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Abstract
Iterative minimization algorithms appear in various areas including machine learning,
neural networks, and information theory. The em algorithm is one of the famous
iterative minimization algorithms in the area of machine learning, and the Arimoto–
Blahut algorithm is a typical iterative algorithm in the area of information theory.
However, these two topics had been separately studied for a long time. In this paper,
we generalize an algorithm that was recently proposed in the context of the Arimoto–
Blahut algorithm. Then, we show various convergence theorems, one of which covers
the case when each iterative step is done approximately. Also, we apply this algorithm
to the target problem of the em algorithm, and propose its improvement. In addition,
we apply it to other various problems in information theory.

Keywords Minimization · Em algorithm · Mixture family · Channel capacity ·
Divergence

1 Introduction

Optimization over distributions is an important topic in various areas. For example, the
minimum divergence between a mixture family and an exponential family has been
studied by using the em algorithm in the areas ofmachine learning and neural networks
[1–4]. The em algorithm is an iterative algorithm to calculate the above minimization
and it is rooted in the study of Boltzmann machines [5]. In particular, the paper [3]
formulated the em algorithm under the framework with Bregman divergence [6, 7].
The topic of the em algorithm has been mainly studied in the community of machine
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learning, neural networks, and information geometry. As another iterative algorithm,
the Arimoto–Blahut algorithm is known as an algorithm to maximize the mutual
information by changing the distribution on the input system [8, 9]. This maximization
is needed to calculate the channel capacity [10]. This algorithm has been generalized
to various settings including the rate distortion theory [9, 11–13], the capacity of a
wire-tap channel [14], and their quantum extensions [15–19]. In particular, the two
papers [13, 19] made very useful generalizations to cover various topics in information
theory. The Arimoto–Blahut algorithm and its variants have been mainly studied in
the community of information theory.

However, only a limited number of studies have discussed the relation between
the two topics, the em algorithm and the Arimoto–Blahut algorithm, as follows. The
papers [23, 24] pointed out that the Arimoto–Blahut algorithm can be considered as an
alternating algorithm in a similar way to the EM and the em algorithms. Recently, the
paper [20] pointed out that the maximization of the mutual information can be con-
sidered to be the maximization of the projected divergence to an exponential family
by changing an element of a mixture family. The paper [21] generalized this maxi-
mization to the framework with Bregman divergence [6, 7] and applied this setting
to various problems in information theory. Also, the recent paper [22] applied the em
algorithm to the rate-distortion theory, which is a key topic in information theory.

In this paper, we focus on a generalized problem setting proposed in [19], which is
given as an optimization over the set of input quantum states. As the difference from
the former algorithm, their algorithm [19] has an acceleration parameter. Changing this
parameter, we can enhance the convergence speed under a certain condition. To obtain
wider applicability, we extend their problem setting to the minimization over a general
mixture family. Although they discussed the convergence speed only when there is
no local minimizer, our analysis covers the convergence speed to a local minimizer
even when there exist several local minimizers. Further, since our setting covers a
general mixture family as the set of input variables, our method can be applied to the
minimumdivergence between amixture family and an exponential family, which is the
objective problem in the em algorithm. That is, this paper presents a general algorithm
including the em algorithm as well as the Arimoto–Blahut algorithm. This type of
relation between the em algorithm and the Arimoto–Blahut algorithm is different
from the relation pointed by the papers [23, 24].

There is a possibility that each iteration can be calculated only approximately. To
cover such an approximated case, we evaluate the error of our algorithm with approxi-
mated iterations. Since the em algorithm has local minimizers in general, it is essential
to cover the convergence to a local minimizer. Since our algorithm has the acceleration
parameter, our application to the minimum divergence gives a generalization of the
em algorithm. Also, our algorithm can be applied to the maximization of the projected
divergence to an exponential family by changing an element of a mixture family.

In addition, our algorithm has various applications that were not discussed in the
preceding study [19]. In channel coding, the decoding block error probability goes
to zero exponentially under the proper random coding when the transmission rate
is smaller than the capacity [25]. Also, the probability of correct decoding goes to
zero exponentially when the transmission rate is greater than the capacity [26]. These
exponential rates are written with the optimization of the so-called Gallager function.

123



Iterative minimization algorithm on a mixture family

Recently, the paper [27] showed that the Gallager function can be written as the
minimization of the Rényi divergence. Using this fact, we apply our method to these
optimizations. Further, we apply our algorithm to the capacity of a wiretap channel.
In addition, since our problem setting allows a general mixture family as the range of
input, we apply the channel capacity with cost constraint. Also, we point out that the
calculation of the commitment capacity is given as the minimization of the divergence
between amixture family and an exponential family.Hence,we discuss this application
as well.

The remaining part of this paper is organized as follows. Section 2 formulates our
minimization problem for a general mixture family. Then, we proposed several algo-
rithms to solve the minimization problem. We derive various convergence theorems
including the case with approximated iterations. The remaining sections apply our
algorithm to various examples. In these sections, examples of objective functions are
discussed. Section 3 applies our algorithm to various information theoretical prob-
lems. Then, Sect. 4 demonstrates the application to the minimum divergence between
a mixture family and an exponential family. Section 5 shows how to apply our algo-
rithm to the commitment capacity. Section 6 discusses the application of our algorithm
to the maximization of the projected divergence to an exponential family by changing
an element of a mixture family. Section 7 considers the application to information
bottleneck, which is a powerful method for machine learning. Appendices are devoted
to the proofs of the theorems presented in Sect. 2.

2 General setting

2.1 Algorithmwith exact iteration

We consider a finite sample spaceX and focus on the setP(X ) of distributions whose
support is X . Using k linearly independent functions f1, . . . , fk on X and constants
a = (a1, . . . , ak), we define the mixture familyMa as follows

Ma := {P ∈ P(X )|P[ fi ] = ai for i = 1, . . . , k}, (1)

where P[ f ] := ∑
x∈X P(x) f (x). We add additional l − k linearly independent func-

tions fk+1, . . . fl and |X | = l + 1 such that the l functions f1, . . . , fl are linearly
independent. Then, the distribution P can be parameterized by the mixture parameter
η = (η1, . . . , ηl) as ηi = P[ fi ]. That is, the above distribution is denoted by Pη. Then,

we denote the e-projection of P to Ma by Γ
(e)
Ma

[P]. That is, Γ
(e)
Ma

[P] is defined as
follows [1, 2].

Γ
(e)
Ma

[P] := argmin
Q∈Ma

D(Q‖P), (2)

where the Kullback–Leibler divergence D(Q‖P) is defined as

D(Q‖P) :=
∑

x∈X
Q(x)(log Q(x) − log P(x)). (3)
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Using the e-projection, we have the following equation for an element of Q ∈ Ma ,
which is often called Pythagorean theorem.

D(Q‖P) = D(Q‖Γ (e)
Ma

[P]) + D(Γ
(e)
Ma

[P]‖P). (4)

Given a continuous function Ψ fromMa to the set of functions on X , we consider
the minimization minP∈Ma G(P);

G(P) :=
∑

x∈X
P(x)Ψ [P](x). (5)

This paper aims to find

G(a) := min
P∈Ma

G(P), P∗,a := argmin
P∈Ma

G(P). (6)

For this aim, we propose an iterative algorithm based on a positive real number
γ > 0. Since the above formulation (5) is very general, we can choose the function Ψ

dependently on our objective function. That is, different choices of Ψ lead to different
objective functions.

For a distribution Q ∈ P(X ), we define the distribution Φ[Q] as

Φ[Q](x) := 1

κ[Q]Q(x) exp(− 1

γ
Ψ [Q](x)), (7)

where κ[Q] is the normalization factor
∑

x∈X Q(x) exp(− 1
γ
Ψ [Q](x)). Then, depend-

ing on γ > 0, we propose Algorithm 1. When the calculation of Ψ [P] and the
e-projection is feasible, Algorithm 1 is feasible.

Algorithm 1Minimization of G(P)

As inputs, we prepare the functionΨ , l linearly independent functions f1, . . . , fl , constraints a1, . . . , ak ,
a positive number γ > 0, and the initial value P(1) ∈ Ma ;
repeat
Calculate P(t+1) := Γ

(e)
Ma

[Φ[P(t)]];
until convergence. We denote the convergent by P(∞). The convergence of this algorithm is guaranteed
by Theorem 1.
Output P(∞).

Indeed, Algorithm 1 is characterized as the iterative minimization of the following
two-variable function, i.e., the extended objective function;

Jγ (P, Q) := γ D(P‖Q) +
∑

x∈X
P(x)Ψ [Q](x). (8)
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To see this fact, we define

F1[P] := argmin
Q∈Ma

Jγ (P, Q), F2[Q] := argmin
P∈Ma

Jγ (P, Q). (9)

Then, F2[Q] is calculated as follows.

Lemma 1 Under the above definitions, for any positive value γ > 0, we haveF2[Q] =
Γ

(e)
Ma

[Φ[Q]], i.e.,

min
P∈Ma

Jγ (P, Q) = Jγ (Γ
(e)
Ma

[Φ[Q]], Q)

= γ D(Γ
(e)
Ma

[Φ[Q]]‖Φ[Q]) − γ log κ[Q], (10)

Jγ (P, Q) = min
P ′∈Ma

Jγ (P ′, Q) + γ D(P‖Γ (e)
Ma

[Φ[Q]]) (11)

= Jγ (Γ
(e)
Ma

[Φ[Q]], Q) + γ D(P‖Γ (e)
Ma

[Φ[Q]]). (12)

Proof We have the following relations.

Jγ (P, Q) = γ
∑

x∈X
P(x)(log P(x) − log Q(x) + 1

γ
Ψ [Q](x))

= γ
∑

x∈X
P(x)(log P(x) − logΦ[Q](x) − log κ[Q])

= γ D(P‖Φ[Q]) − γ log κ[Q]
= γ D(P‖Γ (e)

Ma
[Φ[Q]])+γ D(Γ

(e)
Ma

[Φ[Q]]‖Φ[Q])−γ log κ[Q],
(13)

where the final equation follows from (4). Then, the minimum is given as (10), and it
is realized with Γ

(e)
Ma

[Φ[Q]].
Applying (10) to the final line of (13), we obtain (11). Since the minimum in (11)

is realized when P ′ = Γ
(e)
Ma

[Φ[Q]], we obtain (12). ��
We calculate F1[Q]. For this aim, we define

DΨ (P‖Q) :=
∑

x∈X
P(x)(Ψ [P](x) − Ψ [Q](x)). (14)

Lemma 2 Assume that two distributions P, Q ∈ Ma satisfy the following condition,

DΨ (P‖Q) ≤ γ D(P‖Q). (15)

Then, we have F1[P] = P, i.e.,

Jγ (P, Q) ≥ Jγ (P, P). (16)
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Proof Eq. (15) guarantees that

Jγ (P, Q) − Jγ (P, P)

= γ D(P‖Q) −
∑

x∈X
P(x)(Ψ [P](x) − Ψ [Q](x)) ≥ 0. (17)

��
Remark 1 The preceding study [19] discussed the minimization of a function defined
over the set of density matrices, i.e., the set of quantum states. When the function is
given as a function only of the diagonal part of the density matrix, the function is
given as a function of probability distribution composed of the diagonal part. That is,
the preceding study [19] covers the case when the function is optimized over a set of
probability distributions as a special case. The obtained result of this paper covers the
case when the function is optimized over a mixture family. That is, the preceding study
[19] does not consider the case with linear constraints. In this sense, the obtained result
of this paper generalizes the above special case of the result of [19], and Algorithm 1
is a generalization of the algorithm given in [19].

