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Abstract
We propose a new concept of codivergence, which quantifies the similarity between
two probability measures P1, P2 relative to a reference probability measure P0. In
the neighborhood of the reference measure P0, a codivergence behaves like an inner
product between the measures P1 − P0 and P2 − P0. Codivergences of covariance-
type and correlation-type are introduced and studied with a focus on two specific
correlation-type codivergences, the χ2-codivergence and the Hellinger codivergence.
We derive explicit expressions for several common parametric families of probability
distributions. For a codivergence, we introduce moreover the divergence matrix as an
analogue of the Gram matrix. It is shown that the χ2-divergence matrix satisfies a
data-processing inequality.

Keywords Divergence · Chi-square divergence · Hellinger affinity · Gram matrix

Mathematics Subject Classification 62B11 · 46E27 · 15A63

1 Introduction

One of the objectives of information geometry is to measure distances or angles in
statistical spaces, usually for parametric models. This is often done by the use of a
divergence, generating a Riemannian manifold structure on the considered space of
distributions, see [1, 3, 19]. Divergences between probability measures quantify a cer-
tain notion of difference between them. Divergences are in general not symmetric, as
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opposed to distances. Famous examples of divergences include the Kullback–Leibler
divergence, the χ2-divergence, and the Hellinger distance.

In this article, we are interested in defining a local notion of inner product between
two probabilitymeasures in the neighborhood of a given reference probabilitymeasure
P0. This allows us to identify different directions relative to P0, and to give some
meaning to the “angle” between these directions. Contrary to most of the previous
work on finite-dimensional Riemannian manifolds spanned by specific parametric
statistical models, we do not require any parametric restrictions on the considered
probability measures.

Motivation and application of our approach is the recently considered generic
framework to derive lower bounds for the trade-off between bias and variance in
nonparametric statistical models [9]. The key ingredient in this lower bound strategy
are so-called change of expectation inequalities that relate the change of the expected
value of a random variable with respect to different distributions to the variance and
also involve the divergence matrices examined in this work. Another possible area of
application are the lower bounds for statistical query algorithms, see e.g. [10, 11]

Regarding work on infinite-dimensional information geometry, [5, 20] studied the
manifold generatedby all probability densities connected to agivenprobability density.
[21] reviews amore general theory on infinite-dimensional statisticalmanifolds given a
referencedensity.Another line ofwork [12, 16–18] seeks to define infinite-dimensional
manifolds, with applications to Bayesian estimation and the choice of priors. [24]
consider different possible structures on the set of probability densities on [0, 1].

The article is structured as follows. In Sect. 2, we introduce a general concept of
codivergence, study specific properties of codivergences on the space of probability
measures, and discuss specific (classes of) codivergences. Section 3 considers the con-
struction of divergence matrices from a given codivergence. Section 4 is devoted to the
data-processing inequality that holds for the χ2-divergence matrix introduced in Sect.
3, thereby generalizing the usual data-processing inequality for the χ2-divergence.
Section 5 provides derivations of explicit expressions for a class of codivergences
applied to common parametric models. Elementary facts on ranks from linear algebra
are collected in Sect. 6.
Notation: If P is a probability measure and X a random vector, we write EP [X]
and CovP (X) for the expectation vector and covariance matrix with respect to P,

respectively.

2 Codivergences

2.1 Abstract framework and definition

We start by recalling the definition of a divergence [1, Definition 1.1]. This definition
is situated within the framework of a d-dimensional differentiable manifoldX with an
atlas (Ui , ϕi ). Formally, this means that the (Ui ) are an open cover of the topological
space X , and ϕi : Ui → R

d are isomorphisms such that ϕ j ◦ ϕ−1
i is C1 on ϕi (Ui ∩

Uj ) → ϕ j (Ui ∩Uj ) [14].
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Codivergences and information... 255

Definition 2.1 A divergence D on a d-dimensional differentiable manifold X is a
function X 2 → R+ satisfying

(i) ∀P, Q ∈ X , D(P|Q) = 0 if and only if P = Q.
(ii) For all P ∈ X , for any chart (U , ϕ) with P ∈ U , there exists a matrix G = G(P)

such that for any Q ∈ U ,

D(P|Q) = 1

2

(
ϕ(Q) − ϕ(P)

)T
G
(
ϕ(Q) − ϕ(P)

)+ O
(
‖ϕ(Q) − ϕ(P)‖3

)
. (1)

The matrix G = G(P) may depend on the choice of coordinates ϕ. For the most
common divergences, G is symmetric, positive-definite and thus defines a scalar
product on the tangent space at P . Whereas a divergence measures the similarity
between two elements P, Q ∈ X , we want to define codivergences measuring the
angle �P1P0P2 of P1, P2 ∈ X relative to P0 ∈ X .

Equation (1) states that the divergence D(P|Q) is a quadratic form in terms of
the local coordinates ϕ(Q) ∈ R

d , whenever P and Q are close. Generalizing to
the infinite-dimensional case requires to work with bilinear forms instead. Moreover
for the infinite-dimensional setting, imposing an expansion of the form (1) in every
possible direction around P ∈ X is restrictive. We therefore allow the quadratic
expansion to hold in a possibly smaller bilinear expansion domain. Furthermore, we
allow codivergences to attain the value +∞. This is inspired by existing statistical
divergences (such as χ2- or Kullback–Leibler divergences) that can also take the
value +∞. Therefore, imposing an expansion of the form (1) globally may not be
possible as the codivergence on the left-hand side of (1) may take the value +∞ in
some directions away from P , while the right-hand side of (1) is always finite.

We now provide the definition of a codivergence if X is a subset of a real vector
space.

Definition 2.2 Let X and (Eu)u∈X be a subset and a family of subspaces of a real
vector space E , respectively. A function (u, v, w) ∈ X 3 	→ D(u|v,w) ∈ R ∪ {+∞}
defines a codivergence on X with bilinear expansion domain Eu at u, if for any
u, v, w ∈ X ,

(i) D(u|v,w) = D(u|w, v);
(ii) D(u|v, v) ≥ 0, with equality if u = v;
(iii) there exists a bilinear map 〈·, ·〉u defined on Eu , such that, for any h, g ∈ Eu and

for any scalars s, t in some sufficiently small open neighborhood of (0, 0) (that
may depend on h and g) with respect to the Euclidean topology in R

2, we have
(u+ th, u+sg) ∈ X 2, D

(
u
∣∣u+ th, u+sg

)
< +∞, and D

(
u
∣∣u+ th, u+sg

) =
ts〈h, g〉u + o(t2 + s2) as (s, t) → (0, 0).

The last part of the definition imposes that, locally around each u, the codivergence
(v,w) 	→ D(u|v,w) is finite and behaves like a bilinear form in the centered variables
(v − u, w − u). As a consequence, for a given u, the mapping (v,w) 	→ D(u|v,w)

is Gateaux-differentiable on X 2 at (u, u) with Gateaux derivative 0 in every direction
(h, g) ∈ E2

u . Condition (iii) can moreover be understood as a second-order Taylor
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expansion at (u, u) in the direction (h, g). The mapping (v,w) 	→ D(u|v,w) needs,
however, not to be twiceGateaux-differentiable at (u, u) for (i i i) to hold. This is analo-
gous to usual counter-examples in analysis where a functionmay admit a second-order
Taylor expansion at a given point without being twice differentiable. Nevertheless, if
D
(
u
∣∣u+ th, u+sg

)
is twice differentiable in (t, s) at (0, 0), then the partial derivative

∂2D
(
u
∣∣u + th, u + sg

)
/∂t∂s at (0, 0) must be equal to 〈h, g〉u . We refer to [2] for a

discussion on higher-order functional derivatives.
We also provide a definition of codivergence if X is a differentiable Banach man-

ifold, see [4, 14] for an introduction to Banach manifolds. Let B be a Banach space
and X be a Banach manifold modeled on B. This guarantees existence of a B-atlas
(Ui , ϕi ) with Ui an open cover of X and ϕi : Ui → B such that ϕ j ◦ ϕ−1

i is C1 (with
respect to the norm on B).

This generalization can be useful in the case where the space X is not flat. Indeed,
part (iii) of Definition 2.2 imposes that for h ∈ Eu , we must have u + th ∈ X for t
small enough. On the contrary, in the following definition we consider a more subtle
case where the point u may be approached on a smooth curve (not necessarily affine),
under the assumption that X is a B-manifold.

We first recall the construction of the tangent space via curves following [4, Defi-
nition 2.21] and [15, Section 2.1.1]: for a fixed u ∈ X , let i be such that u ∈ Ui and let
Cu be the set of smooth curves c such that c : [−1, 1] → Ui and c(0) = u. We define
an equivalence relation ∼ on Cu by c1 ∼ c2 if for all smooth real-valued functions f
on Ui , we have ( f ◦ c1)′(0) = ( f ◦ c2)′(0). We define the tangent space at u as the
quotient set Tu := Cu/∼, which can be given a vector space structure isomorphic to
B.

We give a short outline of the main ideas to obtain this property. Let D denote the
Fréchet differential operator. For c ∈ Tu and c a representative of the equivalence class
c, note that ϕi ◦ c : [−1, 1] → B is differentiable (by assumption on c); the mapping
D(ϕi ◦ c)(0) is linear from R to B and can therefore be identified with an element of
B itself; this element D(ϕi ◦ c)(0) also does not depend on the representative c. This
defines a mapping θu : Tu 	→ B by θu(c) := D(ϕi ◦ c)(0). It can be shown that θu is
bijective. Through its inverse θ−1

u one can transport the vector space structure of B on
Tu , making it a real vector space too.

