x) = 1
2σ exp

(
−|x−μ|

σ

)
, defined for x ∈ R, and

parametrised by (μ, σ ) ∈ R × R
∗+. Laplace distributions are elliptical distribution

with h(u) = 1
2 exp

(−√
u
)
, ah = 1, and bh = 1. Using (41), we get the Fisher matrix

as

G(μ, σ ) =
(

1
σ 2 0
0 1

σ 2

)
, (46)
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showing that this metric coincides with the hyperbolic metric (11) of the Poincaré
half-plane. Using (42), we get that the Fisher–Rao distance in this manifold is

dFR
(
(μ1, σ1), (μ2, σ2)

) = 2 arctanh

⎛
⎝
√

(μ1 − μ2)2 + (σ1 − σ2)2

(μ1 − μ2)2 + (σ1 + σ2)2

⎞
⎠ . (47)

The particular case of zero-mean Laplace distributions is included in [22].

5.4.3 Generalised Gaussian

A generalised Gaussian distribution3 [22, 51, 53], also known as exponential power

distribution, is characterised by the p.d.f. p(x) = β
2σ�(1/β)

exp
(
−|x−μ|β

σ

)
, defined

for x ∈ R, and parametrised by (μ, σ ) ∈ R × R
∗+, for a fixed β > 0. These can be

seen as elliptical distributions with h(u) = β
2�(1/β)

exp(−uβ/2), ah = β
�(2−1/β)
�(1+1/β)

, and
bh = β. Using (41), we get the Fisher matrix as

G(μ, σ ) =
(

β

σ 2
�(2−1/β)
�(1+1/β)

0

0 β

σ 2

)
, (48)

and, using (42), we get the Fisher–Rao distance as

dFR
(
(μ1, σ1), (μ2, σ2)

)

= √β + 1 arctanh

⎛
⎝
√

β(μ1 − μ2)2�(2 − 1/β) + (β + 1)(σ1 − σ2)2�(1 + 1/β)

β(μ1 − μ2)2�(2 − 1/β) + (β + 1)(σ1 + σ2)2�(1 + 1/β)

⎞
⎠ .

(49)

Note that choosing β = 2 yields a Gaussian distribution with mean μ and variance
σ 2/2, while letting β = 1 corresponds to a Laplace distribution with mean μ and
variance 8σ 2. Multivariate, zero-mean generalised Gaussian distributions have been
studied in [22].

5.4.4 Logistic

A logistic distribution [18] has p.d.f. p(x) = exp(−(x−μ)/σ)

σ(exp(−(x−μ)/σ)+1)2
, defined for x ∈

R and parametrised by (μ, σ ) ∈ R × R
∗+. A logistic distribution is an elliptical

distribution with h(u) = exp(−√
u)

(1+exp(−√
u))

2 , ah = 1
3 , and bh = π2+3

9 . From (41), we have

that the Fisher matrix is

G(μ, σ ) =
(

1
3σ 2 0

0 π2+3
9σ 2

)
, (50)

3 These generalised Gaussian distributions are in a different sense that those considered in [52].
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Fig. 3 Geodesics joining points (μ1, σ1) = (2, 0.5) and (μ2, σ2) = (5, 1) according to Gaussian metric
(solid) and Cauchy metric (dashed), seen in the parameter space (μ, σ ), and the corresponding densities.
The distance between the twoGaussian distributions is dGaussian((μ1, σ1), (μ2, σ2)) ≈ 3.443, and between
the Cauchy distributions is dCauchy((μ1, σ1), (μ2, σ2)) ≈ 1.721

and, from (42), the Fisher–Rao distance is

dFR
(
(μ1, σ1), (μ2, σ2)

)

= 2
√

π2 + 3

3
arctanh

⎛
⎝
√
3(μ2 − μ1)2 + (π2 + 3)(σ2 − σ1)2

3(μ2 − μ1)2 + (π2 + 3)(σ2 + σ1)2

⎞
⎠ . (51)

5.4.5 Cauchy

ACauchy distribution [17, 49] has p.d.f. p(x) = σ
π[(x−μ)2+σ 2] , defined for x ∈ R, and

parametrised by (μ, σ ) ∈ R×R
∗+. Cauchy distributions are elliptical distributions by

choosing h(u) = 1
π(1+u)

, ah = 1/2, bh = 1/2. Recall that the mean and variance are
not defined in this case. From (41), we get its the Fisher matrix

G(μ, σ ) =
(

1
2σ 2 0
0 1

2σ 2

)
, (52)

and (42) gives the Fisher–Rao distance as

dFR
(
(μ1, σ1), (μ2, σ2)

) = √
2 arctanh

⎛
⎝
√

(μ1 − μ2)2 + (σ1 − σ2)2

(μ1 − μ2)2 + (σ1 + σ2)2

⎞
⎠ . (53)

Figure 3 illustrates geodesics between Gaussian and Cauchy distributions.