Lemma 3.2 [19] is composed of several statements. The combination of Lemmas 1
and 2 is a generalization of the above special case of [19, Lemma 3.2]. That is, the
classical restriction of [19, Lemma 3.2] is equivalent to the combination of Lemmas 1
and 2 without linear constraints.

Due to Lemmas 1 and 2, when all pairs (P(t+1), P(t)) satisfy (15), the relations

G(P(t)) = Jγ (P(t), P(t)) ≥ Jγ (P(t+1), P(t))

≥ Jγ (P(t+1), P(t+1)) = G(P(t+1)) (18)

hold under Algorithm 1. In addition, we have the following theorem.

Theorem 1 When all pairs (P(t+1), P(t)) satisfy (15), i.e., the positive number γ is
sufficiently large, Algorithm 1 converges to a local minimum.

Proof Since {G(P(t))} is monotonically decreasing for t , we have

lim
n→∞G(P(t)) − G(P(t+1)) = 0. (19)

Using (12), we have

G(P(t)) = Jγ (P(t), P(t))

= γ D(P(t)‖P(t+1)) + Jγ (P(t+1), P(t))

≥ γ D(P(t)‖P(t+1)) + G(P(t+1)). (20)

Thus, we have

γ D(P(t)‖P(t+1)) ≤ G(P(t)) − G(P(t+1)). (21)
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Since due to (19) and (21), the sequence {G(P(t))} is a Cauchy sequence, it con-
verges. ��

To discuss the details of Algorithm 1, we focus on the δ-neighborhood U (P0, δ)

of P0 defined as

U (P0, δ) := {P ∈ Ma |D(P0‖P) ≤ δ}. (22)

In particular, we denoteMa byU (P0,∞). Then, we address the following conditions
for the δ-neighborhood U (P0, δ) of P0;

(A0) Any distribution Q ∈ U (P0, δ) satisfies the inequality

G(F2[Q]) ≥ G(P0). (23)

(A1) Any distribution Q ∈ U (P0, δ) satisfies

DΨ (F2[Q]‖Q) ≤ γ D(F2[Q]‖Q). (24)

(A2) Any distribution Q ∈ U (P0, δ) satisfies

DΨ (P0‖Q) ≥ 0. (25)

(A3) There exists a positive number β > 0 such that any distribution Q ∈ U (P0, δ)

satisfies

DΨ (P0‖Q) =
∑

x∈X
P0(x)(Ψ [P0](x) − Ψ [Q](x)) ≥ βD(P0‖Q). (26)

The condition (A3) is a stronger version of (A2).
However, the convergence to the global minimum is not guaranteed. As a general-

ization of [19, Theorem 3.3], the following theorem discusses the convergence to the
global minimum and the convergence speed.

Theorem 2 Assume that the δ-neighborhood U (P0, δ) of P0 satisfies the conditions
(A1) and (A2) with γ , and P(1) ∈ U (P0, δ). Then, Algorithm 1 with t0 iterations has
one of the following two behaviors.

(i) There exists an integer t1 ≤ t0 + 1 such that

G(P(t1)) < G(P0). (27)

(ii) Algorithm 1 satisfies the conditions {P(t)}t0+1
t=1 ⊂ U (P0, δ) and

G(P(t0+1)) − G(P0) ≤ γ D(P0‖P(1))

t0
. (28)
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When the condition (A0) holds additionally, Algorithm 1 with t0 iterations satisfies
(ii).

The above theorem is shown in Appendix 10. Now, we choose an element
P∗ ∈ Ma to satisfy G(P∗) = minP∈Ma G(P). Then, the condition (A0) holds with
U (P∗,∞) = Ma and the choice P0 = P∗. When the conditions (A1) and (A2)
hold with U (P∗,∞) = Ma and the choice P0 = P∗, Theorem 2 guarantees the
convergence to the minimizer P∗ in Algorithm 1. Although Theorem 2 requires the
conditions (A1) and (A2), the condition (A2) is essential due to the following rea-
son. When we choose γ > 0 to be sufficiently large, the condition (A1) holds with
the δ-neighborhood U (P∗, δ) of P∗ because U (P∗, δ) is a compact set. Hence, it is
essential to check the condition (A2) for Theorem 2.

However, as seen in (28), a larger γ makes the convergence speed slower. Therefore,
it is important to choose γ to be small under the condition (A1). Practically, it is better
to change γ to be smaller when the point P(t) is closer to theminimizer P∗. In fact, as a
generalization of [19, Proposition 3.6], we have the following exponential convergence
under a stronger condition dependent on γ . In this sense, the parameter is called an
acceleration parameter [19, Remark 3.4].

Theorem 3 Assume that the δ-neighborhood U (P0, δ) of P0 satisfies the conditions
(A1) and (A3) with γ , and P(1) ∈ U (P0, δ). Then, Algorithm 1 with t0 iterations has
one of the following two behaviors.

(i) There exists an integer t1 ≤ t0 + 1 such that

G(P(t1)) < G(P0). (29)

(ii) Algorithm 1 satisfies the conditions {P(t)}t0+1
t=1 ⊂ U (P0, δ) and

G(P(t0+1)) − G(P0) ≤ (1 − β

γ
)t0D(P0‖P(1)). (30)

When the condition (A0) holds additionally, Algorithm 1 with t0 iterations satisfies
(ii).

The above theorem is shown in Appendix 11. Next, we consider the case when
there are several local minimizers P∗

1 , . . . , P∗
n ∈ Ma while the true minimizer is P∗.

These local minimizers are characterized by the following corollary, which is shown
in Appendix 10 as a corollary of Theorem 2.

Corollary 1

DΨ (P∗‖P∗
i )=

∑

x∈X
P∗(x)(Ψ [P∗](x) − Ψ [P∗

i ](x))=G(P∗)−G(P∗
i ) < 0.

(31)

Hence, if there exist local minimizers, the condition (A2) does not hold with
U (P∗,∞) = Ma and the choice P0 = P∗. In this case, when the δ-neighborhood
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U (P∗
i , δ) of P∗

i satisfies the conditions (A0), (A1), and (A2), Algorithm 1 converges
to the local minimizer P∗

i with the speed (28) except for the case (i). Since P∗
i is

a local minimizer, the δ-neighborhood U (P∗
i , δ) of P∗

i satisfies the conditions (A0)
and (A1) with sufficiently small δ > 0. When the following condition (A4) holds, as
shown below, the δ-neighborhood U (P∗

i , δ) of P∗
i satisfies the condition (A2) with

sufficiently small δ > 0. That is, when the initial point belongs to the δ-neighborhood
U (P∗

i , δ), Algorithm 1 converges to P∗
i .

(A4) The function η 
→ Ψ [Pη](x) is differentiable, and the relation

∑

x∈X
Pη(x)

( ∂

∂ηi
Ψ [Pη](x)

)
= 0 (32)

holds for i = k + 1, . . . , l and Pη ∈ Ma .

Lemma 3 We consider the following two conditions for a convex subset K ⊂ Ma.

(B1) The relation

DΨ (P‖Q) =
∑

x∈X
P(x)(Ψ [P](x) − Ψ [Q](x)) ≥ 0 (33)

holds for P, Q ∈ K.
(B2) G(P) is convex for the mixture parameter in K.

The condition (B1) implies the condition (B2). In addition, when the condition (A4)
holds, the condition (B2) implies the condition (B1).

We consider two kinds of mixture parameters. These parametrizations can be con-
verted to each other via affine conversion, which preserves the convexity. Therefore,
the condition (B2) does not depend on the choice of mixture parameter.

When the function η 
→ Ψ [Pη](x) is twice-differentiable, and theHessian ofG(Pη)

is strictly positive semi-definite at a local minimizer P∗
i , this function is convex in the

δ-neighborhood U (P∗
i , δ) of P∗

i with a sufficiently small δ > 0 because the Hessian
of G(Pη) is strictly positive semi-definite in the neighborhood due to the continuity.

Then, Lemma 3 guarantees the condition (A2) for the δ-neighborhood U (P∗
i , δ).

Algorithm 1 converges to the local minimizer P∗
i with the speed (28) except for the

case (i). The mathematical symbols introduced in Sect. 2.1 are summarized in Table 1.

Proof of Lemma 3 Assume the condition (B1). Then, for λ ∈ [0, 1], we have

ϕ(λ) := λG(P) + (1 − λ)G(Q) − G(λP + (1 − λ)Q)

= λ
∑

x∈X
P(x)(Ψ [P](x) − Ψ [λP + (1 − λ)Q](x))

+ (1 − λ)
∑

x∈X
Q(x)(Ψ [Q](x) − Ψ [λP + (1 − λ)Q](x))

≥ 0, (34)
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Table 1 List of mathematical symbols for Sect. 2.1

Symbol Description Eq. number

P(X ) Set of probability distributions over X
Ma Mixture family (1)

Γ
(e)
Ma

e-projection toMa (2)

G(P) Objective function (5)

Ψ [P] Functional of P used for objective function (5)

G(a) Minimum value of G(P) (6)

P∗,a Minimizer of G(P) (6)

Φ[Q] Functional of Q (7)

Jγ (P, Q) Extended objective function (8)

F1[P] Minimizer of Jγ (P, Q) for second argument (9)

F2[Q] Minimizer of Jγ (P, Q) for first argument (9)

DΨ (P‖Q) Function of P and Q related to Ψ (14)

U (P0, δ) δ-neighborhood of P0 (22)

which implies (B2).
Assume the conditions (A4) and (B2). Since ϕ(λ) ≥ 0 for λ ∈ [0, 1], we have

0 ≤ dϕ(λ)

dλ
|λ=0

= G(P) − G(Q) −
∑

x∈X
(P(x) − Q(x))Ψ [Q](x)

−
∑

x∈X
Q(x)

dΨ [λP + (1 − λ)Q](x)
dλ

|λ=0

(a)= G(P) − G(Q) −
∑

x∈X
(P(x) − Q(x))Ψ [Q](x), (35)

which implies (B1), where (a) follows from the condition (A4). ��
Remark 2 The preceding study [19, Theorem 3.3 and Proposition 3.6] consider similar
statements as Theorems 2 and 3. As mentioned in Remark 1, the preceding study [19]
covers the case whenMa is given asP(X ), and does not cover the case with a general
mixture familyMa . In addition, the preceding study [19, Theorem 3.3 and Proposition
3.6] covers only the case when P0 andU (P0, δ) are P∗ and P(X ), respectively. That
is, the preceding study does not cover the case with local minimizers. In this sense,
Theorems 2 and 3 are more general under the classical setting.