Definition 2.3 Let X be a B-manifold. A function (u, v, w) ∈ X 3 	→ D(u|v,w) ∈
R ∪ {+∞} defines a codivergence on X with bilinear expansion domain Eu at u, if
for any u, v, w ∈ X ,

(i) D(u|v,w) = D(u|w, v);
(ii) D(u|v, v) ≥ 0, with equality if u = v;
(iii) Eu is a subspace of the tangent space Tu of X at u;
(iv) there exists a bilinear map 〈·, ·〉u defined on Eu . For any g, h ∈ Eu , for any

representatives g and h of the respective equivalence classes g and h, and for
any scalars s, t in some sufficiently small open neighborhood of (0, 0) with
respect to the Euclidean topology in R

2 (the neighborhood may depend on the
choice of the representatives g and h), we have D

(
u
∣∣h(t), g(s)

)
< +∞, and

D
(
u
∣∣h(t), g(s)

) = ts〈h, g〉u + o(t2 + s2) as (s, t) → (0, 0).
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Codivergences and information... 257

From a codivergence D(u|v,w) that takes finite values on a finite-dimensional
manifold and with bilinear expansions domains the tangent spaces, we can always
construct a divergence by setting v = w. Then D(u|v, v) behaves like a quadratic
form in v whenever v is close to u.

If X is a B-manifold and a closed subspace of a vector space E , then the notions
of codivergences in Definitions 2.2 and 2.3 coincide. This is because differentiable
curves are, in first order, linear functions in a small enough neighborhood of 0.

For both definitions, a given space X and a given family of bilinear expansion
domains (Eu)u∈X , the set of codivergences on X is a convex cone.

For an example covered by Definition 2.3 but not by Definition 2.2 assume thatX is
the unit circle. No codivergence can exist in the sense of Definition 2.2 with non-trivial
bilinear expansion domains (Eu). An example of a codivergence onX = {eiθ , θ ∈ R}
in the sense of Definition 2.3 is

D(u|v,w) =
{
e(θ1−θ0)(θ2−θ0) − 1, if v,w ∈ Uu,

+∞, else,

where u, v, w ∈ X 3, Uu := {ueiθ , θ ∈ (−π/2, π/2)}, u = eiθ0 , v = eiθ1 and
w = eiθ2 for some θ0 ∈ R, θ1, θ2 ∈ [θ0 − π, θ0 + π). Such a representation of v

and w always exists and is unique since [θ0 − π, θ0 + π) is a half-open interval of
length 2π . In this case, the tangent space Tu of the circle at any point u = eiθ0 is
diffeomorphic to R and we will use this identification (denoted by the symbol “�”).
Let g, h ∈ Tu � R and assume s, t ∈ R. Then g(s) = ueigs ∈ Uu for s small enough.
Similarly, h(t) = ueiht ∈ Uu for t small enough. So, D

(
u
∣∣h(t), g(s)

)
is finite for all

(s, t) in a small enough neighborhood of (0, 0), and, whenever this is the case, we
have

D
(
u
∣∣h(t), g(s)

) = D
(
u
∣∣ueiht , ueigs

) = ehtgs − 1 = ts〈h, g〉u + o(t2 + s2),

where 〈h, g〉u = gh is the local bilinear form (which in this example is independent
of u) and the bilinear expansion domain can be taken to be Eu = Tu � R.

2.2 Codivergences on the space of probability measures

For the application to statistics, E is the space of all finite signed measures on a
measurable space (A,B), and X is the space of all probability measures on (A,B).
Probability measures form a convex subset of all signed measures E . Since E is a
vector space, the natural definition of a codivergence on X is Definition 2.2. A visual
representation of such a codivergence is provided in Fig. 1.

In a next step, we characterize the bilinear expansion domains of a codivergence
for X the space of probability measures. Given a probability measure P0 ∈ X , we
say that a function h : X → R is P0-essentially bounded by a constant C > 0
if P0({x ∈ A : |h(x)| ≤ C}) = 1 and define ess supP0 |h| := inf{C > 0 :
|h| is P0-essentially bounded by C}. We will show that
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258 A. Derumigny, J. Schmidt-Hieber

Fig. 1 The codivergence between P1 and P2 at P0 measures the position of P1 and P2 relative to P0

MP0 :=
{
μ ∈ E : μ � P0,

∫
dμ = 0, ess supP0

∣
∣∣
dμ

dP0

∣
∣∣ < +∞

}

is the largest bilinear expansion domain that any codivergence on X can have at P0.
The rationale is that P0+tμ is otherwise not a probabilitymeasure. Indeed ifμ ∈ MP0
has a density h with respect to P0, then the P0-density 1+ th is non-negative for given
t > 0 if and only if h is larger than−1/t . Conversely, the density 1−th is non-negative
for given t < 0 if and only if h is smaller than 1/t . This gives a link between a bound
on h = dμ/dP0 and the non-negativity of the probability measure P0 + tμ.

For every measurable set A,

(P0 + tμ)(A) =
∫

x∈A
d(P0 + tμ)(x) =

∫

x∈A

(
1 + th(x)

)
dP0(x). (2)

The value of an integral is unchanged if the function to be integrated is modified on
a P0-null set. Therefore we only need the function 1 + th to be positive P0-almost
everywhere for P0 + tμ to be a positive measure.

Proposition 2.4 For any codivergence D on the space of probability measures X , the
bilinear expansion domain of D at any probability measure P0 ∈ X must be included
inMP0 . Furthermore, every μ ∈ MP0 has a density dμ/dP0 with respect to P0 such
that ess supP0 |dμ/dP0| = 1/a∗ with a∗ := sup{a > 0 : P0 + tμ ∈ X for all t ∈
[−a, a]} ∈ (0,+∞] and the convention 1/ + ∞ = 0.

Proof of Proposition 2.4 We begin by proving the first part. Let μ be a finite signed
measure belonging to the bilinear expansion domain at P0 of some codivergence D
on the space of probability measures X . For a > 0, we write μ ∈ R(a) if and only if
P0 + tμ ∈ X for all −a ≤ t ≤ a. Since μ belongs to the bilinear expansion domain
of D at P0, Definition 2.2(iii) implies existence of an open neighborhood T of 0 such
that for any t ∈ T , P0 + tμ ∈ X . Therefore, there exists a > 0 with μ ∈ R(a).

We now show that μ ∈ R(a), for some a > 0, implies μ � P0. The proof relies
on the Jordan decomposition theorem for finite signed measures (e.g. Corollary 4.1.6
in [7]). It states that every finite signed measure μ on a measurable space (A,B) can
be decomposed as

μ = α+μ+ − α−μ−, with α+, α− ≥ 0, (3)
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andμ−, μ+ orthogonal probabilitymeasures on (A,B). By the Lebesgue decomposi-
tion theorem (see Theorem4.3.2 in [7]),μ can always be decomposed asμ = μA+μS ,
where μA is a signed measure that is absolutely continuous with respect to P0, μS is a
signedmeasure that is singularwith respect to P0, andμA andμS are orthogonal.By the
Jordan decomposition (3),we decompose the signedmeasureμS = α+μS,+−α−μS,−
into its positive and negative part μS,+ and μS,−. These two measures are orthog-
onal and α+, α− ≥ 0. Then, P0 + aμ = P0 + aμA + aα+μS,+ − aα−μS,−
can be a probability measure only if α− = 0. This is because we can find a set
U such that P0(U ) = μA(U ) = μS,+(U ) = 0 and μS,−(U ) = 1. Therefore
(P0 + aμ)(U ) = −aα−μS,−(U ) = −aα− ≤ 0. In the same way, P0 − aμ can
be a probability measure only if α+ = 0. Therefore, if μ ∈ R(a) for some a > 0, then
α+ = α− = 0, and μ = μA is absolutely continuous with respect to P0.

Let h be the density of μ with respect to P0. Then

d(P0 + tμ)

dP0
= 1 + t

dμ

dP0
= 1 + th.

Note that P0+ tμ is a signed measure integrating to 1 if and only if
∫
dμ = ∫ hdP0 =

0.
We now show that, for any a > 0, μ ∈ R(a) implies ess supP0 |h| ≤ 1/a. If

μ ∈ R(a), then for any A ∈ B, (P0+aμ)(A) ≥ 0 and (P0−aμ)(A) ≥ 0. Let us define
the sets A+ := {x ∈ A : 1+ah(x) ≥ 0} and A− := {x ∈ A : 1−ah(x) ≥ 0}. Let AC

denote the complement of a set A.We have (P0+aμ)(AC+) = ∫AC+ 1+ah(x)dPX (x) ≤
0 since this is the integral of a negative function. Therefore P0(AC+) = 0 and then
P0(A+) = 1. Similarly, (P0 + aμ)(AC−) = ∫AC− 1 − ah(x)dPX (x) ≤ 0. Hence,

P0(AC−) = 0 and P0(A−) = 1.
Therefore, P0(A+ ∩ A−) = 1. This means that for P0-almost every x ∈ A, 1 +

ah(x) ≥ 0 and 1 − ah(x) ≥ 0. Therefore, for P0-almost every x ∈ A, |h(x)| ≤ 1/a.
Therefore, h is P0-essentially bounded by C := 1/a. We have finally shown that
μ ∈ R(a) implies ess supP0 |h| ≤ 1/a and μ ∈ MP0 , proving the first part of
Proposition 2.4.

Conversely, note that μ ∈ MP0 is a sufficient condition for P0 + tμ to be a
probability measure for all t in a sufficiently small open neighborhood of 0.