5.4.6 Student’s t

A location-scale Student’s t distribution [17] with ν ∈ N
∗ degrees of freedom gener-

alises the Cauchy distribution. It has p.d.f. p(x) = (
1 + 1

ν
(
x−μ
σ

)2
)− ν+1

2 �((ν+1)/2)
σ
√

πν�(ν/2)
,

defined for x ∈ R, and parametrised by (μ, σ ) ∈ R × R
∗+. This is an elliptical dis-

tribution, with h(u) = �((ν+1)/2)√
πν�(ν/2)

(
1 + u

ν

)−(ν+1)/2, ah = ν+1
ν+3 , and bh = 2ν

ν+3 . Then,

123



H. K. Miyamoto et al.

by (41) we obtain the Fisher matrix

G(μ, σ ) =
(

ν+1
(ν+3)σ 2 0

0 2ν
(ν+3)σ 2

)
, (54)

and by (42), the Fisher–Rao distance

dFR
(
(μ1, σ1), (μ2, σ2)

) = 2

√
2ν

ν + 3
arctanh

⎛
⎝
√

(ν + 1)(μ2 − μ1)
2 + 2ν(σ2 − σ1)

2

(ν + 1)(μ2 − μ1)
2 + 2ν(σ2 + σ1)

2

⎞
⎠ . (55)

Remark 5 We close this subsection with a remark on the general case of mul-
tivariate elliptical distributions. These are distributions of the form p(xxx) =
(det�)−1/2h

(
(xxx − µ)T�−1(xxx − µ)

)
, for some function h : R+ → R+, defined

for xxx ∈ R
n , and characterised by a vector µ ∈ R

n and an n × n
positive-definite symmetric matrix � ∈ Pn(R). Analogously to the univariate

case, the set of elliptical distributions for a fixed h forms an
(
n + n(n+1)

2

)
-

dimensional statistical manifold. In the general case, however, no general closed-
form expression for the Fisher–Rao distance is known; instead, only expres-
sions for particular cases and bounds for this distance are available [17, 54–57].
Multivariate Gaussian distributions p(xxx) = ((2π)n det�)−1/2 exp

(− 1
2 (xxx − µ)T

�−1(xxx − µ)
)
have been particularly studied [10, 12, 13, 20, 58–60]. Special cases for

which the Fisher–Rao distance can be written include: fixed mean, fixed covariance,
diagonal covariance matrix, and mirrored distributions. The case of diagonal covari-
ance matrix is equivalent to independent components and will be treated in Sect. 6.
Special cases for themultivariate generalised Gaussian distributions have been studied
in [22]. The Fisher–Rao distance between zero-mean complex elliptically symmetric
distributions has been computed in [33, 61].

5.5 Log-Gaussian

A log-Gaussian distribution [2, 34] is the distribution of a random variable whose log-

arithm follows a Gaussian distribution. It has p.d.f. p(x) = 1
σ x

√
2π

exp
(
− (log x−μ)2

2σ 2

)
,

defined for x ∈ R
∗+, and parametrised by (μ, σ ) ∈ R × R

∗+. In this case, we have

∂μ	 := ∂μ	(μ, σ ) = log x−μ

σ 2 and ∂σ 	 := ∂σ 	(μ, σ ) = − 1
σ

+ (log x−μ)2

σ 3 , so that the
elements of the Fisher matrix are

g11 = E

[(
∂μ	
)2] = E

[(
log X − μ

σ 2

)2
]

= E[(log X − μ)2]
σ 4 = 1

σ 2 ,

g12 = g21 = E
[(

∂μ	
)
(∂σ 	)

] = E

[(
log X − μ

σ 2

)(
− 1

σ
+ (log X − μ)2

σ 3

)]
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= −E[log X − μ]
σ 3 + E[(log X − μ)3]

σ 5

= 0,

g22 = E

[
(∂σ 	)2

]
= E

[(
− 1

σ
+ (log X − μ)2

σ 3

)2
]

= 1

σ 2 − 2E[(log X − μ)2]
σ 4 + E[(log X − μ)4]

σ 6 = 2

σ 2 ,

having used that E[log X ] = μ, E[log X − μ] = E[(log X − μ)3] = 0, E[(log X −
μ)2] = σ 2, and E[(log X − μ)4] = 3σ 4. Thus, the Fisher matrix is given by

G(μ, σ ) =
(

1
σ 2 0
0 2

σ 2

)
. (56)

This is the sameas for theGaussianmanifold (44), therefore theFisher–Raodistance
the same, namely,

dFR
(
(μ1, σ1), (μ2, σ2)

) = 2
√
2 arctanh

⎛
⎝
√

(μ1 − μ2)2 + 2(σ1 − σ2)2

(μ1 − μ2)2 + 2(σ1 + σ2)2

⎞
⎠ . (57)

5.6 Inverse Gaussian

An inverse Gaussian distribution [23, 48] has p.d.f. p(x) =
√

λ
2πx3

exp
(
−λ(x−μ)2

2μ2x

)
,

defined for x ∈ R
∗+, and parametrised by (λ, μ) ∈ R

∗+ × R
∗+. In this case, we have

∂λ	 := ∂λ	(λ, μ) = 1
2λ − (x−μ)2

2μ2x
and ∂μ	 := ∂μ	(λ, μ) = λ(x−μ)

μ3 . The elements of
the Fisher matrix are then

g11 = E

[
(∂λ	)

2
]

= E

[(
1

2λ
− (x − μ)2

2μ2x

)2
]

= 1

4λ2
+ 1

λμ
+ 3

2μ2 −
(

1

2λμ2 + 1

μ3

)
E[X ]

−
(

1

2λ
+ 1

μ

)
E

[
1

X

]
+ 1

4μ4E

[
X2
]

+ 1

4
E

[
1

X2

]

= 1

2λ2
,

g12 = g21 = E
[
(∂λ	)