2.2 Algorithmwith approximated iteration

In general, it is not so easy to calculate the e-projection Γ
(e)
Ma

(Φ[Q]). We consider
the case when it is approximately calculated. There are two methods to calculate
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the e-projection. One is the method based on the minimization in the given mixture
family, and the other is themethod based on theminimization in the exponential family
orthogonal to the mixture family. In the first method, the e-projection Γ

(e)
Ma

(Φ[Q]) is
the minimizer of the following minimization;

min
P∈Ma

D(P‖Φ[Q]). (36)

To describe the second method, using the functions f j used in (1), we define the
exponential family

Qθ (x) := Φ[Q](x)e
∑k

j=1 θ j f j (x)−φ[Q](θ)
, (37)

where

φ[Q](θ) := log
∑

x∈X
Φ[Q](x)e

∑k
j=1 θ j f j (x). (38)

The projected element Γ
(e)
Ma

[Φ[Q]] is the unique element of the intersection {Qθ } ∩
Ma . For example, for this fact, see [22, Lemma3]. Then, the e-projectionΓ

(e)
Ma

(Φ[Q])
is given as the solution of the following equation;

∂φ[Q]
∂θ j

(θ) =
∑

x∈X
Qθ (x) f j (x) = a j (39)

for j = 1, . . . , k. The solution of (39) is given as the minimizer of the following
minimization;

min
θ∈Rk

φ[Q](θ) −
k∑

j=1

θ j a j . (40)

We discuss the precision of our algorithmwhen each step in the aboveminimization
has a certain error. Allowing certain errors in the first method, we propose Algorithm 2
instead of Algorithm 1.

However, the first method requires the minimization with the same number of
parameters as the original minimization minP∈Ma G(P). Hence, it is better to employ
the second method. In fact, when Ma is given as a subset of P(X ) with one linear
constraint, the minimization (40) is written as a one-parameter convex minimization.
Since any one-parameter convex minimization is performed by the bisection method,
which needs O(− log ε) iterations [35] to achieve a smaller error of the minimum
of the objective function than ε, the cost of this minimization is much smaller than
that of the original minimization minP∈Ma G(P). To consider an algorithm based on
the minimization (40), we assume that Ψ is defined in P(X ). In the multi-parameter
case, we can use the gradient method and the accelerated proximal gradient method
[53–58].
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Algorithm 2Minimization of G(P) with an error in (36)
As inputs, we prepare the functionΨ , l linearly independent functions f1, . . . , fl , constraints a1, . . . , ak ,
positive numbers γ, ε1, ε2 > 0, an integer t1 (the number of iterations), and the initial value P(1) ∈ Ma ;

repeat
Calculate the pair of P(t+1) ∈ Ma and P̄(t+1) = Qθ with Q = P(t) in (37) to satisfy

φ[P̄(t+1)](θ) −
k∑

j=1

θ j a j ≤ min
θ ′∈Rk

φ[P̄(t+1)](θ ′) −
k∑

j=1

θ ′ j a j + ε1 (41)

D(P̄(t+1)‖P(t+1)) ≤ ε2. (42)

until t = t1 − 1.

final step: We output the final estimate P
(t1)
f := P(t2) ∈ M by using t2 := argmin

t=2,...,t1
G(P(t)) −

γ D(P(t)‖P̄(t)).

To consider the convergence of Algorithm 2, we extend the conditions (A1) and
(A2). For this aim, we focus on the δ-neighborhood Ū (P0, δ) of P0 ∈ Ma defined
as

Ū (P0, δ) := {P ∈ P(X )|D(P0‖P) ≤ δ}. (43)

Then, we introduce the following conditions for the δ-neighborhood Ū (P0, δ) of P0

as follows.

(A1+) Any distribution Q ∈ Ū (P0, δ) ∩ Ma = U (P0, δ) satisfies the following
condition with a positive real number ε2 > 0. When a distribution P ∈ Ma

satisfies D(P‖F2[Q]) ≤ ε2, we have

∑

x∈X
P(x)(Ψ [P](x) − Ψ [Q](x)) ≤ γ D(P‖Q). (44)

(A2+) Any distribution Q ∈ Ū (P0, δ) satisfies (25).

The convergence of Algorithm 2 is guaranteed in the following theorem.

Theorem 4 Assume that the δ-neighborhood Ū (P0, δ) of P0 satisfies the conditions
(A1+) and (A2+) with two positive real numbers γ > 0, ε2 > 0, and P(1) ∈ U (P0, δ).
Then, for a positive real number ε1 > 0, Algorithm 2 satisfies the conditions

D(Γ
(e)
Ma

[Φ[P̄(t)]]‖P̄(t+1)) ≤ ε1 (45)

G(P(t1)
f ) − G(P∗) ≤ γ D(P∗‖P(1))

t1 − 1
+ ε1 + γ ε2. (46)

The above theorem is shown in Appendix 12. We discussed the convergences of
Algorithms 1 and 2 under several conditions. When these conditions do not hold,
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Table 2 List of mathematical
symbols for Sect. 2.2

Symbol Description Eq. number

Qθ Exponential family (37)

φ[Q](θ) Potential function (38)

we cannot guarantee its global convergence but, the algorithms achieve a local min-
imum. Hence, we need to repeat these algorithms by changing the initial value. The
mathematical symbols introduced in Sect. 2.2 are summarized in Table 2.

Remark 3 To address the minimization with a cost constraint, the paper [13] added a
linear penalty term to the objective function. However, this method does not guarantee
that the obtained result satisfies the required cost constraint. Ourmethod can be applied
to any mixture family including the distribution family with cost constraint(s). Hence,
our method can be applied directly without the above modification while we need to
calculate the e-projection. As explained in this subsection, this e-projection can be
obtained with the convex minimization whose number of variables is the number of
the constraint to define the mixture family. If the number of the constraints is not so
large, still the e-projection is feasible.

2.3 Combination of the gradient method and the Algorithm 1

Althoughwe can use the gradient method to calculate (40) for a general mixture family
Ma , in order to calculate G(a) := minP∈Ma G(P) with a ∈ R

k , we propose another
algorithm to combine the gradient method and Algorithm 1. This algorithm avoids
the calculation of the e-projection Γ

(e)
Ma

. For simplicity, we assume that the function

G(a) is convex and Ma is not empty. Then, we replace fi (x) by fi (x) − ai , which
implies that G(a) is changed to G(0). In the following, we aim to calculate G(0), and
we denote the expectation of the function f under the distribution P by P[ f ].

Then, we consider the following functions by using Legendre transform; For b =
(b1, . . . , bk) ∈ R

k and c = (c1, . . . , cl−k) ∈ R
l−k , we define

G∗(b, c) := sup
P∈P(X )

k∑

i=1

bi P[ fi ] +
l−k∑

j=1

ci P[ fk+i ] − G(P), (47)

and

G∗(b) := G∗(b, 0) = sup
P∈P(X )

k∑

i=1

bi P[ fi ] − G(P) = sup
a∈Rk

k∑

i=1

biai − G(a). (48)

In the following, we consider the calculation of G(0) by assuming that the function
η 
→ G(Pη) is C2-continuous and convex. Since Legendre transform of G∗(b) is G(a)

due to the convexity of G(a), we have supb∈Rk
∑k

i=1 b
iai − G∗(b) = G(a). As a

123



M. Hayashi

special case, we have

− inf
b∈Rk

G∗(b) = G(0). (49)

That is, when we find the minimizer b∗ := argmin
a∈Rk

G∗(b), we can calculate G(0) as

G(0) = − supP∈P(X )

∑k
i=1 b

i∗P[ fi ] − G(P) = inf P∈P(X ) G(P) − ∑k
i=1 b

i∗P[ fi ].
To find it, we denote the gradient vector of a function f on Rk by ∇ f . That is, ∇ f

is the vector ( ∂
∂x1

f , . . . , ∂
∂xk

f ). Then, we choose a real number L that is larger than

the matrix norm of the Hessian of G∗, which implies the uniform Lipschitz condition;

‖∇G∗(b) − ∇G∗(b′)‖ ≤ L‖b − b′‖. (50)

Then, we apply the following update rule for the minimization of G∗(b);

bt+1 := bt − 1

L
∇G∗(bt ). (51)

The following precision is guaranteed [52, Chapter 10] [53, 54];

|G∗(bk) − G∗(b∗)| ≤ L

2k
‖b∗ − b0‖2. (52)

We notice that

∇G∗(b) = argmax
a∈Rk

k∑

i=1

biai − G(a) = (Qb[ fi ])ki=1, (53)

where

Qb := argmax
P∈P(X )

k∑

i=1

bi P[ fi ] − G(P)

= argmin
P∈P(X )

∑

x∈X
P(x)

(
Ψ [P](x) −

k∑

i=1

bi fi (x)
)
. (54)

However, the calculation of (54) requires a large calculation amount. Hence, replac-
ing the update rule (51) by a one-step iteration in Algorithm 1, we propose another
algorithm.

Using Φb[Q](x) := 1
κ
Q(x) exp(− 1

γ

(
Ψ [P](x)−∑k

i=1 b
i fi (x)

)
with the normal-

izing constant κ , we propose Algorithm 3.
It is not so easy to evaluate the convergence speed of Algorithm 3. But, when it

converges, the convergent point is the true minimizer.

Theorem 5 When the pair (b, P) is a convergence point, we have b = b∗ and P = P∗.
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Algorithm 3Minimization of G(P)

As inputs, we prepare the function Ψ , l linearly independent functions f1, . . . , fl , a positive number
γ > 0, the maximum iteration number t1, and the initial values P(1) ∈ M0, b1 ∈ R

k ;
repeat
Calculate P(t+1) := Φbt [P(t)] and bt+1 := bt − 1

L (P(t+1)[ fi ])ki=1;
until convergence if it converges. If it does not converge, we stop the algorithm at t = t1. We denote the
convergent by (P(∞), b∞).
Output P(∞) and G(P(∞)).

Proof Since the pair (b, P) is a convergence point, we have P = Φb[P], which
implies

k∑

i=1

bi P[ fi ] − G(P) = sup
P ′∈P(X )

k∑

i=1

bi P ′[ fi ] − G(P ′) = G∗(b). (55)

Since the pair (b, P) is a convergence point, we have P[ fi ] = 0 for i = 1, . . . , k,
i.e., the distribution P satisfies the required condition in (1). The relation (53) implies
∇G∗(b) = 0. Hence, (49) yields G∗(b) = G(0), which implies b = b∗. Therefore, the
relation (55) is rewritten as G(P) = G(0), which implies P = P∗. ��
Remark 4 We compare our algorithm with a general algorithm proposed in [13]. The
input of the objective function in [13] forms a mixture family. The function f given
in [13, (6)] satisfies the condition of G by considering the second line of [13, (6)] as
Ψ . Their algorithm is the same as Algorithm 1 with γ = 1 when there is no constraint
because their extended objective function g defined in [13, (16)] can be considered as
D(P‖Q) + ∑

x∈X P(x)Ψ [Q](x), where the choice of q in [13] corresponds to the
choice of P and the choice of Q1, . . . , QK in [13] does to the choice of Q.