We now show the second part of Proposition 2.4. Remember that a∗ := sup{a >

0 : μ ∈ R(a)} ∈ (0,+∞]. Let (an)n∈N be an increasing sequence of real numbers
strictly smaller than a∗ and converging to a∗. For every positive integer n, we have
μ ∈ R(an). Therefore, by the previous reasoning, ess supP0 |h| ≤ 1/an , meaning that
P0({x ∈ A : |h(x)| ≤ 1/an}) = 1. By a union bound, we obtain P0(∩n≥0{x ∈ A :
|h(x)| ≤ 1/an}) = 1. Therefore P0({x ∈ A : |h(x)| ≤ 1/a∗}) = 1, and by definition
ess supP0 |h| ≤ 1/a∗.

We now show the reverse version of this inequality. Let C > ess supP0 |h|. Then
P0({x ∈ A : |h(x)| ≤ C} = 1. Hence, for any t ∈ [−1/C, 1/C], and for P0-almost
every x ,−1 ≤ th(x) ≤ 1. Consequently, for any t ∈ [−1/C, 1/C], and for P0-almost
every x , 1 + th(x) ≥ 0 and 1 − th(x) ≥ 0. For any t ∈ [−1/C, 1/C], P0 + tμ is a
finite signed measure with a density that is non-negative P0-almost everywhere and
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integrates to 1. These are sufficient conditions for P0 + tμ to be a probability measure
on A, proving μ ∈ R(1/C). Therefore, 1/C ≤ a∗ and thus 1/a∗ ≤ C . This holds for
any C > 0 such that C > ess supP0 |h|, proving that 1/a∗ ≤ ess supP0 |h|. Together
with the inequality ess supP0 |h| ≤ 1/a∗, the claim 1/a∗ = ess supP0 |h| follows. ��

2.3 Examples of codivergences

For any real a ≥ 0, set a/0 := +∞. For a non-negative function φ : [0,∞) →
[0,∞), we can define two codivergences. The first one will be referred to as
covariance-type codivergence between three probability measures P0, P1, P2 and is
defined by

Vφ(P0|P1, P2) :=
∫

φ

(
dP1
dP0

)
φ

(
dP2
dP0

)
dP0 −

∫
φ

(
dP1
dP0

)
dP0

∫
φ

(
dP2
dP0

)
dP0,

(4)

and the second one will be called correlation-type codivergence and is defined by

Rφ(P0|P1, P2) := Vφ(P0|P1, P2)
∫

φ
( dP1
dP0

)
dP0
∫

φ
( dP2
dP0

)
dP0

=
∫

φ
( dP1
dP0

)
φ
( dP2
dP0

)
dP0

∫
φ
( dP1
dP0

)
dP0
∫

φ
( dP2
dP0

)
dP0

− 1,

(5)

if P1, P2 � P0. Otherwise, we define both Vφ(P0|P1, P2) and Rφ(P0|P1, P2) to be
equal to +∞.

Obviously, both codivergences Vφ and Rφ are symmetric in P1 and P2. By Jensen’s
inequality we see that Vφ(P0|P1, P1) ≥ 0 and Rφ(P0|P1, P1) ≥ 0. If φ(1) = 0, then
Rφ(P0|P0, P0) = +∞. For φ(1) > 0, the functions φ and tφ with positive scalar t
give the same codivergence Rφ and simply rescale Vφ . Without loss of generality, we
therefore can (and will) assume that φ(1) = 1.

We say that a function f admits a second order Taylor expansion around 1 if

f (1 + y) = f (1) + y f ′(1) + y2

2 f ′′(1) + o(y2) for all y in an open neighborhood of
zero. The following proposition is proved in Section A.

Proposition 2.5 Assume that φ(1) = 1 and φ admit a second order Taylor expansion
around 1. Then the Vφ and the Rφ codivergences are codivergences in the sense ofDef-
inition 2.2 with bilinear expansion domainsMP0 and bilinear maps φ′(1)2〈μ, μ̃〉P0 ,
where

〈μ, μ̃〉P0 :=
∫

dμ

dP0
dμ̃ =

∫
hgdP0, with h = dμ

dP0
and g = dμ̃

dP0
.

If ν is a measure dominating P0, the bilinear map can be written as

〈μ, μ̃〉P0 =
∫

hg

p0
dν, for the densities h = dμ

dν
, g = dμ̃

dν
, p0 = dP0

dν
. (6)
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A consequence of Proposition 2.5 is the following: locally, all Vφ and Rφ codiver-
gences (that satisfies the regularity conditions) define the same structure. This scalar
product is the nonparametric Fisher information metric. The name originates from the
identity [12, Equation (8)]

[I (θ)]i j =
∫

pi (x |θ)p j (x |θ)

p(x |θ)
dν(x), (7)

where [I (θ)]i j is the (i, j)-th entry of the Fisher information matrix for a parametric
model of ν-densities p(·|θ) indexedby afinite dimensional parameter θ and pi (x |θ) :=
∂ p(x |θ)/∂θi . Eqs. (7) and (6) have the same structure. One of the earliest reference
to the nonparametric Fisher information metric is [8]. The concept has been applied
in several frameworks, such as computer vision [24] or shape data analysis [25]. The
geometry of the nonparametric Fisher information metric has been studied by [6, 12]
in the context of Bayesian inference.

An interesting subclass of codivergences is obtained by choosing φα(x) = xα. To
ease the notation, we set

Vα := Vφα and Rα := Rφα . (8)

Although the resulting codivergences seem related to thewell-knownRényi divergence
(1 − α)−1 log(

∫
p(x)αq(x)1−αdν(x)) between probability measures P and Q with

densities p and q [23], the term
∫
(p1(x)p2(x))α p0(x)1−2αdν(x) occurring in the

definitions of Vα and Rα is of a different nature.
In the case α = 1, that is, φ(x) = x, both notions of codivergence agree. Denoting

by p0, p1, p2 the respective ν-densities of P0, P1, P2,where ν is ameasure dominating
P0, the corresponding codivergence

χ2(P0|P1, P2) :=
⎧
⎨

⎩

∫
dP1
dP0

dP2 − 1 =
∫

p1 p2
p0

dν − 1, if P1 � P0 and P2 � P0,

+∞, else,

will be called χ2-codivergence. The (usual) χ2-divergence is defined as χ2(P, Q) :=∫
(dP/dQ − 1)2dQ = ∫ (dP/dQ)2dQ − 1, if P is dominated by Q and +∞

otherwise. Therefore, the χ2-codivergence χ2(P0|P1, P1) coincides with the usual
χ2-divergence χ2(P1, P0) for any P0 and P1.

Another interesting codivergence is Rα with α = 1/2. The resulting codivergence

ρ(P0|P1, P2) :=
∫ √

p1 p2dν
∫ √

p1 p0dν
∫ √

p2 p0dν
− 1, (9)

is called Hellinger codivergence. We can (and will) define the Hellinger codivergence
as
∫ √

p1 p2dν/(
∫ √

p1 p0dν
∫ √

p2 p0dν)whenever the denominator is positive. This
is considerably weaker than P1, P2 � P0, as it is only required that the support of
p0 intersects with non-zero ν-mass the support of p1 and the support of p2. Note
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262 A. Derumigny, J. Schmidt-Hieber

that ρ(P0|P1, P2) is independent of the choice of the dominating measure ν (and
potentially +∞ if the denominator is 0).

The name Hellinger codivergence is motivated by the representation

ρ(P0|P1, P2) = α(P1, P2)

α(P0, P1)α(P0, P2)
− 1,

where α(P, Q) := ∫ √
pqdν is the Hellinger affinity between two positive measures

P, Q with densities p, q taken with respect to a common dominating measure.
The χ2- and Hellinger codivergence are of interest as they can be used to control

changes of expectation between probability measures, see Section 2.2 of [9].
We always have

ρ(P0|P1, P1) ≤ χ2(P0|P1, P1). (10)

To see this, observe that Hölder’s inequality with p = 3/2 and q = 3 gives for any
non-negative function f , 1 = ∫ p1 ≤ (

∫
f 3/2 p1)2/3(

∫
f −3 p1)1/3. The choice f =

(p0/p1)1/3 yields 1 ≤ (
∫ √

p1 p0)2
∫
p21/p0. Therefore 1/(

∫ √
p1 p0)2 ≤ ∫ p21/p0.

Subtracting one on each side of this expression yields (10).
Proposition 2.5 implies that the χ2-codivergence and the Hellinger codivergence

are codivergences with respective bilinear maps 〈μ, μ̃〉P0 for the χ2-codivergence and
〈μ, μ̃〉P0/4 for the Hellinger codivergence.

For theHellinger codivergence, the expansion in Proposition 2.5 can be generalized.
Assume that P0 is dominated by some positive measure ν. Define Supp(μ) := {x ∈
A : dμ/dν(x) �= 0} for any signed measure μ dominated by ν. If μ1 and μ2 are
signed measures dominated by ν such that (i) Supp(μi ) ∩ Supp(P0) has a positive
ν-measure, and (ii) their densities hi are positive on Supp(μi )\Supp(P0), then

ρ(P0|P0 + tμ1, P0 + sμ2) = √
ts
∫

Supp(P0)C

√
h1h2dν

+ ts
∫

Supp(P0)

h1h2
2p0

dν + o(t2 + s2). (11)

Compared to Definition 2.2 (iii), there is thus an additional term for probability
measures that have mass outside of the support of P0. Consequently, this expan-
sion cannot be linked to one local bilinear form and the mapping (t, s) ∈ R

2+ 	→
ρ(P0|P0 + tμ1, P0 + sμ2) is not differentiable at (0, 0). This is in line with Proposi-
tion 2.4: for perturbations μ that do not belong toMP0 , the measures P0 + tμ cannot
be probability measures for all t in any open neighborhood of 0.