(
∂μ	
)] = E

[(
1

2λ
− (x − μ)2

2μ2x

)(
λ(x − μ)

μ3

)]

= − 1

2λμ2 − 3

2μ3 +
(

1

2λμ3 − 3λ

2μ4

)
E[X ] + λ

2μ2E

[
1

X

]
− λ

2μ5
E

[
X2
]

= 0,
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g22 = E

[(
∂μ	
)2] = E

[(
λ(x − μ)

μ3

)2
]

= λ2

μ4 − 2λ2

μ5
E[X ] + λ2

μ6E

[
X2
]

= λ

μ3 ,

where we have used that E[X ] = μ, E
[
X2
] = μ3

λ
+ μ2, E

[ 1
X

] = 1
λ

+ 1
μ

and

E

[
1
X2

]
= 3

λ2
+ 3

λμ
+ 1

μ2 . Thus, the Fisher matrix is given by

G(λ, μ) =
(

1
2λ2

0
0 λ

μ3

)
. (58)

To find the Fisher–Rao distance, we consider the change of coordinates u = 1/
√

λ,
v = √

2/μ. Applying Proposition 2 we find that the Fisher matrix in the new
coordinates

G̃(u, v) =
(

2
u2

0
0 2

u2

)
= 2

(
1
u2

0
0 1

u2

)
.

Applying Lemma 4 yields

dFR
(
(λ1, μ1), (λ2, μ2)

)

= √
2dH2

((
1/
√

λ1,
√
2/μ1

)
,
(
1/
√

λ2,
√
2/μ2

))

= 2
√
2 arctanh

(√
μ1μ2(

√
λ1 − √

λ2)2 + 2λ1λ2(
√

μ1 − √
μ2)2

μ1μ2(
√

λ1 − √
λ2)2 + 2λ1λ2(

√
μ1 + √

μ2)2

)
. (59)

5.7 Extreme-value distributions

Extreme-value distributions [62] are limit distribution for the maxima (or minima) of
a sequence of i.i.d. random variables. They are usually considered to be of one of three
families, all of which can be described in the form of the generalised extreme-value
distributions:

p(x) = 1

σ
[t(x, ξ)]ξ+1e−t(x,ξ), (60)

where σ > 0, ξ ∈ R, and

t(x, ξ) =
{(

1 + ξ
( x−μ

σ

))− 1
ξ , ξ �= 0,

exp
(− x−μ

σ

)
, ξ = 0,

for μ ∈ R. Note that t(x, ξ) is continuous on ξ = 0, for every x ∈ R. When ξ = 0,
the support of (60) is x ∈ R, and it is called type I or Gumbel-type distribution; when
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ξ > 0, the support is x ∈ [μ − σ
ξ
, +∞[, and it is called type II or Fréchet-type

distribution; when ξ < 0, the support is x ∈] − ∞, μ − σ
ξ
], and it is called type III or

Weibull-type distribution. Therefore, in general, these distributions are parametrised
by the triple (μ, σ, ξ) ∈ R × R

∗+ × R. Instead of treating the three-dimensional
manifold of generalised extreme-value distributions in full generality [25, 63], for
which no closed-form expression for the Fisher–Rao is available, we consider the
usual two-dimensional versions of them, following [18].

5.7.1 Gumbel

A Gumbel distribution [18] has p.d.f. p(x) = 1
σ
exp
(− x−μ

σ

)
exp
(− exp

(− x−μ
σ

))
,

defined for x ∈ R, and parametrised by (μ, σ ) ∈ R × R
∗+. This corresponds to (60)

taking ξ = 0. In this case, we have ∂μ	 := ∂μ	(μ, σ ) = 1
σ

− 1
σ
exp
(− x−μ

σ

)
and

∂σ 	 := ∂σ 	(μ, σ ) = − x−μ

σ 2 exp
(− x−μ

σ

) + x−μ

σ 2 − 1
σ
. Denoting Z :− X−μ

σ
, the

elements of the Fisher matrix can be written as

g11 = E

[(
∂μ	
)2] = E

[(
1

σ
− 1

σ
e−Z

)2
]

= 1

σ 2 − 2

σ 2E

[
e−Z

]
+ 1

σ 2E

[
e−2Z

]

= 1

σ 2 ,

g12 = g21 = E
[(

∂μ	
)
(∂σ 	)

]

= E

[(
1

σ
− 1

σ
e−Z

)(
Ze−Z

σ
+ Z

σ
+ 1

σ 2

)]

= − 2

σ 2E

[
Ze−Z

]
+ 1

σ 2E [Z ] − 1

σ 2 + 1

σ 2E

[
Ze−2Z

]
+ 1

σ 2E

[
e−Z

]

= γ − 1

σ 2 ,

g22 = E

[
(∂σ 	)2

]
= E

[(
Ze−Z

σ
+ Z

σ
+ 1

σ 2

)2
]

= 1

σ 2E

[
Z2e−2Z

]
− 2

σ 2E

[
Z2e−Z

]
+ 2

σ 2E

[
Ze−Z

]

+ 1

σ 2E

[
Z2
]

− 2

σ 2E [Z ] + 1

σ 2

= 1

σ 2

(
(γ − 1)2 + π2

6

)
,

where γ is the Euler constant and we have used that E [Z ] = γ , E
[
e−Z

] = 1,
E
[
e−2Z

] = 2, E
[
Ze−Z

] = γ −1, E
[
Ze−2Z

] = 2γ −3, E
[
Z2e−2Z

] = 2γ 2 −6γ +
2+ π2

3 , E
[
Z2e−Z

] = γ 2 − 2γ + π2

6 and E
[
Z2
] = γ 2 + π2

6 . Thus, the Fisher matrix
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is

G(μ, σ ) =
( 1

σ 2
γ−1
σ 2

γ−1
σ 2

1
σ 2

(
(γ − 1)2 + π2

6

)
)

. (61)

To find the Fisher–Rao distance, we consider the change of coordinates u = μ −
(1 − γ )σ , v = πσ/

√
6. Applying Proposition 2 we find that the Fisher matrix in the

new coordinates is

G̃(u, v) =
(

π2

6v2
0

0 π2

6v2

)
= π2

6

(
1
v2

0
0 1

v2
.