Also, we can show that the function f given in [13, (6)] satisfies the condition (A4).
Since the condition (A4) holds, the convexity of f is equivalent to the condition (B1).
This equivalence, in this case, was shown as [13, Proposition 4.1]. They showed the
convergence of their algorithm as [13, Theorem 4.1], which can be considered as a
special case of our Theorem 2.

However, our treatment for the constraint is different from theirs. They consider the
minimization minP∈P(X ) G(P) − ∑k

i=1 b
i P[ fi ] without updating the parameter b.

Hence, their algorithm cannot achieve the minimum with the desired constraint while
Algorithms 1, 2, and 3 achieve the minimum with the desired constraint. Although
their algorithm is similar to Algorithm 3, Algorithm 3 updates the parameter b to
achieve the minimum with the desired constraint.

3 Application to information theoretical problems

3.1 Channel capacity

In the same way as the reference [19], we apply our problem setting to the channel
coding. A channel is given as a conditional distribution WY |X on the sample space
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Y with conditions on the sample space X , where Y is a general sample space with a
measure μ andX is a finite sample space. For two absolutely continuous distributions
PY and QY with respect to μ on Y , the Kullback–Leibler divergence D(PY ‖QY ) is
given as

D(PY ‖QY ) :=
∫

Y
pY (y)(log pY (y) − log qY (y))μ(dy), (56)

where pY and qY are the probability density functions of PY and QY with respect to
μ. This quantity is generalized to the Renyi divergence with order α > 0 as

Dα(PY ‖QY ) := 1

α − 1
log

∫

Y

( pY (y)

qY (y)

)α−1
pY (y)μ(dy). (57)

The channel capacityC(WY |X ) is given as themaximization of themutual information
I (PX ,WY |X ) as [10]

C(WY |X ) := max
PX

I (PX ,WY |X ) (58)

I (PX ,WY |X ) :=
∑

x∈X
PX (x)D(WY |X=x‖WY |X · PX )

= D(WY |X × PX‖(WY |X · PX ) × PX ), (59)

where WY |X · PX and WY |X × PX are defined as the following probability density
functions wY |X · PX and wY |X × PX ;

(wY |X · PX )(y) :=
∑

x∈X
PX (x)wY |X=x (y) (60)

(wY |X × PX )(x, y) := PX (x)wY |X=x (y). (61)

However, the mutual information I (PX ,WY |X ) has another form as

I (PX ,WY |X ) = min
QY

∑

x∈X
PX (x)D(WY |X=x‖QY ). (62)

When we choose Ma and Ψ as P(X ) and

ΨWY |X [PX ](x) := −D(WY |X=x‖WY |X · PX ), (63)

−I (PX ,WY |X ) coincides with G(PX ) [19]. Since

DΨ (PX‖QX ) = D(WY |X · PX‖WY |X · QX ) ≥ 0, (64)
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the condition (A2) holds with P(X ). In addition, since the information processing
inequality guarantees that

D(WY |X · PX‖WY |X · QX ) ≤ D(PX‖QX ), (65)

the condition (A1) holds with γ = 1 and P(X ). In this case, Φ is given as

Φ[QX ](x) = 1

κWY |X [QX ]QX (x) exp(
1

γ
D(WY |X=x‖WY |X · QX )), (66)

where the normalizing constant κWY |X [QX ] is given as

κWY |X [QX ] =
∑

x∈X
QX (x) exp(

1

γ
D(WY |X=x‖WY |X · QX )). (67)

When γ = 1, it coincides with the Arimoto–Blahut algorithm [8, 9]. Since Φ[QX ] ∈
P(X ), P(t+1)

X is given as Φ[P(t)
X ].

Remark 5 The reference [19] covers the case when Ma is given as P(X ), and the
reference [19] presented the algorithms presented in this subsection in a more general
form. Also, they proposed an adaptive choice of γ in this case [19, (22)]. In addition,
they numerically compared their adaptive choice with the case of γ = 1 [19, Figs.
1,..., 6]. These comparisons show a significant improvement by their adaptive choice.

3.2 Reliability function in channel coding

In channel coding,weconsider the reliability function,whichwasoriginally introduced
by Gallager [25] and expresses the exponential decreasing rate of an upper bound of
the decoding block error probability under the random coding. To achieve this aim,
for α > 0, we define

Iα(PX ,WY |X ) := α

α − 1
log

( ∫

Y

( ∑

x∈X
PX (x)wY |X=x (y)

α
) 1

α
μ(dy)

)
. (68)

Then, when the code is generated with the random coding based on the distribution
PX , the decoding block error probability with coding rate R is upper bounded by the
following quantity;

e
nminρ∈[0,1]

(
ρR−ρ I 1

1+ρ
(PX ,WY |X )

)

(69)

when we use the channel WY |X with n times. Notice that e
−ρ I 1

1+ρ
(PX ,WY |X ) =

∫
Y

( ∑
x∈X PX (x)wY |X=x (y)

1
1+ρ

)1+ρ

μ(dy). That is, the Gallager function [25] is
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given as ρ I 1
1+ρ

(PX ,WY |X ), i.e., the parameter α is different from the parameter ρ in

the Gallager function. Taking the minimum for the choice of PX , we have

min
PX

e
minρ∈[0,1]

(
ρR−ρ I 1

1+ρ
(PX ,WY |X )

)

= min
α∈[1/2,1]

(
e− α−1

α
R min

PX
e

α−1
α

Iα(PX ,WY |X )
)

(70)

with α = 1
1−ρ

∈ [1/2, 1]. Therefore, we consider the following minimization;

min
PX

e
α−1
α

Iα(PX ,WY |X ) = min
PX

∫

Y

( ∑

x∈X
PX (x)wY |X=x (y)

α
) 1

α
μ(dy). (71)

In the following, we discuss the RHS of (71) with α ∈ [1/2, 1].
To apply our method, as a generalization of (62), we consider another expression

of Iα(PX ,WY |X );

Iα(PX ,WY |X ) = min
QY

Dα(WY |X × PX‖QY × PX ), (72)

which was shown in [27, Lemma 2]. Using

QY |α,PX := argmin
QY

Dα(WY |X × PX‖QY × PX )

= argmax
QY

∑

x∈X
PX (x)e(α−1)Dα(WY |X=x‖QY ), (73)

we have
(
min
PX

e
α−1
α

Iα(PX ,WY |X )
)α = min

PX

∑

x∈X
PX (x)e(α−1)Dα(WY |X=x‖QY |α,PX ). (74)

The probability density function qY |α,PX of the minimizer QY |α,PX is calculated as

qY |α,PX (y) = C
( ∑

x∈X
PX (x)wY |X=x (y)

α
) 1

α
, (75)

where C is the normalizing constant [27, Lemma 2].
To solve the minimization (74), we apply our method to the case when we choose

Ma and Ψ as P(X ) and

Ψα,WY |X [PX ](x) := e(α−1)Dα(WY |X=x‖QY |α,PX ). (76)
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Since (73) guarantees that

∑

x∈X
PX (x)(Ψα,WY |X [PX ](x) − Ψα,WY |X [QX ](x))

=
∑

x∈X
PX (x)

(
e(α−1)Dα(WY |X=x‖QY |α,PX ) − e(α−1)Dα(WY |X=x‖QY |α,QX )

)
≥ 0, (77)

the condition (A2) holds withMa = P(X ). The condition (A1) can be satisfied with
sufficiently large γ . In this case, Φ is given as

Φα[QX ](x) = 1

κα,WY |X [QX ]QX (x) exp(− 1

γ
e(α−1)Dα(WY |X=x‖QY |α,PX )), (78)

where the normalizing constantκα,WY |X [QX ] is given asκα,WY |X [QX ] =∑
x∈X QX (x)

exp(− 1
γ
e(α−1)Dα(WY |X=x‖QY |α,PX )). SinceΦα[QX ] ∈ Ma , P

(t+1)
X is given asΦα[P(t)

X ].

3.3 Strong converse exponent in channel coding

In channel coding, we discuss an upper bound of the probability of correct decoding.
This probability is upper bounded by the following quantity;

max
PX

e
nminρ∈[0,1]

(
−ρR+ρ I 1

1−ρ
(PX ,WY |X )

)

(79)

when we use the channel PY |X with n times and the coding rate is R [26]. Therefore,
we consider the following maximization;

max
PX

e
ρ I 1

1−ρ
(PX ,WY |X ) = max

PX
e

α−1
α

Iα(PX ,WY |X ) (80)

with α = 1
1−ρ

> 1. In the following, we discuss the RHS of (80) with α > 1.
To apply our method, we consider another expression (72) of Iα(PX ,WY |X ). Using

(73), we have

(
max
PX

e
α−1
α

Iα(PX ,WY |X )
)α = max

PX

∑

x∈X
PX (x)e(α−1)Dα(WY |X=x‖QY |α,PX ). (81)

The maximization (81) can be solved by choosing Ma and Ψ as P(X ) and

Ψα,WY |X [PX ](x) := −e(α−1)Dα(WY |X=x‖QY |α,PX ). (82)

Since (73) guarantees that

∑

x∈X
PX (x)(Ψα,WY |X [PX ](x) − Ψα,WY |X [QX ](x))
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=
∑

x∈X
PX (x)

(
− e(α−1)Dα(WY |X=x‖QY |α,PX ) + e(α−1)Dα(WY |X=x‖QY |α,QX )

)
≥ 0,

(83)

the condition (A2) holds with Ma = P(X ). Similarly, the condition (A1) can be
satisfied with sufficiently large γ . In this case, Φ is given as

Φα[QX ](x) = 1

κα,WY |X [QX ]QX (x) exp(
1

γ
e(α−1)Dα(WY |X=x‖QY |α,PX )), (84)

where the normalizing constant κα,WY |X [QX ] is given as κα,WY |X [QX ] =
∑

x∈X QX (x) exp( 1
γ
e(α−1)Dα(WY |X=x‖QY |α,PX )). SinceΦα[QX ] ∈ Ma , P

(t+1)
X is given

as Φα[P(t)
X ].