The Rα codivergences admit convenient expressions for product measures and for
exponential families. The first proposition is proved in Sect. A.2.

Proposition 2.6 Let Pj� be probability measures for any j = 0, 1, 2 and for any
� = 1, . . . , d satisfying P1�, P2� � P0�. Then
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Table 1 Closed-form expressions for the Rα codivergence for some parametric distributions

Distribution Rα(P0|P1, P2)

Pj = N (θ j , σ
2 Id ), θ j ∈ R

d , σ > 0 exp
(
α2

〈θ1 − θ0, θ2 − θ0〉
σ 2

)
− 1

Pj = ⊗d
�=1 Pois(λ j�), λ j� > 0 exp

(∑d
�=1 λ1−2α

0�

(
λα
1� − λα

0�

)(
λα
2� − λα

0�

))− 1

Pj = ⊗d
�=1 Exp(β j�), β j� > 0

d∏

�=1

(
β0� + α(β1� − β0�)

)(
β0� + α(β2� − β0�)

)

β0�
(
β0� + α(β1� + β2� − 2β0�)

) − 1,

if all the involved quantities are positive, and +∞ else

Pj = ⊗d
�=1 Ber(θ j�), θ j� ∈ (0, 1)

d∏

�=1

θ1−2α
0� θα

1�θ
α
2� + (1 − θ0�)

1−2α(1 − θ1�)
α(1 − θ2�)

α

r(θ0�, θ1�)r(θ0�, θ2�)
− 1,

r(θ0, θ1) := θ1−α
0 θα

1 + (1 − θ0)
1−α(1 − θ1)

α

Proofs can be found in Sect. 5

Rα

(
d⊗

�=1

P0�

∣∣∣∣

d⊗

�=1

P1�

d⊗

�=1

P2�

)

=
d∏

�=1

(
Rα(P0�|P1�, P2�) + 1

)
− 1.

Proposition 2.7 Let � be a subset of a real vector space and let (Pθ : θ ∈ �) be
an exponential family with ν-densities pθ (x) = h(x) exp(θ�T (x) − A(θ)) for some
dominating measure ν. Then, for any θ0, θ1, θ2 ∈ � satisfying

θ0 + α
(
θ1 + θ2 − 2θ0

)
, θ0 + α

(
θ1 − θ0

)
, θ0 + α

(
θ2 − θ0

) ∈ �, (12)

we have

Rα(Pθ0 |Pθ1 , Pθ2) = exp
(
A
(
θ0 + α

(
θ1 + θ2 − 2θ0

))− A
(
θ0 + α

(
θ1 − θ0

))

− A
(
θ0 + α

(
θ2 − θ0

))+ A
(
θ0
))− 1.

This proposition is proved in Sect. A.3. (12) is satisfied if � is a vector space or
if 0 < α ≤ 1 and � is convex. In the case of the Gamma distribution the parameter
space is � = (−1,+∞) × (−R) and in this case the constraints in (12) are sufficient
and necessary for the statement of Proposition 2.7 to hold, see Sect. 5.4 for details.

For the most common families of distributions, closed-form expressions for the
Rα(Pθ0 |Pθ1 , Pθ2) codivergences are reported in Table 1. Derivations for these expres-
sions are given in Sect. 5. This section also contains expressions for the Gamma
distribution. As mentioned before, these codivergences quantify to which extent the
measures P1 and P2 represent different directions around P0. The explicit formulas
show this in terms of the parameters and reveal significant similarity between the dif-
ferent families. For the multivariate normal distribution the Rα codivergence vanishes
if and only if the vectors θ1 − θ0 and θ2 − θ0 are orthogonal.
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264 A. Derumigny, J. Schmidt-Hieber

3 Divergencematrices

Definition 3.1 Let M ≥ 1. For a given codivergence D(·|·, ·) on a space X ⊂ E and
u, v1, . . . , vM elements of X , we define the divergence matrix D(u|v1, . . . , vM ) as
the M × M matrix with ( j, k)-th entry D(u|v1, . . . , vM ) j,k := D(u|v j , vk), for all
1 ≤ j, k ≤ M .

If v1, . . . , vM are all in a neighborhood of u, the divergence matrix D can be related
to the Gram matrix of the bilinear form 〈·, ·〉u . Formally, for t = (t1, . . . , tM ) ∈ R

M

such that for any i = 1, . . . , M, u + ti hi ∈ X , we have

D(u|u + t1h1, . . . , u + tMhM ) = tGut� + o(‖t‖2),

with Gram matrix Gu := (〈hi , h j 〉u)1≤i, j≤M .
Based on the codivergences Vφ(P0|P1, P2), Rφ(P0|P1, P2), one can now define

corresponding M × M divergence matrices with ( j, k)-th entry

Vφ(P0|P1, . . . , PM ) j,k := Vφ(P0|Pj , Pk)

=
∫

φ

(
dPj

d P0

)
φ

(
dPk
dP0

)
dP0 −

∫
φ

(
dPj

d P0

)
dP0

∫
φ

(
dPk
dP0

)
dP0, (13)

and

Rφ(P0|P1, . . . , PM ) j,k := Rφ(P0|Pj , Pk) =
∫

φ

(
dPj
d P0

)
φ

(
dPk
d P0

)
dP0

∫
φ

(
dPj
d P0

)
dP0
∫

φ

(
dPk
d P0

)
dP0

− 1,

(14)

provided that P1, . . . , PM � P0. The codivergence matrices are linked by the rela-
tionship

Rφ(P0|P1, . . . , PM ) = D · Vφ(P0|P1, . . . , PM ) · D, (15)

where D denotes theM×M diagonalmatrixwith j-th diagonal entry 1/
∫

φ
( dPj
d P0

)
dP0,

j = 1, . . . , M .

Similarly as Cov(X1, X2) can denote either the covariance between the random
variables X1 and X2 or the 2×2 covariance matrix of the random vector (X1, X2), the
expressions Vφ(P0|P1, P2) and Rφ(P0|P1, P2) can also denote either codivergences
or 2 × 2 divergence matrices. Within the context, it is always clear which of the two
interpretations is meant.

The divergence matrices with function φα(x) := xα are denoted by Vα(P0|P1, . . . ,
PM ) and Rα(P0|P1, . . . , PM ). Similarly, theχ2-divergencematrixχ2(P0|P1, . . . , PM )
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and the Hellinger affinity matrix ρ(P0|P1, . . . , PM ) are the M × M divergence matri-
ces of the χ2-codivergence and the Hellinger codivergence with ( j, k)-th entry

χ2(P0|P1, . . . , PM ) j,k :=
∫

dPj

d P0
dPk − 1, and,

ρ(P0|P1, . . . , PM ) j,k :=
∫ √

p j pkdν
∫ √

p j p0dν
∫ √

pk p0dν
− 1,

for all 1 ≤ j, k ≤ M . As in the previous section, the condition for finiteness
of the Hellinger codivergence matrix is weaker than for general Rφ and Vφ codi-
vergences. Instead of domination P1, . . . , PM � P0, it is only required that the
integrals

∫ √
p j p0dν are positive, for some dominatingmeasure ν and p j := dPj/dν.

By (6), the local Gram matrix of the χ2-divergence matrix at a distribution P0 is
GP0 := [ ∫ hi h j

p0
dν
]
1≤i, j≤M , and the local Gram matrix of the Hellinger divergence

matrix is GP0/4.
Let �(X) := (φ(dP1/dP0(X)), . . . , φ(dPM/dP0(X)))� denote the random vec-

tor containing the likelihood ratios of the M measures. Since Cov(U , V ) = E[UV ]−
E[U ]E[V ], we have

Vφ(P0|P1, . . . , PM ) = CovP0
(
�(X)

)
, (16)

where the covariance is computed with respect to the distribution P0 as indicated by
the subscript P0. Moreover, we have

v�Vφ(P0|P1, . . . , PM )v = VarP0
(
v��(X)

)
.

Applying Eq. (15) yields moreover

Rφ(P0|P1, . . . , PM ) = D CovP0
(
�(X)

)
D. (17)

This shows that Vφ(P0|P1, . . . , PM ) and Rφ(P0|P1, . . . , PM ) can be interpreted as
covariance matrices and are therefore symmetric and positive semi-definite. Applying
the Taylor expansion to the likelihood ratios in the previous identities provides a
direct way of recovering the local Grammatrix associated to the nonparametric Fisher
information metric.

In a next step, we state a more specific identity for the χ2-divergence matrix. To
do so, we first extend the usual notion of the χ2-divergence to the case where the first
argument is a signed measure. Let μ be a finite signed measure and P be a probability
measure defined on the same measurable space (�,A). We define the χ2-divergence
of μ and P by

χ2(μ, P) :=

⎧
⎪⎨

⎪⎩

∫ (
dμ

dP
− μ(�)

)2
dP, if μ � P,

+∞ else.

(18)
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Here, dμ/dP denotes the Radon–Nikodym derivative of the signed measured μ with
respect to P (defined e.g. in Theorem 4.2.4 in [7]). This definition of χ2(μ, P)

generalizes the case where μ is a probability measure and allows us to rewrite the
χ2-divergence matrix as

v�χ2(P0|P1, . . . , PM )v =
∫
⎛

⎝
M∑

j=1

(
dPj

d P0
− 1

)
v j

⎞

⎠

2

dP0 = χ2

⎛

⎝
M∑

j=1

v j Pj , P0

⎞

⎠ ,

(19)

with
∑M

j=1 v j Pj the mixture (signed) measure of P1, . . . , PM . Similarly, for the
Hellinger divergence matrix it can be checked that

v�ρ(P0|P1, . . . , PM )v =
∫
⎛

⎝
M∑

j=1

( √
p j∫ √

p j p0dν
− √

p0

)

v j

⎞

⎠

2

dν. (20)

WritingRank(A) for the rank of amatrix A andRank(x1, . . . , xn) for the dimension
of the linear span of n elements x1, . . . , xn in a vector space E , we will now derive an
identity for the rank of divergence matrices.