)

Then, applying Lemma 4, the Fisher–Rao distance is given by

dFR
(
(μ1, σ1), (μ2, σ2)

)

= π√
6
dH2

((
μ1 − (1 − γ )σ1,

π√
6
σ1

)
,

(
μ2 − (1 − γ )σ2,

π√
6
σ2

))

= 2π√
6
arctanh

⎛
⎝
√√√√
[
(μ1 − μ2) − (1 − γ )(σ1 − σ2)

]2 + π2

6 (σ1 − σ2)2[
(μ1 − μ2) − (1 − γ )(σ1 − σ2)

]2 + π2

6 (σ1 + σ2)2

⎞
⎠ . (62)

5.7.2 Fréchet

A Fréchet distribution [18] has p.d.f. p(x) = λ
β

(
x
β

)−λ−1
exp

(
−
(
x
β

)−λ
)
, defined

for x ∈ R
∗+, and parametrised by (β, λ) ∈ R

∗+ × R
∗+. Note that this corresponds

to (60) taking μ = β, σ = β/λ and ξ = 1/λ. This distribution can be related to
the Gumbel distribution by considering the reparametrisation of the sample space
Y := log X , which preserves the Fisher metric (Proposition 3). The p.d.f. of the new
random variable is then

p(y) = 1∣∣∣ dydx
∣∣∣
λ

β

(
ey

β

)−λ−1

exp

(
−
(
ey

β

)−λ
)

= λ

(
ey

β

)−λ

exp

(
−
(
ey

β

)−λ
)

.

Now, considering the change of coordinates α = logβ, θ = 1/λ, we find

p(y) = 1

θ
exp

(
− y − α

θ

)
exp

(
−
(

− y − α

θ

))
,

which coincides with that of a Gumbel distribution with parameters (α, θ) ∈ R×R
∗+.

Comparing with the Fisher matrix (61) and applying Proposition 2 we find that the
Fisher matrix in the (β, λ) coordinates is

G(β, λ) =
⎛
⎝

λ2

β2
1−γ
β

1−γ
β

1
λ2

(
(γ − 1)2 + π2

6

)
⎞
⎠ . (63)
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Note that, by considering the change of coordinates u = logβ − (1 − γ )/λ,
v = π/(λ

√
6) and applying again Proposition 2, the Fisher matrix is found to be

G̃(u, v) =
(

π2

6v2
0

0 π2

6v2

)
= π2

6

(
1
v2

0
0 1

v2
.

)
,

Therefore, by Lemma 4 the Fisher–Rao distance for Fréchet distributions is

dFR
(
(β1, λ1), (β2, λ2)

)

= π√
6
dH2

((
logβ1 − (1 − γ )

λ1
,

π

λ1
√
6

)
,

(
logβ2 − (1 − γ )

λ2
,

π

λ2
√
6

))

= 2π√
6
arctanh

⎛
⎜⎜⎝

√√√√√√

[
log β1

β2
− (1 − γ )

(
1
λ1

− 1
λ2

)]2 + π2

6

(
1
λ1

− 1
λ2

)2
[
log β1

β2
− (1 − γ )

(
1
λ1

− 1
λ2

)]2 + π2

6

(
1
λ1

+ 1
λ2

)2

⎞
⎟⎟⎠ . (64)

5.7.3 Weibull

A Weibull distribution [12, 18, 50] has p.d.f. p(x) = λ
β

(
x
β

)λ−1
exp

(
−
(
x
β

)λ
)
,

defined for x ∈ R
∗+, and parametrised by (β, λ) ∈ R

∗+×R
∗+. Note that this corresponds

to the distribution of−X in (60) takingμ = −β,σ = β/λ and ξ = −1/λ. It is possible
to relate a Weibull distribution to Gumbel by considering the reparametrisation of the
sample space Y := − log X , which preserves the Fisher metric, (Proposition 3). The
p.d.f. of the new random variable is

p(y) = 1∣∣∣ dydx
∣∣∣
λ

β

(
e−y

β

)λ−1

exp

(
−
(
e−y

β

)λ
)

= λ

(
e−y

β

)λ

exp

(
−
(
e−y

β

)λ
)

.

Moreover, with the change of coordinates λ = 1/θ , α = − logβ, we have

p(y) = 1

θ
exp

(
− y − α

θ

)
exp

(
− exp

(
− y − α

θ

))
,

which coincides with a a Gumbel distribution with parameters (α, θ) ∈ R × R
∗+.