3.4 Wiretap channel capacity

3.4.1 General case

Given a pair of a channel WY |X from X to a legitimate user Y and a channel WZ |X
from X to a malicious user Z , the wiretap channel capacity is given as [28, 29]

C(WY |X ,WZ |X ) := max
PV X

I (PV ,WY |X · PX |V ) − I (PV ,WZ |X · PX |V ) (85)

with a sufficiently large discrete setV . The recent papers showed that the above rate can
be achieved even with the strong security [30–32] and the semantic security [33, 34].1

Furthermore, the paper [34, Appendix D] showed the above even when the output
systems are general continuous systems including Gaussian channels. The wiretap
capacity (85) can be calculated via the minimization;

min
PV X

−I (PV ,WY |X · PX |V ) + I (PV ,WZ |X · PX |V ). (86)

Here, V is an additional discrete sample space. When we chooseMa andΨ asP(X ×
V) and

ΨWY |X ,WZ |X [PV X ](v, x)

:= D(WZ |X · PX |V=v‖WZ |X · PX ) − D(WY |X · PX |V=v‖WY |X · PX ), (87)

−I (PV ,WY |X · PX |V )+ I (PV ,WZ |X · PX |V ) coincides with G(PV X ). Here, although
ΨWY |X ,WZ |X [PV X ] is a function of (v, x), the function value depends only on v. Hence,
the general theory in Sect. 2 can be used for the minimization of (86). In this case, it

1 The strong security means that the mutual information between the message and the eavesdropper’s
information goes to zero as the number of uses of the channel goes to zero when the message is subject
to the uniform distribution. The semantic security means that the maximum of the mutual information by
changing the distribution of the message goes to zero as the number of uses of the channel goes to zero.
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is difficult to clarify whether the conditions (A1) and (A2) hold in general. Φ is given
as

Φ[QV X ](v, x)

= 1

κWY |X ,WZ |X [QV X ]QV X (v, x) exp
( 1

γ

(
D(WY |X · PX |V=v‖WY |X · PX )

− D(WZ |X · PX |V=v‖WZ |X · PX )
))

, (88)

where κWY |X ,WZ |X [QV X ] is the normalizing constant. Since Φ[QX ] ∈ Ma , P
(t+1)
X is

given as Φ[P(t)
X ].

3.4.2 Degraded case

However, when there exists a channel WZ |Y from Y to Z such that WZ |Y · WY |X =
WZ |X , i.e., the channel WZ |X is a degraded channel of WY |X , we can define the joint
channel WY Z |X with the following conditional probability density function

wY Z |X (yz|x) := wZ |Y (z|y)wY |X (y|x). (89)

Then, the maximization (85) is simplified as

C(WY Z |X ) := max
PX

I (X; Y |Z)[PX ,WY Z |X ] (90)

where the conditional mutual information is given as

I (X; Y |Z)[PX ,WY Z |X ] :=
∑

x,z

PX Z (x, z)D(PY |X=x,Z=z‖PY |Z=z), (91)

where the conditional distributions PY |XZ and PY |Z are defined from the joint distri-
bution WY Z |X × PX . To consider (90), we consider the following minimization with
a general two-output channel WY Z |X ;

min
PX

−I (X; Y |Z)[PX ,WY Z |X ]. (92)

When we choose Ma and Ψ as P(X ) and

ΨWY Z |X [PX ](x) := −
∑

z

PZ |X=x (z)D(PY |X=x,Z=z‖PY |Z=z). (93)

−I (X; Y |Z)[PX ,WY Z |X ] coincides with G(PX ). Hence, the general theory in Sect. 2
can be used for the minimization of (92). In this case, as shown in Sect. 6.2, the
conditions (A1) with γ = 1 and (A2) hold. Φ is given as
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Φ[QX ](x)
= 1

κWY Z |X [QX ]QX (x) exp
( 1

γ

( ∑

z

PZ |X=x (z)D(PY |X=x,Z=z‖PY |Z=z)
))

,

(94)

where κWY Z |X [QX ] is the normalizing constant. Since Φ[QX ] ∈ Ma , P
(t+1)
X is given

as Φ[P(t)
X ]. The above algorithm with γ = 1 coincides with the algorithm proposed

by [14].

3.5 Capacities with cost constraint

Next, we consider the case when a cost constraint is imposed. Consider a function f
on X and the following constraint for a distribution PX ∈ X ;

PX [ f ] = a. (95)

We define Ma by imposing the condition (95) as a special case of (1). The capacity
of the channel WY |X under the cost constraint is given as maxPX∈Ma I (PX ,WY |X ).
That is, we need to solve the minimization minPX∈Ma −I (PX ,WY |X ). In this case,

the t+1-th distribution P(t+1) is given asΓ
(e)
Ma

[Φ[P(t)
X ]]. SinceΓ

(e)
Ma

[Φ[P(t)
X ]] cannot

be calculated analytically, we can use Algorithm 2 instead of Algorithm 1. Since con-
ditions (A1) with γ = 1 and (A2) hold, Theorem 4 guarantees the global convergence
to the minimum in Algorithm 2.

We can consider the cost constraint (95) for the problems (74) and (81). In these
cases, we have a similar modification by considering Γ

(e)
Ma

[Φ[P(t)
X ]].

4 em problem

We apply our algorithm to the problem setting with the em algorithm [2–4], which
is a generalization of Boltzmann machines [5]. The em algorithm is implemented by
iterative applications of the projection to an exponential family (the m-projection)
and the projection to a mixture family (the e-projection). Hence, this algorithm is
called the em algorithm. On the other hand, the EM algorithm is implemented by
iterative applications of expectation and maximization. Their relation is summarized
as follows. In particular, the expectation in the EM algorithm, which is often called
E-step, corresponds to the e-projection to a mixture family, which is often called e-
step in the em algorithm. Also, the maximization in the EM algorithm, which is often
calledM-step, corresponds to them-projection to an exponential family, which is often
called m-step in the em algorithm. In this reason, they are essentially the same [2].

For this aim, we consider a pair of an exponential family E and a mixture family
Ma on X . We denote the m-projection to E of P by Γ

(m)

E [P], which is defined as [1,
2]
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Γ
(m)

E [P] := argmin
Q∈E

D(P‖Q). (96)

We consider the following minimization;

min
P∈Ma

min
Q∈E

D(P‖Q) = min
P∈Ma

D(P‖Γ (m)

E [P])

= min
P∈Ma

∑

x∈X
P(x)(log P(x) − logΓ

(m)

E [P](x)). (97)

We choose the function Ψ as

Ψem[P](x) := (log P(x) − logΓ
(m)

E [P](x)), (98)

and apply the discussion in Sect. 2. Then, we have

∑

x∈X
P0(x)(Ψem[P0](x) − Ψem[Q](x))

=
∑

x∈X
P0(x)

(
(log P0(x) − logΓ

(m)

E [P0](x)) − (log Q(x) − logΓ
(m)

E [Q](x))
)

=
∑

x∈X
P0(x)(log P0(x) − log Q(x))

+
∑

x∈X
P0(x)

(
logΓ

(m)

E [Q](x)) − logΓ
(m)

E [P0](x))
)

= D(P0‖Q) + D(P0‖Γ (m)

E [P0]) − D(P0‖Γ (m)

E [Q])
= D(P0‖Q) − D(Γ

(m)

E [P0]‖Γ (m)

E [Q]), (99)

where the final equation follows from (4). The condition (A1) holds withU (P0,∞) =
Ma and γ = 1. There is a possibility that the condition (A1) holds with a smaller γ .
Therefore, with γ = 1, Theorem 1 guarantees that Algorithm 1 converges to a local
minimum. In addition, when the relation

D(P0‖Q) ≥ D(Γ
(m)

E [P0]‖Γ (m)

E [Q]) (100)

holds for Q ∈ U (P0, δ), the condition (A2) holds with U (P0, δ). That is, if the
condition (100) holds, Algorithm 1 has the global convergence to the minimizer. The
condition (100) is a condition similar to the condition given in [22].
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In this case, Φ is given as

Φ[Q](x) = 1

κem[Q]Q(x) exp
(

− 1

γ
(log Q(x) − logΓ

(m)

E [Q](x))
)

= 1

κem[Q]Q(x)
γ−1
γ Γ

(m)

E [Q](x) 1
γ , (101)

where the normalizing constantκem[QX ] is given asκem[QX ] = ∑
x∈X Q(x)

γ−1
γ Γ

(m)

E
[Q](x) 1

γ . Since Φ[Q] ∈ Ma , P(t+1) is given as Γ
(e)
Ma

[Φ[P(t)]]. When γ = 1, it

coincides with the conventional em-algorithm [2–4] because Φ[P(t)] = Γ
(m)

E [P(t)].
The above analysis suggests the choice of γ as a smaller value than 1. That is, there
is a possibility that a smaller γ improves the conventional em-algorithm. In addition,
we may use Algorithm 2 instead of Algorithm 1 when the calculation of e-projection
is difficult.

Lemma 4 When Ψem is given as (98), the condition (A4) holds.

Therefore, by combining Lemmas 3 and 4, the assumption of Theorem 2 holds in
the δ neighborhood of a local minimizer with sufficiently small δ > 0. That is, the
convergence speed can be evaluated by Theorem 2.

Proof Pythagorean theorem guarantees

∑

x∈X
P(x)

(
logΓ

(m)

E [Q](x) − logΓ
(m)

E [P](x))

= D(P‖Γ (m)

E [P]) − D(P‖Γ (m)

E [Q]) = D(Γ
(m)

E [P]‖Γ (m)

E [Q]). (102)

We make the parameterization Pη ∈ Ma with mixture parameter η. We denote
η(h, i) := (η(0)1, . . . , η(0)i−1, η(0)i + h, η(0)i+1, . . . , η(0)k).

∑

x∈X
Pη(0)(x)

( ∂

∂ηi
Ψ [Pη](x)|η=η(0)

)

=
∑

x∈X
Pη(0)(x)

(
lim
h→0

Ψ [Pη(h,i)](x) − Ψ [Pη(0)](x)
h

)

=
∑

x∈X
Pη(0)(x)

(
lim
h→0

log Pη(h,i)(x) − log Pη(0)(x)

h

− lim
h→0

logΓ
(m)

E [Pη(h,i)](x) − logΓ
(m)

E [Pη(0)](x)
h

)

(a)=
∑

x∈X
Pη(0)(x)

(
lim
h→0

log Pη(h,i)(x) − log Pη(0)(x)

h

)

−
∑

x∈X
Γ

(m)

E [Pη(0)](x)
(
lim
h→0

logΓ
(m)

E [Pη(h,i)](x) − logΓ
(m)

E [Pη(0)](x)
h

)
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=
∑

x∈X

∂

∂ηi
Pη(x)|η=η(0) −

∑

x∈X

∂

∂ηi
Γ

(m)

E [Pη](x)|η=η(0) = 0, (103)

which implies the condition (A4). Here, (a) follows from (102). ��

5 Commitment capacity

Using the same notations as Sect. 3, we address the bit commitment via a noisy
channelWY |X . When we can guarantee the communication channel is given byWY |X ,
bit commitment is possible. In this topic, we are interested in the secure transmission
rate in the sense of bit commitment per a single use of the noisy channel WY |X . The
maximum value of this rate is called the commitment capacity. Given a distribution
PX , the Shannon entropy is given as

H(X)PX := −
∑

x∈X
PX (x) log PX (x). (104)

Given a joint distribution PXY , the conditional entropy is defined as

H(X |Y )PXY :=
∫

Y
H(X)WX |Y=y pY (y)μ(dy). (105)

The commitment capacity is given as

Cc(WY |X ) := max
PX

H(X |Y )WY |X×PX . (106)