Proposition 3.2 Let M ≥ 1, and let P0, P1, . . . , PM be (M + 1) probability distribu-
tions.

(i) Assume that P1, . . . , PM � P0. Then for any non-negative function φ : [0,∞) →
[0,∞) such that φ(1) = 1, we have

Rank(Rφ(P0|P1, . . . , PM )) = Rank(Vφ(P0|P1, . . . , PM ))

= Rank

(
1, φ ◦ dP1

dP0
, . . . , φ ◦ dPM

dP0

)
− 1,

where functions are considered as elements of the vector space L1(A,B, P0), that
is, linear independence is considered P0-almost everywhere.

(ii) Let ν be a common dominating measure of P0, . . . , PM. Assume that ∀ j =
1, . . . , M,

∫
p j p0dν > 0 with p j := dPj/dν. Then we have

Rank(ρ(P0|P1, . . . , PM )) = Rank(
√
p0,

√
p1, . . . ,

√
pM ) − 1,

where functions are considered as elements of the vector space L1(A,B, ν).

Statement (ii) is not a consequence of (i) withφ(x) = x1/2. Indeed, (i) relies on like-
lihood ratios assuming that the measures P1, . . . , PM are dominated by P0, while (ii)
only requires that each of the probability measures P1, . . . , PM has a common support
with P0 of positive P0-measure. The proof of (ii) exploits the specific property (20)
of the Hellinger divergence.
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Proposition 3.2 applied to φ(x) = x shows that whenever P0 is a linear com-
bination of P1, . . . , PM , then Rank(1, dP1/dP0, . . . , dPM/dP0) < M + 1 and
Rank(χ2(P0|P1, . . . , PM )) < M, which means that the χ2(P0|P1, . . . , PM ) diver-
gence matrix is singular. Similarly, whenever

√
p0 is a linear combination of√

p1, . . . ,
√
pM , the Hellinger divergence matrix is singular.

Proof of Proposition 3.2 Wefirst prove (i). Since D is an invertible matrix, a direct con-
sequence of Eq. (15) is Rank(Rφ(P0|P1, . . . , PM )) = Rank(Vφ(P0|P1, . . . , PM )).

ApplyingEq. (16) and thenLemma6.3,weobtain that r := Rank(Vφ(P0|P1, . . . , PM ))

= Rank(CovP0(Z1, . . . , ZM )) = Rank(Z1 − EP0 Z1, . . . , ZM − EP0 ZM ), where
Z j := φ(dPj/dP0(X)) for j = 1, . . . , M and EP0 denotes the expectation with
respect to P0. The random vectors Z1 − EP0 Z1, . . . , ZM − EP0 ZM are centered
and therefore linearly independent of the (constant) random variable Z0 := 1 =
φ(dP0/dP0(X)). Therefore,

r = Rank(Z1 − EP0 Z1, . . . , ZM − EP0 ZM )

= Rank(1, Z1 − EP0 Z1, . . . , ZM − EP0 ZM ) − 1

= Rank(Z0, Z1, . . . , ZM ) − 1.

ByLemma6.2, r is the highest integer such that there exists i1, . . . , ir ∈ {0, . . . , M}
with (Zi1 , . . . , Zir ) linearly independent random variables P0-almost surely.

Using the definition of the Z j and X ∼ P0, the random variables {Zi1, . . . , Zir } are
linearly independent P0-almost surely if and only if P0

(∑r
j=1 a jφ(dPi j /dP0(X)) =

0
) = 1 implies a0 = . . . = ar = 0. This is the case if and only if the functions

{φ ◦ dPi1/dP0, . . . , φ ◦ dPir /dP0} are linearly independent P0-almost everywhere,
proving Rank(Zi1 , . . . , Zir ) = Rank(φ ◦ dPi1/dP0, . . . , φ ◦ dPir /dP0).

Before proving (ii) in full generality,wefirst show thatRank(ρ(P0|P1, . . . , PM )) =
M if and only if all the M + 1 functions

√
p0, . . . ,

√
pM are linearly independent

ν-almost everywhere. The matrix is singular if and only if there exists a non-null

vector v such that
∑M

j=1
v j

√
p j∫ √

p j p0dν
= ∑M

j=1 v j
√
p0 ν-almost everywhere. This is

the case if and only if there are numbers w0, . . . , wM , that are not all equal to zero,
satisfying

∑M
j=0 w j

√
p j = 0, ν-almost everywhere. To verify the more difficult

reverse direction of this equivalence, it is enough to observe that
∑M

j=0 w j
√
p j = 0

implies w0 = −∑M
j=1 w j

∫ √
p j p0dν and thus, taking v j = w j

∫ √
p j p0dν yields

∑M
j=1

v j
√
p j∫ √

p j p0dν
=∑M

j=1 v j
√
p0.

We now show the general case of (ii). For an n × n matrix A and index sets
I , J ⊂ {1, . . . , n}, the submatrix AI ,J defines the submatrix consisting of the rows I
and the columns J . If I = J , AI ,I is called a principal submatrix of the matrix A. Let
r be an integer in {1, . . . , M}. By Lemma 6.4,

r = Rank(ρ(P0|P1, . . . , PM ))
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if and only if

ρ(P0|P1, . . . , PM ) has an invertible principal submatrix of size r
and all principal submatrix of size r + 1 of ρ(P0|P1, . . . , PM ) are singular

if and only if (using the fact that the principal submatrices of ρ(P0|P1, . . . , PM ) of
size k are exactly the matrices of the form ρ(P0|Pi1 , . . . , Pik ) for some i1, . . . , ik ∈
{1, . . . M})

r = max{k = 1, . . . , M : ∃i1, . . . , ik ∈ {1, . . . , M}, ρ(P0|Pi1 , . . . , Pik ) is invertible}

if and only if (using the case of full rank that was proved before)

r = max

{
k = 1, . . . , M : ∃i1, . . . , ik ∈ {1, . . . , M},

√
p0,

√
pi1 , . . . ,

√
pir are linearly independent

}

if and only if r = Rank(
√
p0,

√
p1, . . . ,

√
pM ) − 1. ��

4 Data processing inequality for the �2-divergencematrix

In a parametric statistical model (Qθ )θ∈�, it is assumed that the statistician observes
a random variable X following one of the distributions Qθ for some θ ∈ �. If we
transform X to obtain a new variable Y , then Y follows the distribution Pθ := K Qθ

for some Markov kernel K . When θ is unknown but the Markov kernel K is known
and independent of θ , this means that the new statistical model is (Pθ := K Qθ , θ ∈
�). As in the usual case for the χ2-divergence, it is natural to think that such a
transformation cannot increase the amount of information present in the model. In
our more general framework, such an inequality still holds and is presented in the
following data processing inequality.

Theorem 4.1 (Data processing/entropy contraction) If K is a Markov kernel and
Q0, . . . , QM are probability measures such that Q0 dominates Q1, . . . , QM , then,

χ2(K Q0|K Q1, . . . , K QM
) ≤ χ2(Q0|Q1, . . . , QM

)
,

where ≤ denotes the partial order on the set of positive semi-definite matrices.

In particular, the χ2-divergence matrix is invariant under invertible transformations.
The rest of this section is devoted to the proof of Theorem 4.1. First, we generalize the
well-known data-processing inequality for the χ2-divergence to the case (18), where
one measure is a finite signed measure and use afterwards Eq. (19).

The χ2(μ, P)-divergence with a signed measure can be computed from the usual
χ2-divergence between probability measures by the following relationship

123



Codivergences and information... 269

Lemma 4.2 Assume thatμ � P.Letμ = α+μ+−α−μ− be the Jordandecomposition
(3) of μ with α+, α− ≥ 0 and μ+, μ− orthogonal probability measures. Then

χ2(μ, P) = α2+χ2(μ+, P
)+ α2−χ2(μ−, P

)+ 2α+α−.

Proof Observe that α2+χ2(μ+, P
)+α2−χ2(μ−, P

)+2α+α− =
∫ (

α+
(dμ+
dP

−1
)
−

α−
(dμ−
dP

− 1
))2

dP =
∫ ( dμ

dP
− μ(�)

)2
dP = χ2(μ, P). ��

Lemma 4.3 If μ is a finite signed measure, P is a probability measure and both
measures are defined on the same measurable space, then, for any Markov kernel K ,

the data-processing inequality

χ2(Kμ, K P) ≤ χ2(μ, P)

holds.

Proof We can assume that μ � P, since otherwise the right-hand side of the inequal-
ity is +∞ and the result holds. In particular, μ � ν for a positive measure ν

implies that Kμ � Kν. Indeed, if Kν(A) = 0 for a given measurable set A, then,∫
K (A, x)dν(x) = 0, implying K (A, ·) = 0 ν-almost everywhere. Since μ � ν, the

equality also holds μ-almost everywhere and so Kμ(A) = ∫ K (A, x)dμ(x) = 0,
proving Kμ � Kν. By the Jordan decomposition (3), there exist orthogonal
probability measures μ+, μ− and non-negative real numbers α+, α−, such that
μ = α+μ+ − α−μ− and μ(�) = α+ − α−. Thus, Kμ = α+Kμ+ − α−Kμ−.