Again, comparing with the Fisher matrix (61) and applying Proposition 2 we find that
the Fisher matrix in the (β, λ) coordinates is

G(β, λ) =
⎛
⎝

λ2

β2
γ−1
β

γ−1
β

1
λ2

(
(γ − 1)2 + π2

6

)
⎞
⎠ . (65)
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The change of coordinates u = − logβ − (1 − γ )/λ, v = π/(λ
√
6) with

Proposition 2 yields the following form for the Fisher matrix:

G̃(u, v) =
(

π2

6v2
0

0 π2

6v2

)
= π2

6

(
1
v2

0
0 1

v2

)
.

In addition, by Lemma 4, the Fisher–Rao distance for Weibull distributions is

dFR
(
(β1, λ1), (β2, λ2)

)

= π√
6
dH2

((
− logβ1 − (1 − γ )

λ1
,

π

λ1
√
6

)
,

(
− logβ2 − (1 − γ )

λ2
,

π

λ2
√
6

))

= 2π√
6
arctanh

⎛
⎜⎜⎝

√√√√√√

[
log β2

β1
− (1 − γ )

(
1
λ1

− 1
λ2

)]2 + π2

6

(
1
λ1

− 1
λ2

)2
[
log β2

β1
− (1 − γ )

(
1
λ1

− 1
λ2

)]2 + π2

6

(
1
λ1

+ 1
λ2

)2

⎞
⎟⎟⎠ . (66)

The special case of fixed λ has been addressed in [12].

Remark 6 If X is a random variable following aWeibull distribution, then−X follows
a reversed Weibull distribution, which corresponds to the Weibull-type distribution
from (60), and has the same geometry, and same Fisher–Rao distance as the Weibull
distribution [18].

5.8 Pareto

A Pareto distribution [12, 14] has p.d.f. p(x) = θαθ x−(θ+1), defined for x ∈ [α,∞[
and parametrised by (θ, α) ∈ R

∗+ × R
∗+. In this case, the support depends on the

parametrisation, thus violating one of the assumptions made in the definition of a
statistical manifold (1). Nevertheless, it is still possible4 to compute a Riemannian
metric from the Fisher information matrix, as in (2). We thus have ∂θ	 := ∂θ	(θ, α) =
1
θ

+ logα − log x and ∂α	 := ∂α	(θ, α) = θ
α
. The elements of the Fisher matrix are

g11 = E

[
(∂θ	)

2
]

= E

[(
1

θ
+ logα − log X

)2
]

= 1

θ2
+ (logα)2 + E

[
(log X)2

]
+ 2

θ
(logα − E[log X ]) − 2 logαE[log X ]

= 1

θ2
,

g12 = g21 = E [(∂θ	) (∂α	)] = E

[(
1

θ
+ logα − log X

)(
θ

α

)]

= 1

α
+ θ

α
logα − θ

α
E[log X ] = 0,

4 As noted in [14], what is not possible is to use the alternative expression (3), which would result in a
‘fake metric’.
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g22 = E

[
(∂α	)2

]
= E

[(
θ

α

)2
]

= θ2

α2 ,

where we have used that E[log X ] = 1
θ

+ logα and E[(log X)2] = 2
θ2

+ 2 logα
θ

+
(logα)2. Thus, the Fisher matrix is

G(θ, α) =
(

1
θ2

0

0 θ2

α2

)
. (67)

To find the Fisher–Rao distance, we consider the change of coordinates u = logα,
v = 1/θ . Applying Proposition 2 we find that the Fisher matrix in the new coordinates

G̃(u, v) =
(

1
v2

0
0 1

v2

)
,

which coincides with the hyperbolic metric (11) restricted to the positive quadrant.
Therefore the Fisher–Rao distance is given by

dFR
(
(θ1, α1), (θ2, α2)

) = dH2 ((logα1, 1/θ1) , (logα2, 1/θ2))

= 2 arctanh

⎛
⎝
√

(θ1θ2 log(α1/α2))2 + (θ1 − θ2)2

(θ1θ2 log(α1/α2))2 + (θ1 + θ2)2

⎞
⎠ . (68)

The special case of fixed α has been addressed in [12].

5.9 Power function

Apower function distribution [12] has p.d.f. p(x) = θβ−θ xθ−1, defined for x ∈]0, β],
and parametrised by (θ, β) ∈ R

∗+ × R
∗+. As in the previous example, the support

depends on the parametrisation, but it is still possible to consider the Fisher metric
as in (2). This distribution can be related to the Pareto distribution (Sect. 5.8) as
follows. Consider the reparametrisation of the sample space given by Y := 1/X (cf.
Proposition 3), and the change of coordinates α = 1/β. Note that, since x ∈]0, β], we
have y ∈ [α,∞[. The p.d.f. of the new random variable, with the new coordinates, is

p(y) = 1∣∣∣ dydx
∣∣∣
θβ−θ y−(θ−1) = θβ−θ y−(θ+1) = θαθ y−(θ+1).
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which coincides with a Pareto distribution with parameters (θ, α). Therefore, applying
Proposition 2, we find

G(θ, β) =
(

1
θ2

0

0 θ2

β2

)
, (69)

and therefore

dFR
(
(θ1, β1), (θ2, β2)

) = dH2 ((logβ1, 1/θ1) , (logβ2, 1/θ2))

= 2 arctanh

⎛
⎝
√

(θ1θ2 log(β1/β2))2 + (θ1 − θ2)2

(θ1θ2 log(β1/β2))2 + (θ1 + θ2)2

⎞
⎠ . (70)

The special case of fixed α has been addressed in [12].