This problem setting has several versions. To achieve the bit commitment, the papers
[36–38] considered interactive protocols with multiple rounds, where each round has
one use of the given noisy channel WY |X and free noiseless communications in both
directions. Then, it derived the commitment capacity (106). Basically, the proof is
composed of two parts. One is the achievability part, which is often called the direct
part and shows the existence of the code to achieve the capacity. The other is the
impossibility part, which is often called the converse part and shows the non-existence
of the code to exceed the capacity. As the achievability part, they showed that the
commitment capacity can be achieved with non-interactive protocol, which has no
free noiseless communication during multiple uses of the given noisy channel WY |X .
However, as explained in [39], their proof of the impossibility part skips so many steps
that it cannot be followed. Later, the paper [40] showed the impossibility part only for
non-interactive protocols by applying the wiretap channel. Recently, the paper [41]
constructed a code to achieve the commitment capacity by using a specific type of
list decoding. Further, the paper showed the achievability of the commitment capacity
even in the quantum setting. In addition, the paper [39] showed the impossibility part
for interactive protocols by completing the proof by [39]. The proof in [39] covers the
impossibility part for a certain class even in the quantum setting.
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5.1 Algorithm based on the em-algorithm problem

To calculate the commitment capacity, we consider the following mixture and expo-
nential families;

Ma := {WY |X × PX |PX ∈ P(X )}
=

{

PXY ∈ P(X × Y)

∣
∣
∣
∣

∑

y∈Y
PXY (x, y) = PX (x)

}

(107)

E := {QY × PX ,Uni |QY ∈ P(Y)}, (108)

where PX ,Uni is the uniform distribution on X . In (107), the integer k is chosen to
be |X | − 1, the linear functions f1, . . . , fk are chosen to be

∑
y∈Y PXY (x1, y), . . . ,∑

y∈Y PXY (xk−1, y), and the vector a is chosen to be PX (x1), . . . , PX (xk). These
choices clarify that (107) gives a mixture family.

Since Γ
(m)

E [WY |X × PX ] = (WY |X · PX ) × PX ,Uni , the commitment capacity is
rewritten as

log |X | − Cc(WY |X ) = min
PX

H(X)PX ,Uni + H(X)WY |X ·PX − H(XY )WY |X×PX

= min
PX

D(WY |X × PX‖(WY |X · PX ) × PX ,Uni )

= min
PX

D(WY |X × PX‖Γ (m)

E [WY |X × PX ]). (109)

Hence, the minimization (109) is a special case of the minimization (97). Since
Γ

(m)

E [WY |X × QX ](x, y) = (WY |X · QX ) × PX ,Uni ,

D(Γ
(m)

E [P∗]‖Γ (m)

E [QX ]) = D(WY |X · PX‖WY |X · QX ) ≤ D(P∗‖QX ), (110)

which yields the condition (100). Hence, the global convergence is guaranteed.
By applying (101), Φ is calculated as

Φ[WY |X × QX ](x, y)
= 1

κ1
WY |X [QX ]wY |X (y|x) γ−1

γ QX (x)
γ−1
γ (wY |X · QX )(y)

1
γ PX ,Uni (x)

1
γ , (111)

where κ1
WY |X [QX ] is the normalizer. Then, after a complicated calculation, themarginal

distribution of its projection to Ma is given as

∫

Y
Γ

(e)
Ma

[Φ[WY |X × QX ]](x, y)μ(dy)

= 1

κ2
WY |X [QX ]QX (x)1−

1
γ exp(− 1

γ
D(WY |X=x‖WY |X · QX )), (112)
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whereκ2
WY |X [QX ] is the normalizer. In the algorithm,weupdate P(t+1)

X as P(t+1)
X (x) :=

∫
Y Γ

(e)
Ma

[Φ[WY |X × P(t)
X ]](x, y)μ(dy).

5.2 Direct application

The update formula (112) requires a complicated calculation, we can derive the same
update rule by a simpler derivation as follows. The commitment capacity is rewritten
as

−Cc(WY |X ) = min
PX

I (PX ,WY |X ) − H(X)PX

= min
PX

∑

x∈X
PX (x)(D(WY |X=x‖WY |X · PX ) + log PX (x)). (113)

We choose Ma and Ψ as P(X ) and

Ψc,WY |X [PX ](x) := D(WY |X=x‖WY |X · PX ) + log PX (x). (114)

Then, we have

∑

x∈X
PX (x)(Ψ [PX ](x) − Ψ [QX ](x))

= D(PX‖QX ) − D(WY |X · PX‖WY |X · QX ) ≥ 0 (115)

and

D(PX‖QX ) ≥ D(PX‖QX ) − D(WY |X · PX‖WY |X · QX ). (116)

Since the condition (A1) with γ = 1 and the condition (A2) hold, Algorithm 1
converges with γ = 1. In this case, Φ is given as

Φ[QX ](x)
= 1

κ3
WY |X [QX ]QX (x) exp(− 1

γ
(log QX (x) + D(WY |X=x‖WY |X · QX )))

= 1

κ3
WY |X [QX ]QX (x)1−

1
γ exp(− 1

γ
D(WY |X=x‖WY |X · QX )), (117)

where the normalizing constant κ3
WY |X [QX ] is given as κ3

WY |X [QX ] :=
∑

x∈X QX (x)1−
1
γ exp(− 1

γ
D(WY |X=x‖WY |X · QX )). Since Φ[QX ] ∈ Ma , P

(t+1)
X is

given as Φ[P(t)
X ].

To consider the effect of the acceleration parameter γ , we made a numerical com-
parison when the channel with X = {1, 2, 3, 4} and Y = {1, 2, 3, 4} is given as
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follows.

WY |X (1, 1) = 0.6,WY |X (2, 1) = 0.2,WY |X (3, 1) = 0.1,WY |X (4, 1) = 0.1,

WY |X (1, 2) = 0.1,WY |X (2, 2) = 0.2,WY |X (3, 2) = 0.1,WY |X (4, 2) = 0.6,

WY |X (1, 3) = 0.1,WY |X (2, 3) = 0.2,WY |X (3, 3) = 0.15,WY |X (4, 3) = 0.55,

WY |X (1, 4) = 0.05,WY |X (2, 4) = 0.85,WY |X (3, 4) = 0.05,WY |X (4, 4) = 0.05.
(118)

We choose γ to be 1, 0.95, and 0.9. Figure 1 shows the numerical result for the iteration
of our algorithm when the channel input is limited into {1, 2, 3}. A smaller γ does not
improve the convergence in this case. Figure 2 shows the same numerical result when
all elements of {1, 2, 3, 4} are allowed as the channel input. In this case, a smaller γ

improves the convergence.

6 Reverse em problem

6.1 General problem description

In this section, given a pair of an exponential family E and a mixture family Ma on
X , we consider the following maximization;

max
P∈Ma

min
Q∈E

D(P‖Q) = max
P∈Ma

D(P‖Γ (m)

E [P])

= max
P∈Ma

∑

x∈X
P(x)(log P(x) − logΓ

(m)

E [P](x)) (119)

while Sect. 4 considers theminimization of the same value.WhenMa is given as (107)
and E is given asP(X )×P(Y), this problem coincides with the channel capacity (58).
This problem was firstly studied for the channel capacity in [20], and was discussed
with a general form in [21]. To discuss this problem, we choose the function Ψ as
Ψrem := −Ψem, and apply the discussion in Sect. 2. Due to (99), (24) in the condition
(A1) is written as

(γ + 1)D(P0‖Q) ≥ D(Γ
(m)

E [P0]‖Γ (m)

E [Q]), (120)

and (25) in the condition (A2) is written as

D(Γ
(m)

E [P0]‖Γ (m)

E [Q]) ≥ D(P0‖Q). (121)

Further, due to Lemma 4, the condition (A4) holds.
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2 4 6 8 10
t

0.9313

0.9314

0.9315

0.9316

Conditional entropy

4 5 6 7 8 9 10
t

0.931570

0.931575

0.931580

0.931585

Conditional entropy

Fig. 1 Calculation of commitment capacity for the channel given in (118) with X = {1, 2, 3}. The lower
plot shows an enlarged plot of the upper plot. The horizontal axis shows the number of iterations. The
vertical axis shows the conditional entropy. Red points show the case with γ = 1. Green points show the
case with γ = 0.95. Blue points show the case with γ = 0.9. For t = 5, 6, . . . , 10, these cases have almost
the same value. Hence, these plots cannot be distinguished for t = 5, 6, 7, 8, 9, 10. At t = 2, 3, the case
with γ = 1 is better than other cases. However, in this case, a smaller γ does not improve the convergence

6.2 Application to wiretap channel

Now,weapply this problemsetting towiretap channelwith the degraded case discussed
in Sect. 3.4.2. We chooseMa as {WY Z |X × PX |PX ∈ P(X )} and E as the set of distri-
butions with theMarkov chain condition X−Z−Y [42]. Then, the conditional mutual
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4 5 6 7 8 9 10
t
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1.09325

1.09330

1.09335

1.09340

1.09345

1.09350

Conditional entropy

Fig. 2 Calculation of commitment capacity for the channel given in (118) with X = {1, 2, 3, 4}. The role
of color is the same as Fig. 1. In this case, a smaller γ improves the convergence

information I (X; Y |Z)[PX ,WY Z |X ] is given as D(WY Z |X ×PX‖Γ (m)

E [WY Z |X ×PX ]).
In this application, we have

DΨrem (WY Z |X × PX‖WY Z |X × QX ) = DΨWY Z |X D(PX‖QX ) (122)

D(WY Z |X × PX‖WY Z |X × QX ) = D(PX‖QX ). (123)
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To check the conditions (A1) and (A2) for ΨWY Z |X , it is sufficient to check them for
Ψrem in this application. Since we have

D(Γ
(m)

E [WY Z |X × PX ]‖Γ (m)

E [WY Z |X × QX ])
= D(WZ |X × PX‖QXZ ) + D(WY Z |X · PX‖WY Z |X · QX )

− D(WZ |X · PX‖WZ |X · QX )

= D(PX‖QX ) + D(WY Z |X · PX‖WY Z |X · QX )

− D(WZ |X · PX‖WZ |X · QX )

≤ 2D(PX‖QX ), (124)

LHS of (24) in the condition (A1) is written as

γ D(P0
X‖QX ) − D(WY Z |X · PX‖WY Z |X · QX )

+ D(WZ |X · PX‖WZ |X · QX )

≥ γ D(P0‖Q) − D(P0
X‖QX ). (125)

It is not negative when γ ≥ 1. Also, RHS of (25) in the condition (A2) is written as

D(WY Z |X · PX‖WY Z |X · QX ) − D(WZ |X · PX‖WZ |X · QX ) ≥ 0. (126)

Hence, the conditions (A1) and (A2) hold with γ ≥ 1.