Observe that

∫ (
dKμ+
dK P

− 1

)(
dKμ−
dK P

− 1

)
dK P =

∫ (
dKμ+
dK P

dKμ−
dK P

− dKμ−
dK P

− dKμ+
dK P

+ 1

)
dK P

=
∫

dKμ+
dK P

dKμ−
dK P

dK P − 1 ≥ −1.

Because μ+ and μ− are orthogonal, we similarly find that

∫ (
dμ+
dP

− 1

)(
dμ−
dP

− 1

)
dP = −1.

Using the data-processing inequality for the χ2 divergence of probability measures
twice, Kμ = α+Kμ+ − α−Kμ− and μ(�) = α+ − α−, we get

χ2(Kμ, K P) =
∫ (

dKμ

dK P
− μ(�)

)2
dK P

=
∫ (

α+
(
dKμ+
dK P

− 1

)
− α−
(
dKμ−
dK P

− 1

))2
dK P
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= α2+χ2
(
Kμ+, K P

)
+ α2−χ2

(
Kμ−, K P

)

− 2α+α−
∫ (

dKμ+
dK P

− 1

)(
dKμ−
dK P

− 1

)
dK P

≤ α2+χ2
(

μ+, P

)
+ α2−χ2(μ−, P

)+ 2α+α− = χ2(μ, P),

by Lemma 4.2. ��
We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1 Let v = (v1, . . . , vM )� ∈ R
M . Then,

∑M
j=1 v j Q j is a finite

signed measure dominated by Q0. Using (18) and the previous lemma,

vTχ2(K Q0|K Q1, . . . , K QM )v =
∫
⎛

⎝
M∑

j=1

v j

(
dK Q j

dK Q0
− 1

)⎞

⎠

2

dK Q0

= χ2

⎛

⎝K

⎛

⎝
M∑

j=1

v j Q j

⎞

⎠ , K Q0

⎞

⎠

≤ χ2

⎛

⎝
M∑

j=1

v j Q j , Q0

⎞

⎠

=
∫
⎛

⎝
M∑

j=1

v j

(
dQ j

dQ0
− 1

)⎞

⎠

2

dQ0

= vTχ2(Q0|Q1, . . . , QM )v.

Since v was arbitrary, this completes the proof. ��
A Markov kernel K implies by definition that for every fixed x, A 	→ K (A, x)

is a probability measure. We now provide a simpler and more straightforward proof
for Theorem 4.1 without using Lemma 4.3, under the additional common domination
assumption:

There exists a measure μ, such that ∀x ∈ �, K (x, ·) � μ. (21)

Simpler proof of Theorem 4.1 under the additional assumption (21) Becauseof the iden-
tity v�χ2(Q0|Q1, . . . , QM )v = ∫ (∑M

j=1 v j (dQ j/dQ0 − 1))2dQ0, it is enough to

prove that for any arbitrary vector v = (v1, . . . , vM )�,

∫
⎛

⎝
M∑

j=1

v j

(
dK Q j

dK Q0
− 1

)⎞

⎠

2

dK Q0 ≤
∫
⎛

⎝
M∑

j=1

v j

(
dQ j

dQ0
− 1

)⎞

⎠

2

dQ0. (22)
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Let ν be a dominating measure for Q0, . . . , QM and recall that by the additional
assumption (21), for any x, the measure μ is a dominating measure for the proba-
bility measure A 	→ K (A, x). Write q j for the ν-density of Q j . Then, dK Q j (y) =∫
X k(y, x)q j (x)dν(x)dμ(y) for j = 1, . . . , M and a suitable non-negative kernel

function k satisfying
∫
k(y, x)dμ(y) = 1 for all x . Applying the Cauchy-Schwarz

inequality, we obtain

⎛

⎝
M∑

j=1

v j

(
dK Q j

dK Q0
(y) − 1

)⎞

⎠

2

=
(∫

k(y, x)[∑M
j=1 v j (q j (x) − q0(x))]dν(x)

∫
k(y, x ′)q0(x ′)dν(x ′)

)2

≤
∫
k(y, x)

(∑M
j=1 v j

(q j (x)−q0(x))
q0(x)

)2
q0(x)dν(x)

∫
k(y, x ′)q0(x ′)dν(x ′)

.

Inserting this in (22), rewriting dK Q0(y) = ∫X k(y, x)q0(x)dν(x)dμ(y), interchang-
ing the order of integration using Fubini’s theorem, and applying

∫
k(y, x)dμ(y)

= 1, yields

∫
⎛

⎝
M∑

j=1

v j

(dK Q j

dK Q0
− 1
)
⎞

⎠

2

dK Q0

≤
∫∫

k(y, x)

⎛

⎝
M∑

j=1

v j
(q j (x) − q0(x))

q0(x)

⎞

⎠

2

q0(x)dν(x)dμ(y)

=
∫
⎛

⎝
M∑

j=1

v j

(q j (x)

q0(x)
− 1
)
⎞

⎠

2

q0(x)dν(x)

=
∫
⎛

⎝
M∑

j=1

v j

(dQ j

dQ0
− 1
)
⎞

⎠

2

dQ0.

��

5 Derivations for explicit expressions for the R˛ codivergence

In this section we derive closed-form expressions for the Rα codivergences in Table 1.
We also obtain a closed-form formula for the case of Gamma distributions and discuss
a first order approximation of it.
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5.1 Multivariate normal distribution

Suppose Pj = N (θ j , σ
2 Id) for j = 0, 1, 2. Here θ j = (θ j1, . . . , θ jd)

� are vectors
in Rd and Id denotes the d × d identity matrix. Then,

Rα(P0|P1, P2) = exp
(
α2 〈θ1 − θ0, θ2 − θ0〉

σ 2

)
− 1. (23)

Proof The Lebesgue density of Pj is

1√
2π

exp

(
− ‖x − θ j‖2

2σ 2

)
= 1√

2π
exp

(
− ‖x‖2

2σ 2

)
exp

(
1

σ 2 θ�
j x − ‖θ j‖2

2σ 2

)
,

with ‖·‖ the Euclidean norm. This is an exponential family h(x) exp(〈θ, T (x)〉−A(θ))

with T (x) = σ−2x and A(θ) = ‖θ‖2/(2σ 2).

Applying Proposition 2.7 and quadratic expansion ‖θ0 +b‖2 = ‖θ0‖2 +2〈θ0, b〉+
‖b‖2 to all four terms yields

Rα(P0|P1, P2) = exp

(‖θ0 + α(θ1 + θ2 − 2θ0)‖2
2σ 2 − ‖θ0 + α(θ1 − θ0)‖2

2σ 2

− ‖θ0 + α(θ2 − θ0)‖2
2σ 2 + ‖θ0‖2

2σ 2

)
− 1

= exp

(‖α(θ1 + θ2 − 2θ0)‖2 − ‖α(θ1 − θ0)‖2 − ‖α(θ2 − θ0)‖2
2σ 2

)
− 1

= exp

(
α2 〈θ1 − θ0, θ2 − θ0〉

σ 2

)
− 1.

��

5.2 Poisson distribution

If Pois(λ) denotes the Poisson distribution with intensity λ > 0, and λ0, λ1, λ2 > 0,
then,

Rα

(
Pois(λ0)

∣∣ Pois(λ1) , Pois(λ2)
) = exp

(
λ1−2α
0

(
λα
1 − λα

0

)(
λα
2 − λα

0

))− 1.

Suppose Pj = ⊗d
�=1 Pois(λ j�) for j = 0, . . . , M and λ j� > 0 for all j, �. Then, as a

consequence of Proposition 2.6,

Rα(P0|P1, P2) = exp

(
d∑

�=1

λ1−2α
0�

(
λα
1� − λα

0�

)(
λα
2� − λα

0�

))

− 1,
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with particular cases

χ2(P0|P1, P2) = exp

(
d∑

�=1

(λ1� − λ0�)(λ2� − λ0�)

λ0�

)

− 1, (24)

and

ρ(P0|P1, P2) = exp

(
d∑

�=1

(√
λ1� −√λ0�

)(√
λ2� −√λ0�

))

− 1. (25)

Proof The density of the Poisson distribution with respect to the counting measure is

pλ(x) = e−λ λx

x ! = 1

x !e
−λ+x log(λ) = h(x) exp

(
θ�T (x) − A(θ)

)
,

with θ = log(λ), T (x) = x and A(θ) = exp(θ). Applying Proposition 2.7 gives

Rα(Pθ0 |Pθ1 , Pθ2) = exp
(
A
(
θ0 + α

(
θ1 + θ2 − 2θ0

))− A
(
θ0 + α

(
θ1 − θ0

))

− A
(
θ0 + α

(
θ2 − θ0

))+ A
(
θ0

))
− 1.

= exp
(
exp
(
log(λ0) + α

(
log(λ1) + log(λ2) − 2 log(λ0)

))

− exp
(
log(λ0) + α

(
log(λ1) − log(λ0)

))

− exp

(
log(λ0) + α

(
log(λ2) − log(λ0)

))
+ λ0

)
− 1.

= exp

(
λ1−2α
0 λα

1λα
2 − λ1−α

0 λα
1 − λ1−α

0 λα
2 + λ0

)
− 1

= exp

(
λ1−2α
0

(
λα
1 − λα

0

)(
λα
2 − λα

0

))
− 1.