Remark 7 All the examples of two-dimensional statistical manifolds of continuous
distributions presented so far in this section are related to the hyperbolic Poincaré
half-plane, and have constant negative curvature. However, there are examples of two-
dimensional statistical manifolds which are not of constant negative curvature, even if
we do not have an explicit expression for the Fisher–Rao distances. We present some
examples in the following.

• The statistical manifold of Gamma distributions p(x) = βα

�(α)
xα−1e−βx , defined

for x ∈ R
∗+ and parametrised by (α, β) ∈ R

∗+×R
∗+. The curvature of this manifold

is [38, 39, 64]

κ = ψ(1)(α) + αψ(2)(α)

4
(
αψ(1)(α) − 1

)2 < 0,

which is negative, but not constant, and whereψ(m)(x) := dm+1

dxm+1 log�(x) denotes
the polygamma function of order m. Bounds for the Fisher–Rao distance in this
manifold have been studied in [64].

• The statistical manifold of Beta distributions p(x) = �(α+β)
�(α)�(β)

xα−1(1 − x)β−1,
defined for x ∈ [0, 1] and parametrised by (α, β) ∈ R

∗+ × R
∗+. The curvature of

this manifold is [26]

κ = ψ(2)(α)ψ(2)(β)ψ(2)(α + β)

4
(
ψ(1)(α)ψ(1)(β) − ψ(1)(α + β)[ψ(1)(α) + ψ(1)(β)])2

×
(

ψ(1)(α)

ψ(2)(α)
+ ψ(1)(β)

ψ(2)(β)
− ψ(1)(α + β)

ψ(2)(α + β)

)

< 0,

which is negative, but not constant too. In fact, more generally, the sectional curva-
ture of the statistical manifold of Dirichlet distributions (which are themultivariate
generalisation of Beta distributions) is negative [65, Thm. 6].
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• Finally, a construction of n-dimensional statistical manifolds, based on a Hilbert
space representation of probability measures, was given in [16]. The geometry of
these manifolds is spherical, that is, they have constant positive curvature.

5.10 Wishart

A Wishart distribution [11, 66] in dimension m, with n ≥ m degrees of freedom,
n ∈ N, has p.d.f.

p(X) = (det X)(n−m−1)/2 exp
(− 1

2 tr(�
−1X)

)

2nm/2(det�)n/2 �m(n/2)
,

defined for X ∈ Pm(R), and characterised by � ∈ Pm(R), where �m(z) :=
π

m(m−1)
4
∏m

j=1 �
(
z + 1− j

2

)
denotes the multivariate Gamma function. Note that, for

fixed m, n, the associated
(
m(m+1)

2

)
-dimensional statistical manifold S is in cor-

respondence with the cone Pm(R) of symmetric positive-definite matrices via the

bijection ι : Pm(R) → S, given by � �→ (det X)(n−m−1)/2 exp
(
− 1

2 tr(�−1X)
)

2nm/2(det�)n/2 �m (n/2)
. Denot-

ing σi, j the (i, j)-th entry of the matrix �, we can write the parameter vector
as ξ = (

ξ1, . . . , ξm(m+1)/2
) = (σ1,1, . . . σ1,m, σ2,2, . . . , σ2,m, . . . , σm,m). We then

have ∂i	 := ∂i	(�) = 1
2 tr
(
�−1X�−1(∂i�)

) − n
2 tr
(
�−1(∂i�)

)
and ∂ j∂i	 =

− tr
(
�−1(∂i�)�−1(∂ j�)�−1X

)+ n
2 tr
(
�−1(∂i�)�−1(∂ j�)

)
, where the derivative

in ∂i� is taken entry-wise. The elements of the Fisher metric are then

gi j (ξ) = −E
[
∂ j∂i	

]

= −E

[
− tr

(
�−1(∂i�)�−1(∂ j�)�−1X

)
+ n

2
tr
(
�−1(∂i�)�−1(∂ j�)

)]

= tr
(
�−1(∂i�)�−1(∂ j�)�−1

E[X ]
)

− n

2
tr
(
�−1(∂i�)�−1(∂ j�)

)

= n

2
tr
(
�−1(∂i�)�−1(∂ j�)

)
, (71)

where we have used that E[X ] = n�.
In view of the bijection ι, the tangent space TpξS can be identified

with Hm , the set of m × m symmetric matrices [67, Chapter 6]. Given
two matrices U , Ũ ∈ Hm , parametrized as θ = (

θ1, . . . , θm(m+1)/2
) =(

u1,1, . . . u1,m, u2,2, . . . , u2,m, . . . , um,m
)

and θ̃ = (
θ̃1, . . . , θ̃m(m+1)/2

) =
(̃u1,1, . . . ũ1,m, ũ2,2, . . . , ũ2,m, . . . , ũm,m), we shall compute the inner product defined
by the Fisher metric, cf. (4). In the following, ⊗ denotes the Kronecker prod-
uct, and, for an m × m matrix A, whose columns are A1, A2, . . . , Am , we
denote vec(A) := (

AT
1 AT

2 · · · AT
m

)T
the m2-dimensional vector formed by the

concatenation of its columns. Moreover, if A is symmetric, denote ν(A) :=
(a1,1, . . . a1,m, a2,2, . . . , a2,m, . . . , am,m). We denote Dm the unique m2 × m(m+1)

2
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matrix that verifies Dmν(A) = vec(A), for any symmetric A [68, § 7]. We thus have