7 Information bottleneck

As amethod for information-theoretical machine learning, we often consider informa-
tion bottleneck [43]. Consider two correlated systemsX andY and a joint distribution
PXY over X × Y . The task is to extract an essential information from the space X to
T with respect to Y . Here, we discuss a generalized problem setting proposed in [44].
For this information extraction, given parameters α ∈ [0, 1] and β ≥ α, we choose a
conditional distribution P∗

T |X as

P∗
T |X := argmin

PT |X
α I (T ; X) + (1 − α)H(T ) − β I (T ; Y ). (127)

This method is called information bottleneck. To apply our method to this problem,
we set Ma to be P(X ), and define

Ψα,β [PT X ](t, x) := α log PT X (t, x) − α log PX (x) + (β − 1) log PT (t)

+ β
∑

y∈Y
PY |X (y|x)(log PY (y) − log PTY (t, y)). (128)
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Then,when the joint distribution PT X is chosen to be PT |X×PX , the objective function
is written as

Gα,β(PT X ) :=
∑

t∈T ,x∈X
PT X (t, x)Ψα,β [PT X ](t, x). (129)

That is, our problem is reduced to the minimization

min
PT X∈M(PX )

Gα,β(PT X ), (130)

where M(PX ) is the set of joint distributions on X × Y whose marginal distribution
on X is PX . The e-projection Γ

(e)
M(PX )

toM(PX ) is written as

Γ
(e)
M(PX )

[QT X ] = QT |X × PX (131)

because the relation D(PT X‖QT X ) = D(PX‖QX ) + D(PT X‖QT |X × PX ) holds for
a distribution PT X ∈ M(PX ).

When Algorithm 1 is applied to this problem, due to (131), the update rule for the
conditional distribution is given as

P(t)
T |X 
→ P(t+1)

T |X (t |x) := κx P
(t)
T |X (t |x) exp(− 1

γ
Ψα,β [P(t)

T |X × PX ](t, x)), (132)

where κx is a normalizing constant. This update rule is the same as the update rule
proposed inSect. 3 of [45]when the states {ρY |x } are given as diagonal densitymatrices,
i.e., a conditional distribution PY |X . Also, as shown in [45, (22)], we have the relation

DΨα,β (PT X‖QT X ) ≤ αD(PT X‖QT X ) (133)

for PT X , QT X ∈ M(PX ) as follows. First, we have

D(PT |X · PXY ‖QT |X · PXY ) ≥ D(PT ‖QT ), (134)

where PT |X · PXY (t, y) := ∑
x∈X PT |X (t |x)PXY (x, y). Then, we have

DΨα,β (PT X‖QT X )

= (β − 1)D(PT ‖QT ) + α
∑

x∈X
PX (x)D(PT |X=x‖QT |X=x )

− βD(PT |X · PXY ‖QT |X · PXY )

≤ −D(PT ‖QT ) + α
∑

x∈X
PX (x)D(PT |X=x‖QT |X=x )

≤ α
∑

x∈X
PX (x)D(PT |X=x‖QT |X=x ) = αD(PT X‖QT X ). (135)
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That is, the condition (A1) holds with γ = α. Therefore, with γ = α, Theorem 1
guarantees that Algorithm 1 converges to a local minimum, which was shown as [45,
Theorem 3]. This fact shows the importance of the choice of γ dependently on the
problem setting. That is, it shows the necessity of our problem setting with a general
positive real number γ > 0.

The paper [45] also discussed the case when Y and T are quantum systems. It
numerically compared these algorithms depending on γ [45, Fig. 2]. This numerical
calculation indicates the following behavior. When γ is larger than a certain threshold,
a smaller γ realizes faster convergence. But, when γ is smaller than a certain threshold,
the algorithm does not converge.

8 Conclusion

We have proposed iterative algorithms with an acceleration parameter for a general
minimization problem over a mixture family. For these algorithms, we have shown
convergence theorems in various forms, one of which covers the case with approxi-
mated iterations. Then, we have applied our algorithms to various problem settings
including the em algorithm and several information theoretical problem settings.

There are two existing studies to numerically evaluate the effect of the acceleration
parameter γ [19, 45]. They reported improvement in the convergence bymodifying the
acceleration parameter γ . For example, in the numerical calculation for information
bottleneck in [45, Fig. 2], the case with γ = 0.55 improves the convergence. Our
numerical calculation for the commitment capacity has two cases. In one case, the
choices with γ = 0.95, 0.9 do not improve the convergence. In another case, the
choices with γ = 0.95, 0.9 improve the convergence. These facts show that the effect
of the acceleration parameter γ depends on the parameters of the problem setting.
The commitment capacity is considered as a special case of the divergence between a
mixture family and an exponential family.

There are several future research directions. The first direction is the evaluation of
the convergence speed of Algorithm 3 because we could not derive its evaluation. The
second direction is to find various applications of our methods. Although this paper
studied several examples, in order to clarify the usefulness of our algorithm, it is needed
to find more useful examples for our algorithm. The third direction is the extensions
of our results. A typical extension is the extension to the quantum setting [46–48]. As
a further extension, it is an interesting topic to extend our result to the setting with
Bregman divergence. Recently, the Bregman proximal gradient algorithm has been
studied for the minimization of a convex function [49–51]. Since this algorithm uses
Bregman divergence, it might have an interesting relation with the above-extended
algorithm. Therefore, it is an interesting study to investigate this relation.

9 Useful lemma

To show various theorems, we prepare the following lemma.
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Lemma 5 For any two distributions Q, Q′ ∈ Ma, we have

D(P0‖Q) − D(P0‖Q′)

= 1

γ
Jγ (Γ

(e)
Ma

[Φ[Q]], Q) − 1

γ
G(P0) + 1

γ
DΨ (P0‖Q)

− D(Γ
(e)
Ma

[Φ[Q]]‖Q′) (136)

= 1

γ
G(Γ

(e)
Ma

[Φ[Q]]) − 1

γ
G(P0) + D(Γ

(e)
Ma

[Φ[Q]]‖Q)

− 1

γ
DΨ (Γ

(e)
Ma

[Φ[Q]]‖Q)

+ 1

γ
DΨ (P0‖Q) − D(Γ

(e)
Ma

[Φ[Q]]‖Q′). (137)

In addition, when Ψ is defined for any distribution in P(X ), the above relations holds
for any distribution Q ∈ P(X ).

Proof We have

G(P0) =
∑

x∈X
P0(x)Ψ [P0](x) = Jγ (Γ

(e)
Ma

[Φ[P0]], P0)

= γ (D(Γ
(e)
Ma

[Φ[P0]]‖Φ[P0]) − log κ[P0]). (138)

Using (138), we have

D(P0‖Q) − D(P0‖Q′) =
∑

x∈X
P0(x)(log Q′(x) − log Q(x))

=
∑

x∈X
P0(x)

(
log Q′(x) − logΦ[Q](x) + logΦ[Q](x) − log Q(x)

)

(a)= D(P0‖Φ[Q]) − D(P0‖Q′) +
∑

x∈X
P0(x)

(
− 1

γ
Ψ [Q](x) − log κ[Q]

)

(b)= D(Γ
(e)
Ma

[Φ[Q]]‖Φ[Q]) − D(Γ
(e)
Ma

[Φ[Q]]‖Q′)

− log κ[Q] − 1

γ

∑

x∈X
P0(x)Ψ [Q](x)

(c)= 1

γ
Jγ (Γ

(e)
Ma

[Φ[Q]], Q) − 1

γ
G(P0) + 1

γ

∑

x∈X
P0(x)

(
Ψ [P0](x) − Ψ [Q](x)

)

− D(Γ
(e)
Ma

[Φ[Q]]‖Q′)
(d)= 1

γ
G(Γ

(e)
Ma

[Φ[Q]]) − 1

γ
G(P0) + D(Γ

(e)
Ma

[Φ[Q]]‖Q)

− 1

γ

∑

x∈X
Γ

(e)
Ma

[Φ[Q]](x)(Ψ [Γ (e)
Ma

[Φ[Q]]](x) − Ψ [Q](x))
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+ 1

γ

∑

x∈X
P0(x)

(
Ψ [P0](x) − Ψ [Q](x)

)
− D(Γ

(e)
Ma

[Φ[Q]]‖Q′), (139)

where each step is shown as follows. (a) follows from the definition of Φ(Q). (c)
follows from (10) and (138). (d) follows from (17). (b) follows from the relations

D(P0‖Φ[Q]) = D(P0‖Γ (e)
Ma

[Φ[Q]]) + D(Γ
(e)
Ma

[Φ[Q]]‖Φ[Q]) (140)

D(P0‖Q′) = D(P0‖Γ (e)
Ma

[Φ[Q]]) + D(Γ
(e)
Ma

[Φ[Q]]‖Q′), (141)

which are shown by the Pythagorean equation. Therefore, considering the definition
of DΨ (P‖Q), we obtain (136) and (137). ��

10 Proof of Theorem 2 and Corollary 1

Step 1: This step aims to show the following inequalities by assuming that item (i)
does not hold and the conditions (A1) and (A2) hold.

D(P0‖P(t+1)) ≤ δ (142)

D(P0‖P(t)) − D(P0‖P(t+1)) ≥ 1

γ
G(P(t+1)) − 1

γ
G(P0) (143)

for t = 1, . . . , t0 − 1. We show these relations by induction.
For any t , by using the relation Γ

(e)
Ma

[Φ[P(t)]] = P(t+1), the application of (137)

of Lemma 5 to the case with Q = P(t) and Q′ = P(t+1) yields

D(P0‖P(t)) − D(P0‖P(t+1))

= 1

γ
G(P(t+1)) − 1

γ
G(P0) + D(Γ

(e)
Ma

[Φ[P(t)]]‖P(t))

− 1

γ
DΨ (Γ

(e)
Ma

[Φ[P(t)]]‖Ψ [P(t)]) + 1

γ
DΨ (P0‖P(t)). (144)

First, we show the relations (142) and (143) with t = 1. Since D(P0‖P(1)) ≤ δ,
P(1) belongs toU (P0, δ). Hence, the conditions (A1) and (A2) guarantee the following
inequality with t = 1;

(RHS of 144) ≥ 1

γ
G(P(t+1)) − 1

γ
G(P0). (145)

The combination of (144) and (145) implies (143). Since item (i) does not hold, we
have

1

γ
G(P(t+1)) − 1

γ
G(P0) ≥ 0. (146)
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The combination of (144), (145), and (146) implies (142).
Next, we show the relations (142) and (143) with t = t ′ by assuming the relations

(142) and (143) with t = t ′ − 1. Since the assumption guarantees D(P0‖P(t ′)) ≤ δ,
the conditions (A1) and (A2) guarantee (145) with t = t ′. We obtain (142) and (143)
in the same way as t = 1.
Step 2: This step aims to show (28) by assuming that item (i) does not hold and the
conditions (A1) and (A2) hold. Due to (142), the condition (A1) and Lemmas 1 and 2
guarantee that

G(P(t+1)) ≤ G(P(t)). (147)

We have

t0
γ

(
G(P(t0+1)) − G(P0)

) (a)≤ 1

γ

t0∑

t=1

G(P(t+1)) − G(P0)

(b)≤
t0∑

t=1

D(P0‖P(t)) − D(P0‖P(t+1))

= D(P0‖P(1)) − D(P0‖P(t0+1))

≤ D(P0‖P(1)), (148)

where (a) and (b) follow from (147) and (143), respectively.
Step 3: This step aims to show item (ii) by assuming the conditions (A0) as well as
(A1) and (A2). In the discussion of Step 1, since D(P0‖P(t)) ≤ δ, the condition (A0)
guarantees (146). We can show item (ii) with assuming that item (i) does not hold.
Hence, we obtain Theorem 2.
Step 4: To show Corollary 1, we apply (144) to the case when P0 = P∗ and P(t) =
P∗
i . Then, we have

0 = G(P∗
i ) − G(P∗) +

∑

x∈X
P∗(x)(Ψ [P∗](x) − Ψ [P∗

i ](x)), (149)

which implies (31).