��

5.3 Bernoulli distribution

If Ber(θ) denotes the Poisson distribution with parameter θ ∈ (0, 1), and θ0, θ1,

θ2 ∈ (0, 1), then,

Rα

(
Ber(θ0)

∣
∣ Ber(θ1) , Ber(θ2)

)

= θ1−2α
0 θα

1 θα
2 + (1 − θ0)

1−2α(1 − θ1)
α(1 − θ2)

α

(
θ1−α
0 θα

1 + (1 − θ0)1−α(1 − θ1)α
)(

θ1−α
0 θα

2 + (1 − θ0)1−α(1 − θ2)α
) − 1,
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Suppose Pj = ⊗d
�=1 Ber(θ j�) for j = 0, 1, 2 and θ j� ∈ (0, 1) for all j, �. Then, as a

consequence of Proposition 2.6,

Rα(P0|P1, P2) =
d∏

�=1

θ1−2α
0� θα

1�θ
α
2� + (1 − θ0�)

1−2α(1 − θ1�)
α(1 − θ2�)

α

r(θ0�, θ1�)r(θ0�, θ2�)
− 1,

where r(θ0, θ1) := θ1−α
0 θα

1 + (1 − θ0)
1−α(1 − θ1)

α . In particular,

χ2(P0|P1, P2) =
d∏

�=1

(
(θ1� − θ0�)(θ2� − θ0�)

θ0�(1 − θ0�)
+ 1

)
− 1, (26)

and

ρ(P0|P1, P2) =
d∏

�=1

r̃(θ1�, θ2�)

r̃(θ1�, θ0�)̃r(θ2�, θ0�)
− 1, (27)

with r̃(θ, θ ′) := √
θθ ′ + √

(1 − θ)(1 − θ ′).

Proof The Bernoulli distributions Ber(θ), θ ∈ (0, 1) form an exponential family,
dominated by the counting measure on {0, 1} with density P(Ber(θ) = k) = θk(1 −
θ)1−k = exp(k log(θ) + (1 − k) log(1 − θ)) = exp(kβ − log(1 + eβ)), where β =
log(θ/(1 − θ)) is the natural parameter and A(β) = log(1 + eβ). Therefore, we can
apply Proposition 2.7 and obtain

Rα(Pβ0 |Pβ1 , Pβ2) = exp
(
A
(
β0 + α

(
β1 + β2 − 2β0

))− A
(
β0 + α

(
β1 − β0

))

− A
(
β0 + α

(
β2 − β0

))+ A
(
β0
))− 1.

Note that

β0 + α
(
β1 − β0

) = log

(
θ0

1 − θ0

)
+ α

(
log

(
θ1

1 − θ1

)
− log

(
θ0

1 − θ0

))

= log

(
θ1−α
0 θα

1

(1 − θ0)1−α(1 − θ1)α

)

,

so that

A
(
β0 + α

(
β1 − β0

)) = log

(

1 + θ1−α
0 θα

1

(1 − θ0)1−α(1 − θ1)α

)

= log

(
θ1−α
0 θα

1 + (1 − θ0)
1−α(1 − θ1)

α

(1 − θ0)1−α(1 − θ1)α

)

.
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Similarly,

β0 + α

(
β1 + β2 − 2β0

)

= log

(
θ0

1 − θ0

)
+ α

(
log

(
θ1

1 − θ1

)
+ log

(
θ2

1 − θ2

)
− 2 log

(
θ0

1 − θ0

))

= log

(
θ1−2α
0 θα

1 θα
2

(1 − θ0)1−2α(1 − θ1)α(1 − θ2)α

)

,

so that

A
(
β0 + α

(
β1 + β2 − 2β0

)) = log

(
θ1−2α
0 θα

1 θα
2 + (1 − θ0)

1−2α(1 − θ1)
α(1 − θ2)

α

(1 − θ0)1−2α(1 − θ1)α(1 − θ2)α

)

.

Combining all these results together yields

Rα(Pβ0 |Pβ1 , Pβ2) = exp

(
log

(
θ1−2α
0 θα

1 θα
2 + (1 − θ0)

1−2α(1 − θ1)
α(1 − θ2)

α

(1 − θ0)1−2α(1 − θ1)α(1 − θ2)α

)

− log

(
θ1−α
0 θα

1 + (1 − θ0)
1−α(1 − θ1)

α

(1 − θ0)1−α(1 − θ1)α

)

− log

(
θ1−α
0 θα

2 + (1 − θ0)
1−α(1 − θ2)

α

(1 − θ0)1−α(1 − θ2)α

)

+ log(1 − θ0)

)
− 1

= θ1−2α
0 θα

1 θα
2 + (1 − θ0)

1−2α(1 − θ1)
α(1 − θ2)

α

(
θ1−α
0 θα

1 + (1 − θ0)1−α(1 − θ1)α
)(

θ1−α
0 θα

2 + (1 − θ0)1−α(1 − θ2)α
) − 1,

finishing the proof.
��

5.4 Gamma distribution

Let Pθ = �(α, β) with θ = (α − 1,−β) denote the Gamma distribution with shape
α > 0 and inverse scale β > 0. If α0, α1, α2, β0, β1, β2, α0 +α(α1 +α2 −2α0), α0 +
α(α1 − α0), α0 + α(α2 − α0), β0 + α(β1 + β2 − 2β0), β0 + α(β1 − β0) > 0, and
β0 + α(β2 − β0) are all positive, then we have

Rα(Pθ0 |Pθ1 , Pθ2 ) = �(α0)�
(
α0 + α(α1 + α2 − 2α0)

)

�
(
α0 + α(α1 − α0)

)
�
(
α0 + α(α2 − α0)

)

×
(
β0 + α(β1 − β0)

)α0+α(α1−α0)
(
β0 + α(β2 − β0)

)α0+α(α2−α0)

β
α0
0

(
β0 + α(β1 + β2 − 2β0)

)α0+α(α1+α2−2α0)
− 1,
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otherwise Rα(Pθ0 |Pθ1 , Pθ2) = +∞. This can be checked by writing the explicit
expression of the integrals that appear in the definition of Rα .

Proof The Gamma distributions �(α, β), α > 0, β > 0 form an exponential family,
dominated by the Lebesgue measure with density

βαxα−1 exp(−βx)�(α)−1 = exp
(
(α − 1) log(x) − βx + α log(β) − log(�(α))

)
,

natural parameter

θ = (θa, θb) = (α − 1,−β),

and

A(θ) = log
(
�(θa + 1)

)− (θa + 1) log(−θb).

Therefore, we can apply Proposition 2.7 with� = (−1,+∞)×(−R). Combining the
assumed constraints on the parameters and the linearity of the mapping (α, β) 	→ θ

ensures that θ0 +α
(
θ1 − θ0

)
, θ0 +α

(
θ1 − θ0

)
, θ0 +α

(
θ1 + θ2 − 2θ0

) ∈ �. Therefore,
we obtain

Rα(Pθ0 |Pθ1 , Pθ2) = exp
(
A
(
θ0 + α

(
θ1 + θ2 − 2θ0

))− A
(
θ0 + α

(
θ1 − θ0

))

− A
(
θ0 + α

(
θ2 − θ0

))+ A
(
θ0
))− 1,

where

A

(
θ0 + α

(
θ1 − θ0

))
= log

(
�

(
θ0,a + α

(
θ1,a − θ0,a

)
+ 1

))

−
(

θ0,a + α

(
θ1,a − θ0,a

)
+ 1

)
log

(
β0 + α

(
β1 − β0

))

= log

(
�

(
α0 + α

(
α1 − α0

)))

−
(

α0 + α

(
α1 − α0

))
log

(
β0 + α

(
β1 − β0

))
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and

A
(
θ0 + α

(
θ1 + θ2 − 2θ0

) = log
(
�
(
α0 + α

(
α1 + α2 − 2α0

)))

−
(
α0 + α

(
α1 + α2 − 2α0

))
log
(
β0 + α

(
β1 + β2 − 2β0

))
.

Combining all these results, we obtain

Rα(Pθ0 |Pθ1 , Pθ2 ) =
�(α0)�

(
α0 + α

(
α1 + α2 − 2α0

))

�
(
α0 + α

(
α1 − α0

))
�
(
α0 + α

(
α2 − α0

))

×
(
β0 + α(β1 − β0)

)α0+α(α1−α0)
(
β0 + α(β2 − β0)

)α0+α(α2−α0)

β
α0
0

(
β0 + α(β1 + β2 − 2β0)

)α0+α(α1+α2−2α0)
− 1.

��
A formula for the product of exponential distributions can be obtained as a special

case by setting α j� = 1 for all j, � and applying Proposition 2.6. For the families of
distributions discussed above, the formulas for the correlation-type Rα codivergences
encode an orthogonality relation on the parameter vectors. This is less visible in the
expressions for the Gamma distribution but can be made more explicit using the first
order approximation that we state next. It shows that even for the Gamma distribution
these matrix entries can be written in leading order as a term involving a weighted
inner product of β1 − β0 and β2 − β0, where βr denotes the vector (βr�)1≤�≤d .

Lemma 5.1 Suppose Pj = ⊗d
�=1�(α�, β j�) for every j = 1, 2, 3 and for some

α�, β j� > 0. Let A := ∑d
�=1 α� and � := max j=1,2 max�=1,...,d |β j� − β0�|/β0�.

Denote by � the d × d diagonal matrix with entries β2
0�/α�. Then,

Rα(P0|P1, P2) = exp
(

− α2(β1 − β0)
��−1(β2 − β0) + o(A�2)

)
− 1.