〈U , Ũ 〉G(ξ) = θTG(ξ)θ̃

=
m(m+1)

2∑
i=1

m(m+1)
2∑

j=1

gi j (ξ)θ i θ̃ j

=
m(m+1)

2∑
i=1

m(m+1)
2∑

j=1

n

2
tr
(
�−1(∂i�)�−1(∂ j�)

)
θ i θ̃ j

= n

2
tr
(
�−1U�−1Ũ

)

= n

2
vec(U )(�−1 ⊗ �−1) vec(Ũ )

= n

2
θTDT

m(�−1 ⊗ �−1)Dm θ̃ ,

where we have used that tr(ABCD) = vec(D)T(A ⊗ CT) vec(BT), for A, B, C and
D matrices such that the product ABCD is defined and square [68, Lemma 3]. We
can thus conclude that the Fisher matrix is

G(ξ) = n

2
DT
m

(
�−1 ⊗ �−1

)
Dm . (72)

This metric turns out to coincide with the Fisher metric of the statistical manifold
formed by multivariate Gaussian distributions with fixed mean [12, 20, 37, 60], up
to the factor n. Therefore, the Fisher–Rao distance is proportional to the one of that
manifold, that is,

dFR
(
�1, �2

) =
√
n

2

∥∥∥log
(
�

−1/2
1 �2�

−1/2
1

)∥∥∥
F

=
√√√√n

2

m∑
k=1

(log λk)
2, (73)

where λk are the eigenvalues of �
−1/2
1 �2�

−1/2
1 , log denotes the matrix logarithm,

and ‖A‖F =
√
tr
(
AAT

)
is the Frobenius norm. This metric also coincides with the

standard metric of Pm(R), when endowed with the matrix inner product 〈A, B〉 =
tr(ATB) [67, Chapter 6], up to the factor n

2 , and is in fact related to the metric of the
Siegel upper space [69] (see also [37, Appendix D]). Note that when � is restricted to
be diagonal this distance is, up to a factor

√
n, the product distance between univariate

Gaussian distributions with fixed mean—see Example 2 in Sect. 6.
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5.11 InverseWishart

An inverse Wishart distribution [70] in dimensionm, with n ≥ m degrees of freedom,
n ∈ N, has p.d.f.

p(X) = (det�)n/2(det X)
−(n+m+1)/2

exp
(− 1

2 tr(�X−1)
)

2nm/2�m(n/2)
,

defined for X ∈ Pm(R), and characterised by � ∈ Pm(R). We can relate an inverse
Wishart distribution to a Wishart distribution by considering the reparametrisation of
the sample space given by Y := X−1 (cf. Proposition 3), and the change of coordinates
� := �−1. The p.d.f. of the new random variable, in the new coordinates, is

p(Y ) = 1∣∣ dY
dX

∣∣
(
det(�−1)

)n/2 (
det(Y−1)

)−(n+m+1)/2
exp
(− 1

2 tr(�
−1Y )

)

2nm/2 �m(n/2)
,

= 1(
det(Y−1)

)−(m+1)

(
det(Y−1)

)−(n+m+1)/2
exp
(− 1

2 tr(�
−1Y )

)

(det�)n/22nm/2 �m(n/2)

= (det Y )(n−m−1)/2 exp
(− 1

2 tr(�
−1Y )

)

(det�)n/22nm/2 �m(n/2)
,

where we have used that
∣∣ dY
dX

∣∣ = det(X)−(m+1) [68, § 12], which coin-
cides with the p.d.f. of a Wishart distribution with parameter �. Write
σi, j and φi, j the (i, j)-th entries of matrices � and �, respectively. Write
ξ = (

ξ1, . . . , ξm(m+1)/2
) = (σ1,1, . . . σ1,m, σ2,2, . . . , σ2,m, . . . , σm,m), and θ =

(θ1, . . . , θm(m+1)/2) = (φ1,1, . . . φ1,m, φ2,2, . . . , φ2,m, . . . , φm,m). Denote GW (θ)

the Fisher matrix of a Wishart distribution (72) in coordinates θ . In the following,
Dm is the matrix defined in the previous section, and A+ denotes the Moore–Penrose
inverse of a matrix A. Applying Proposition 2 yields

G(ξ) =
[
d�

d�
(�)

]−T

GW (θ)

[
d�

d�
(�)

]−1

= n

2

(
−D+

m

(
�−1 ⊗ �−1

)
Dm

)−T
DT
m

(
�−1 ⊗ �−1

)

Dm

(
−D+

m

(
�−1 ⊗ �−1

)
Dm

)−1

= n

2

(
D+
m (� ⊗ �) Dm

)−T
DT
m (� ⊗ �) Dm

(
D+
m (� ⊗ �) Dm

)−1

= n

2

(
D+
m

(
�−1 ⊗ �−1

)
Dm

)T
DT
m (� ⊗ �) DmD

+
m

(
�−1 ⊗ �−1

)
Dm

= n

2
DT
m

(
�−1 ⊗ �−1

) (
D+
m

)T
DT
m (� ⊗ �) DmD

+
m

(
�−1 ⊗ �−1

)
Dm

= n

2
DT
m

(
�−1 ⊗ �−1

)
Dm,
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where we have used that d�
d�(�) = −D+

m

(
�−1 ⊗ �−1

)
Dm [68, § 12],(

D+
m (� ⊗ �)Dm

)−1 = D+
m

(
�−1 ⊗ �−1

)
Dm , and DmD+

m

(
�−1 ⊗ �−1

)
Dm =(

�−1 ⊗ �−1
)
Dm [68, Lemma 11]. Therefore, the Fisher matrix is the same as for

Wishart distributions in (72), and the Fisher–Rao distance is

dFR
(
�1, �2

) =
√
n

2

∥∥∥log
(
�

−1/2
1 �2�

−1/2
1

)∥∥∥
F

=
√√√√n

2

m∑
k=1

(log λk)
2, (74)

where λk are the eigenvalues of �
−1/2
1 �2�

−1/2
1 .