11 Proof of Theorem 3

Wehave already shown that {P(t)}t0+1
t=1 ⊂ U (P0, δ)when item (i) does not hold.Hence,

in the following, we show only (30) by using (A1), (A3), and {P(t)}t0+1
t=1 ⊂ U (P0, δ)

when item (i) does not hold.
We have

Jγ (Γ
(e)
Ma

[Φ[P(t)]], P(t)) − G(P0) (150)

(a)= G(P(t+1)) − G(P0) + γ D(Γ
(e)
Ma

[Φ[P(t)]]‖P(t))
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− DΨ (Γ
(e)
Ma

[Φ[P(t)]]‖Ψ [P(t)])
(b)≥ G(P(t+1)) − G(P0)

(c)≥ 0, (151)

where (a) follows from Lemma 2, (b) follows from the condition (A1) and P(t) ∈
U (P0, δ), and (c) holds because item (i) does not hold.

Since Γ
(e)
Ma

[Φ[P(t)]] = P(t+1), the application of (136) of Lemma 5 to the case

with Q = P(t) and Q′ = P(t+1) yields

D(P0‖P(t)) − D(P0‖P(t+1))

= 1

γ
Jγ (Γ

(e)
Ma

[Φ[P(t)]], P(t)) − 1

γ
G(P0) + 1

γ
DΨ (P0‖P(t)) (152)

(a)≥ 1

γ
DΨ (P0‖P(t))

(b)≥ β

γ
D(P0‖P(t)), (153)

where (a) follows from (151), and (b) follows from (26) in the condition (A3) and
P(t) ∈ U (P0, δ). Hence, we have

D(P0‖P(t+1)) ≤ (1 − β

γ
)D(P0‖P(t)). (154)

Using the above relations, we have

G(P(t+1)) − G(P0)
(a)≤ Jγ (Γ

(e)
Ma

[Φ[P(t)]], P(t)) − G(P0)

(b)= D(P0‖P(t)) − D(P0‖P(t+1)) − 1

γ
DΨ (P0‖P(t))

(c)≤ D(P0‖P(t)) − D(P0‖P(t+1)) − β

γ
D(P0‖P(t))

(d)≤ (1 − β

γ
)D(P0‖P(t))

(e)≤ (1 − β

γ
)t D(P0‖P(1)), (155)

where each step is derived as follows. Step (a) follows from (151). Step (b) follows
from (152). Step (c) follows from (26) in the condition (A3) and P(t) ∈ U (P0, δ).
Step (d) follows from (153). Step (e) follows from (154). Hence, we obtain (30).
Therefore, we have shown item (ii) under the conditions (A1) and (A3) when item (i)
does not hold.

When (A0) holds in addition to (A1) and (A3), as shown in Step 1 of the proof of
Theorem 2, the relation {P(t)}t0+1

t=1 ⊂ U (P0, δ) holds. Hence, item (ii) holds.

12 Proof of Theorem 4

In this proof, we choose P̄(1) to be P(1).
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Step 1: This step aims to show the inequality (45). We denote the maximizer in (41)
by θ ′. The condition (41) implies that

φ[P̄(t)](θ) −
k∑

j=1

θ j a j ≤ φ[P̄(t)](θ ′) −
k∑

j=1

θ ′ j a j + ε1. (156)

The divergence in the exponential family {Qθ } can be considered as the Bregmann
divergence of the potential function φ[P̄(t)](θ). For example, for this fact, see [22,
Section III-A]. Hence, we have

D(Γ
(e)
Ma

[Φ[P̄(t)]]‖P̄(t+1)) = φ[P̄(t)](θ) −
k∑

j=1

θ j a j

−
(
φ[P̄(t)](θ ′) −

k∑

j=1

θ ′ j a j

)

≤ ε1. (157)

Step 2: This step aims to show Eq. (46) when the following inequality

G(P(t2)) − γ D(P(t2)‖P̄(t2))≤ γ

t1 − 1
D(P0‖P̄(1)) + ε1 + G(P0) (158)

holds. Eq. (46) is shown as follows;

G(P(t1)
f ) − G(P0)

(a)= G(P(t2)) − G(P0)

(b)≤ γ

t1 − 1
D(P0‖P̄(1)) + γ D(P(t2)‖P̄(t2)) + ε1

(b)≤ γ

t1 − 1
D(P0‖P̄(1)) + γ ε2 + ε1, (159)

where Steps (a), (b), and (c) follow from the definition of P(t1)
f , (158), and (42),

respectively. Therefore, the remaining task is the proof of (158).
Step 3: We choose t4 ∈ [1, t1 − 1] as the minimum integer t ∈ [1, t1 − 1] to satisfy
the following inequality

1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t)]], P̄(t)) ≤ 1

γ
G(P0) + ε1. (160)

If no integer t ∈ [1, t1−1] satisfies (160), we set t4 to be t1. This step aims to show the
following two facts for t = 1, . . . , t4 − 1. (i) D(P0‖P̄(t+1)) ≤ δ. (ii) The inequality

D(P0‖P̄(t)) − D(P0‖P̄(t+1))≥ 1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t)]], P̄(t))
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− 1

γ
G(P0) − ε1 (161)

holds. The above two items are shown by induction for t as follows. It is sufficient to
show the case when t4 ≥ 2.

We show items (i) and (ii) for t = 1 as follows. The application of Lemma 5 to the
case with Q = P̄(1) and Q′ = P̄(2) yields

D(P0‖P̄(1)) − D(P0‖P̄(2))

= 1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(1)]], P̄(1)) − 1

γ
G(P0)

+ 1

γ
DΨ (P0‖P(1)) − D(Γ

(e)
Ma

[Φ[P̄(1)]]‖P̄(2))

(a)≥ 1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(1)]], P̄(1)) − 1

γ
G(P0) − ε1

(b)≥ 0, (162)

where (a) follows from (A2+) and (45) because the relation D(P0‖P̄(1)) ≤ δ follows
from the assumption of this theorem. (b) follows from the fact that t = 1 does not
satisfy the condition (160). Hence, D(P0‖P̄(2)) ≤ D(P0‖P̄(1)) ≤ δ.

Assume that items (i) and (ii) holdwith t = t ′−1. Then, the application of Lemma 5
to the case with Q = P̄(t) and Q′ = P̄(t+1) yields

D(P0‖P̄(t ′)) − D(P0‖P̄(t ′+1))

= 1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t ′)]], P̄(t ′)) − 1

γ
G(P0)

+ 1

γ
DΨ (P0‖P̄(t)) − D(Γ

(e)
Ma

[Φ[P̄(t ′)]]‖P̄(t ′+1))

(a)≥ 1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t ′)]], P̄(t ′)) − 1

γ
G(P0) − ε1

(b)≥ 0, (163)

where (a) follows from (A2+) and (45) because the relation D(P0‖P̄(t ′)) ≤ δ follows
from the assumption of induction. (b) follows from the fact that t = t ′ does not satisfy
the condition (160). Hence, D(P0‖P̄(t ′+1)) ≤ D(P0‖P̄(t ′)) ≤ δ.
Step 4: This step aims to show the inequality (158) when t4 ≤ t1−1, i.e., there exists
an integer t ∈ [1, t1 − 1] to satisfy (160).

Pythagorean theorem guarantees

D(P(t4+1)‖Γ (e)
Ma

[Φ[P̄(t4)]])
≤ D(P(t4+1)‖Γ (e)

Ma
[Φ[P̄(t4)]]) + D(Γ

(e)
Ma

[Φ[P̄(t4)]]‖P̄(t4+1))

= D(P(t4+1)‖P̄(t4+1)) ≤ ε2. (164)
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Then, we have

G(P(t2)) − γ D(P(t2)‖P̄(t2))
(a)≤ G(P(t4+1)) − γ D(P(t4+1)‖P̄(t4+1))

(b)≤ Jγ (P(t4+1), P̄(t4)) − γ D(P(t4+1)‖P̄(t4+1))

(c)= Jγ (Γ
(e)
Ma

[Φ[P̄(t4)]], P̄(t4)) + γ D(P(t4+1)‖Γ (e)
Ma

[Φ[P̄(t4)]])
− γ D(P(t4+1)‖P̄(t4+1))

(d)≤ Jγ (Γ
(e)
Ma

[Φ[P̄(t4)]], P̄(t4)), (165)

where each step is derived as follows. Step (a) follows from the relation t2 =
argmin
t=2,...,t1

G(P(t)) − γ D(P(t)‖P̄(t)). Step (b) follows from Lemma 2 and the condition

(A1+) because (164) holds, and the relation D(P0‖P̄(t4)) ≤ δ follows from item (i)
with t = t4 − 1 shown in Step 3. Step (c) follows from (12). Step (d) follows from
the equation (164).

Combining (165) and (160), we have

G(P(t2)) − γ D(P(t2)‖P̄(t2)) ≤ ε1 + G(P0), (166)

which implies (158).
Step 5: This step aims to show

Jγ (Γ
(e)
Ma

[Φ[P̄(t3)]], P̄(t3)) − G(P0) − ε1 ≤ γ

t1 − 1
D(P0‖P̄(1)) (167)

under the choice of t3 := argmin
1≤t≤t1−1

Jγ (Γ
(e)
Ma

[Φ[P̄(t)]], P̄(t)) when t4 = t1, i.e., there

exists no integer t ∈ [1, t1 − 1] to satisfy (160).
Using (161), we have

1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t3)]], P̄(t3)) − 1

γ
G(P0) − ε1

≤ D(P0‖P̄(t)) − D(P0‖P̄(t+1)) (168)

for t ≤ t1 − 1. Taking the sum for (168), we have

1

γ
Jγ (Γ

(e)
Ma

[Φ[P̄(t3)]], P̄(t3)) − 1

γ
G(P0) − ε1

≤ 1

t1 − 1

t=t1−1∑

t=1

D(P0‖P̄(t)) − D(P0‖P̄(t+1))

= 1

t1 − 1
(D(P0‖P̄(1)) − D(P0‖P̄(t1))) ≤ 1

t1 − 1
D(P0‖P̄(1)). (169)
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Therefore, we obtain (167).
Step 6: This step aims to show the inequality (158) when t4 = t1, i.e., there exists
no integer t ∈ [1, t1 − 1] to satisfy (160). We obtain the following inequality

G(P(t2)) − γ D(P(t2)‖P̄(t2)) ≤ Jγ (Γ
(e)
Ma

[Φ[P̄(t3)]], P̄(t3)) (170)

in the same way as (165) in Step 4 by changing t4 by t3. Combining (170) and (167),
we obtain (158).
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