Proof Using that α� does not depend on j, the expression simplifies and a second
order Taylor expansion of the logarithm (the sum of the first order terms vanishes)
yields

Rα(Pθ0 |Pθ1 , Pθ2 )

=
d∏

�=1

(β1� + β0�)
α� (β2� + β0�)

α�

(2β0�)α� (β1� + β2�)α�

=
d∏

�=1

exp

(
α�

(
log

(
1 + α

β1� − β0�

β0�

)
+ log

(
1 + α

β2� − β0�

β0�

)

− log

(
1 + α

β1� − β0� + β2� − β0�

β0�

)))

= exp

(
d∑

�=1

α�α
2
(

− (β1� − β0�)
2

2β2
0�

− (β2� − β0�)
2

2β2
0�

+ (β1� − β0� + β2� − β0�)
2

2β2
0�

+ o(�2)

))
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= exp

(

α2
d∑

�=1

α�(β1� − β0�)(β2� − β0�)

β2
0�

+ o
(
A�2)

)

.

��
6 Facts about ranks

Definition 6.1 Let X1, . . . , Xn be n random variables defined on the same probability
space (�,A, P). We define the rank of {X1, . . . , Xn}, denoted by Rank(X1, . . . , Xn)

as the dimension of the vector space Vect(X1, . . . , Xn) generated by linear combi-
nations of {X1, . . . , Xn}, where the equality is to be understood P-almost surely.
Moreover, we say that (X1, . . . , Xn) are linearly independent P-almost surely if for
any vector (a1, . . . , an),

P

(
n∑

i=1

ai Xi = 0

)

= 1 implies a1 = · · · = an = 0.

Lemma 6.2 Let X1, . . . , Xn be n random variables defined on the same probabil-
ity space (�,A, P). Rank(X1, . . . , Xn) is the largest integer such that there exists
i1, . . . , ir ∈ {1, . . . , M} with (Xi1 , . . . , Xir ) linearly independent random variables
P-almost surely.

Proof Let r be the largest integer such that there exists i1, . . . , ir ∈ {1, . . . , M} with
(Xi1 , . . . , Xir ) linearly independent random variables P-almost surely. Then the space
generated by X1, . . . , Xn is at least of dimension r , and thereforeRank(X1, . . . , Xn) ≥
r . If Rank(X1, . . . , Xn) > r , then there exists (r + 1) linear combinations of the ran-
domvariables that are linearly independent, contradicting the definition of r . Therefore
Rank(X1, . . . , Xn) ≤ r , completing the proof. ��
Lemma 6.3 Let Z = (Z1, . . . , ZM )� be a M-dimensional random vector with mean
zero and finite second moments. Then Rank(CovP (Z)) = Rank(Z1, . . . , ZM ), where
the covariance matrix is computed with respect to the distribution P and the rank of
a set of random variables is to be understood in the sense of Definition 6.1.

Proof Let λ1 ≥ λ2 ≥ · · · ≥ λM be the eigenvalues of CovP (Z), sorted in decreasing
order, and let e1, . . . , eM be a corresponding orthonormal basis of eigenvectors. Let
r be the rank of CovP (Z). We have λr+1 = λr+2 = · · · = λM = 0 and λr > 0. Let
us define Yi = e�

i Z for i = 1, . . . , M . By usual results on principal components, e.g.
[13, Result 8.1], Var[Yi ] = λi and Cov(Yi ,Y j ) = λi1{i= j}. Therefore,

Rank(Z1, . . . , ZM ) = dim(Vect(Z1, . . . , ZM )) = dim(Vect(Y1, . . . ,YM ))

= dim(Vect(Y1, . . . ,Yr )) = r ,

where thefirst equality is the definition of the rank, the second equality is a consequence
of the fact that (e1, . . . , eM ) is a basis of RM , the third equality results from the fact
that Var[Yi ] = 0 and E[Yi ] = 0 for any i > r and the last equality is a consequence of
the orthogonality of the (Y1, . . . ,Yr ) as elements of the Hilbert space L2(�,A, P).
The proof is completed since by definition r = Rank(CovP (Z)). ��
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Lemma 6.4 (see for example Exercise 3.3.11 in [22]) A symmetric and positive semi-
definite M × M matrix A is of rank r if and only if A has an invertible principal
submatrix of size r , and all principal submatrices of size r + 1 of A are singular.

7 Conclusion

We introduced the concept of codivergence as a notion of “angle” between three
probability distributions. Divergence matrices can be viewed as an analogue of the
Grammatrix for a finite sequence of probability distributions that are compared relative
to one distribution.

Locally around the reference probability measure P0, codivergences are bilinear
forms up to remainder terms. Two classes of codivergences emerge that resemble the
structure of the covariance and the correlation.

Natural follow-up questions relate to the spectral behavior of a divergence matrix
and the link between properties of the divergence matrix and properties of the under-
lying probability measures.

Appendix A Proofs

A.1 Proof of Proposition 2.5

Proof As mentioned already, the first and second part of Definition 2.2 are satisfied.
To check the third part of Definition 2.2 for φ(P0|P1, P2), let μ, μ̃ ∈ MP0 . Then

d(P0 + tμ)

dP0
= 1 + t

dμ

dP0
= 1 + th,

is square-integrable with respect to P0 for any real number t . Using φ(1) = 1, Taylor
expansion φ(1+ y) = 1+ yφ′(1)+ 1

2 y
2φ′′(1)+o(y2), that

∫
hdP0 = 0 and that h is

bounded P0-a.e. by the definition ofMP0 , we obtain that, for all sufficiently small t,

∫
φ
(d(P0 + tμ)

dP0

)
dP0 =

∫
φ(1 + th)dP0 = 1 + t2

2
φ′′(1)

∫
h2dP0 + o(t2).

Similarly
∫

φ
( d(P0+sμ̃)

dP0

)
dP0 = 1 + 1

2 s
2φ′′(1)

∫
g2dP0 + o(s2) and

∫
φ

(
d(P0 + tμ)

dP0

)
φ

(
d(P0 + sμ̃)

dP0

)
dP0

=
∫

φ(1 + th)φ(1 + sg)dP0

= 1 + φ′′(1)
2

∫
(t2h2 + s2g2)dP0 + stφ′(1)2

∫
ghdP0 + o(t2 + s2)

=
(
1 + t2

2
φ′′(1)

∫
h2dP0

)(
1 + s2

2
φ′′(1)

∫
g2dP0

)
+ stφ′(1)2

∫
ghdP0 + o(t2 + s2).
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Taylor expansion yields 1/(1− y) = 1+ O(y) for all |y| ≤ 1/2 and thus for (s, t) →
(0, 0),

Rφ(P0|P0 + tμ, P0 + sμ̃)

= stφ′(1)2
∫
ghdP0 + o(t2 + s2)

(1 + t2
2 φ′′(1)

∫
h2dP0)(1 + s2

2 φ′′(1)
∫
g2dP0) + o(t2 + s2)

= stφ′(1)2
∫

ghdP0 + o(t2 + s2).

By following the same arguments and replacing the definition of Rφ(P0|P0+ tμ, P0+
sμ̃) by Vφ(P0|P0 + tμ, P0 + sμ̃) in the last step, we also obtain Vφ(P0|P0 + tμ, P0 +
sμ̃) = stφ′(1)2

∫
ghdP0 + o(t2 + s2). ��

A.2 Proof of Proposition 2.6

Proof By Fubini’s theorem,

Rα

( d⊗

�=1

P0�

∣
∣∣∣

d⊗

�=1

P1� ,

d⊗

�=1

P2�

)
+ 1

=

∫ (
d
⊗d

�=1 P1�

d
⊗d

�=1 P0�

)α (
d
⊗d

�=1 P2�

d
⊗d

�=1 P0�

)α

d

(
d⊗

�=1

P0�

)

∫ (
d
⊗d

�=1 P1�

d
⊗d

�=1 P0�

)α

d

(
d⊗

�=1

P0�

)∫ (
d
⊗d

�=1 P2�

d
⊗d

�=1 P0�

)α

d

(
d⊗

�=1

P0�

)

=
d∏

�=1

∫ (
dP1�
dP0�

)α (dP2�
dP0�

)α

dP0�
∫ (

dP1�
dP0�

)α

dP0�

∫ (
dP2�
dP0�

)α

dP0�

=
d∏

�=1

Rα(P0�|P1�, P2�) + 1.

��

A.3 Proof of Proposition 2.7

Proof Write Pi := Pθi and pi for the corresponding ν-densities. By assumption, we
have θα := α(θ1 + θ2) + (1 − 2α)θ0 ∈ � and

∫ (dP1
dP0

)α(dP2
dP0

)α
dP0 =

∫ (
p1(x)p2(x)

)α
p0(x)

1−2αdν(x)
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=
∫

h(x) exp
(
θ

�
α T (x)

)
dν(x)

· exp (− αA(θ1) − αA(θ2) + (1 − 2α)A(θ0)
)

= exp
(
A(θα) − αA(θ1) − αA(θ2) + (1 − 2α)A(θ0)

)
.

Setting P2 = P0 (or equivalently, θ2 = θ0) in the previous identity gives

∫ (dP1
dP0

)α
dP0 = exp

(
A
(
αθ1 + (1 − α)θ0

)− αA(θ1) + (1 − α)A(θ0)
)
.

Interchanging the role of θ2 and θ1 provides moreover a closed-form expression for∫ ( dP2
dP0

)α
dP0. Combining everything yields

Rα(P0|P1, P2) =
∫ ( dP1

dP0

)α
(

dP2
dP0

)α

dP0

∫ ( dP1
dP0

)α
dP0
∫ ( dP2

dP0

)α
dP0

− 1

= exp

(
A
(
θα

)− A

(
θ0 + α

(
θ1 − θ0

))
− A

(
θ0 + α

(
θ2 − θ0

))
+ A
(
θ0
)
)

− 1.

��
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