Remark 8 Other matrix distributions have been recently studied in the literature. In
[11], generalWishart elliptical distributions have been addressed,which also include t-
Wishart andKotz–Wishart, by noting that theirmetric coincideswith that of zero-mean
multivariate elliptical distributions [54].

6 Product distributions

In this short section, we address the Fisher–Rao distance for multivariate product
distributions, i.e., distributions of random vectors whose components are independent.
In this case, the distribution of the random vector is the product of the distributions of
each component, and the associated statistical manifold is the product of the statistical
manifold associated to each component.

Consider m Riemannian manifolds {(Mi , gi ) : 1 ≤ i ≤ m}, and the product
manifold (M, g), with M := M1 ×· · ·×Mm , and g := g1 ⊕· · ·⊕ gm . In matrix form,
the product metric is given by the block-diagonal matrix

G =

⎛
⎜⎜⎜⎝

G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...

0 0 · · · Gm

⎞
⎟⎟⎟⎠ ,

whereGi is the matrix form of themetric gi , for 1 ≤ i ≤ m. Let di denote the geodesic
distance in Mi . Then, the geodesic distance d in (M, g) is given by a Pythagorean
formula [71, Prop. 1], [72]:

d((x1, . . . , xm), (y1, . . . , ym)) =
√√√√

m∑
i=1

[di (xi , yi )]2, (75)

where (x1, . . . , xm) ∈ M1 × · · · × Mm , and (y1, . . . , ym) ∈ M1 × · · · × Mm . This
result can be used to write explicit forms for the Fisher–Rao distance in statistical
manifolds of product distributions, as they are statistical product manifolds. This type
of construction has been used, e.g., in [18, 23]. Some examples are given below.
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Example 1 The Fisher–Rao distance between the distributions of n-dimensional vec-
tors formed independent Poisson distributions [12] (cf. Section 4.2) with parameters
(λ1, . . . , λn) and (λ′

1, . . . , λ
′
n) is

dFR
(
(λ1, . . . , λn), (λ

′
1, . . . , λ

′
n)
) = 2

√√√√
n∑

i=1

(√
λi −

√
λ′
i

)2

. (76)

Example 2 Consider multivariate independent Gaussian distributions (cf. Sect. 5.4.1).
In this case, the covariance matrix is diagonal, a case that has been addressed in
[12, 20, 45]. The Fisher–Rao distance between such distributions parametrised by
(μ1, σ1, . . . , μn, σn) and (μ′

1, σ
′
1, . . . , μ

′
n, σ

′
n) is

dFR
(
(μ1, σ1, . . . , μn, σn), (μ

′
1, σ

′
1, . . . , μ

′
n, σ

′
n)
)

= 2
√
2

√√√√√
n∑

i=1

[
arctanh

(√
(μi − μ′

i )
2 + 2(σi − σ ′

i )
2

(μi − μ′
i )
2 + 2(σi + σ ′

i )
2

)]2
. (77)

Example 3 More generally, consider a vector (X1, . . . , Xn) of n-independent gener-
alised Gaussian distributions, where Xi follows a generalised Gaussian with fixed
βi , parametrised by (μi , σi ). For fixed values (β1, . . . , βn), the distance between
the distribution of two such vectors, parametrised by (μ1, σ1, . . . , μn, σn) and
(μ′

1, σ
′
1, . . . , μ

′
n, σ

′
n), is

dFR
(
(μ1, σ1, . . . , μn, σn), (μ

′
1, σ

′
1, . . . , μ

′
n, σ

′
n)
)

=

√√√√√
n∑

i=1

(βi + 1)

⎡
⎣arctanh

⎛
⎝
√√√√ βi (μi − μ′

i )
2�(2 − 1

βi
) + (βi + 1)(σi − σ ′

i )
2�(1 + 1

βi
)

βi (μi − μ′
i )
2�(2 − 1

βi
) + (βi + 1)(σ ′

i + σ ′
i )

2�(1 + 1
βi

)

⎞
⎠
⎤
⎦
2

.

(78)

7 Final remarks

In this survey, we have collected closed-form expressions for the Fisher–Rao dis-
tance in different statistical manifolds of both discrete and continuous distributions.
In curating this collection in a unified language, we also provided some punctual con-
tributions. The results are summarised in Tables 1 and 2. We hope that providing these
expressions readily available can be helpful not only to those interested in information
geometry itself, but also to a broader audience, interested in using these distances in
different applications.
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Sankhyā Indian J. Stat. Ser. A 55(2), 214–225 (1993)
17. Mitchell, A.F.S.: Statistical manifolds of univariate elliptic distributions. Int. Stat. Rev. 56(1), 1–16

(1988)
18. Oller, J.M.: Information metric for extreme value and logistic probability distributions. Sankhyā Indian
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