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Abstract
Recent research on accelerated gradient methods of use in optimization has demon-
strated that these methods can be derived as discretizations of dynamical systems.
This, in turn, has provided a basis for more systematic investigations, especially into
the geometric structure of those dynamical systems and their structure-preserving dis-
cretizations. In this work, we introduce dynamical systems defined through a contact
geometry which are not only naturally suited to the optimization goal but also sub-
sume all previous methods based on geometric dynamical systems. As a consequence,
all the deterministic flows used in optimization share an extremely interesting geo-
metric property: they are invariant under contact transformations. In our main result,
we exploit this observation to show that the celebrated Bregman Hamiltonian system
can always be transformed into an equivalent but separable Hamiltonian by means
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of a contact transformation. This in turn enables the development of fast and robust
discretizations through geometric contact splitting integrators. As an illustration, we
propose the Relativistic Bregman algorithm, and show in some paradigmatic examples
that it compares favorably with respect to standard optimization algorithms such as
classical momentum and Nesterov’s accelerated gradient.

Keywords Convex optimization · Bregman Hamiltonian · Contact geometry

1 Introduction

Despite their practical utility and explicit convergence bounds, accelerated gradient
methods have long been difficult to motivate from a fundamental theory. This lack of
understanding limits the theoretical foundations of the methods, which in turn hinders
the development of new and more principled schemes. Recently a progression of work
has studied the continuum limit of accelerated gradient methods, demonstrating that
these methods can be derived as discretizations of continuous dynamical systems.
Shifting the focus to the structure and discretization of these latent dynamical systems
provides a foundation for the systematic development and implementation of new
accelerated gradient methods.

This recent direction of research began with [1], which found a continuum limit of
Nesterov’s accelerated gradient method (NAG)

Xk = Pk−1 − τ∇ f (Pk−1) (1)

Pk = Xk + k − 1

k + 2
(Xk − Xk−1), (2)

by discretizing the ordinary differential equation

Ẍ + 3

t
Ẋ + ∇ f (X) = 0, (3)

for t > 0 with the initial conditions X(0) = X0 and Ẋ(0) = 0. By generalizing the
ordinary differential equation (3) they were then able to derive similar accelerated
gradient methods that achieved comparable convergence rates.

Later, in [2] the authors found what is arguably still the most important develop-
ment in this direction, by showing that accelerated methods can also be derived as
discretizations of a more structured family of variational dynamical systems, speci-
fied with a time-dependent Lagrangian function, or equivalent Hamiltonian function.
Consider an objective function f : X → R, which is continuously differentiable,
convex, and has a unique minimizer X∗ ∈ X . Moreover assume that X is a convex
set endowed with a distance-generating function h : X → R that is also convex and
essentially smooth. From the Bregman divergence induced by h,

Dh(Y , X) = h(Y ) − h(X) − 〈∇h(X), Y − X〉 (4)
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they derived the Bregman Lagrangian

LBr(X , V , t) = eα+γ
(
Dh(X + e−αV , X) − eβ f (X)

)
, (5)

where α, β, and γ are continuously differentiable functions of time. They then proved
that under the ideal scaling conditions

β̇ ≤ eα (6)

γ̇ = eα, (7)

the solutions of the resulting Euler–Lagrange equations

Ẍ + (
eα − α̇

)
Ẋ + e2α+β

[
∇2h(X + e−α Ẋ)

]−1 ∇ f (X) = 0 (8)

satisfy [2, Theorem 1.1]

f (X) − f (X∗) ≤ O(e−β). (9)

From a physical perspective the two terms in Eq. (5) play the role of a kinetic
and a potential energies, respectively. At the same time the explicit time-dependence
of the Lagrangian (5) is a necessary ingredient in order for the dynamical system to
dissipate energy and relax to a minimum of the potential, and hence to a minimum
of the objective function. Moreover, by (6), the optimal convergence rate is achieved
by choosing β̇ = eα , i.e. β = ∫ t

t0
eα(s)ds, and we observe that in the Euclidean case,

h(X) = 1
2 ‖X‖2, the Hessian is the identity matrix and thus (8) simplifies to

Ẍ + (
eα − α̇

)
Ẋ + e2α+β∇ f (X) = 0. (10)

Finally the authors developed a heuristic discretization of (8) that yielded optimization
algorithms matching the continuous convergence rates. However, these algorithms are
of no practical use, due to the extremely high cost of their implementation.

In [3] the authors considered more systematic discretizations of these variational
dynamical systems that exploited the fact that they are well suited for numerical
discretizations that preserve their geometric structure [4].

In particular they considered the associated Bregman Hamiltonian [2],

HBr(X , P, t) = eα+γ
(
Dh∗(e−γ P + ∇h(X),∇h(X)) + eβ f (X)

)
, (11)

where h∗(P) := supV 〈P, V 〉 − h(X) is the Legendre transform of h(X), and then
argued that a principled way to obtain reliable and rate-matching discretizations of the
resulting dynamical system

Ẋ = ∇P HBr(X , P, t) (12)

Ṗ = −∇X HBr(X , P, t), (13)
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is with pre-symplectic integrators in an extended phase space where t and its associ-
ated momentum E are added as dynamical variables. They numerically demonstrated
in the Euclidean (i.e., separable) case that a standard leapfrog integrator yields an
optimization algorithm that achieves polynomial convergence rates and showed how
the introduction of a gradient flow could achieve late-time exponential convergence
rates matching those seen empirically in other accelerated gradient methods.

A more theoretical approach to rate-matching geometric discretizations for the
Bregman dynamics has been then proposed in [5], where the authors prove that pre-
symplectic integrators provide a principled way to discretize Bregman dynamics while
preserving the continuous rates of convergence up to a negligible error, provided some
assumptions aremet. The crucial significance of this result lies in the fact that it implies
that splitting integrators automatically yield “rate-matching” algorithms, without the
need for a discrete convergence analysis. Ideally, this one would like to be able to
directly apply splitting integrators to the general BregmanHamiltonian.Unfortunately,
however, when applied to the general (non-separable) Bregman dynamics, these split-
ting methods yield implicit updates that increase the computational burden and affect
the numerical stability. As a first attempt to remedy this problem, in [5] the authors used
a strategy that involves doubling the phase space dimension. As we will comment in
the following, this strategy is not completely satisfying (see also the discussion in [6]).
Other attempts have been proposed later in [6, 7], based respectively on the so-called
Poincaré transform and the adaptive Hamiltonian variational integrators in the first
case and on the cosymplectic geometry and the associated discrete variational methods
for time-dependent Lagrangians in the second. Although both perspectives seem to
provide a robust solution to the problem, they are rather sophisticated compared to the
simplicity of the splitting mechanism, and in particular, it is not clear how to adapt the
fundamental results from [5] to this setting.

Therefore, despite much investigation, there is still a crucial question about the
Bregman dynamics that is left open:

is it possible to find an explicit splitting integrator for the general (non-separable)
Bregman Hamiltonian?

Note that, from all the above discussion, it would seem that the answer to this
question is negative. However, as we will see, a proper geometric approach will reveal
otherwise. To understand this result and to provide the complete general picture, it
is convenient to first conclude our brief account of the geometric approaches to the
construction of dynamical systems that can be used in optimization: it turns out that
we can replace variational dynamical systems that exploit heuristic time-dependencies
to achieve dissipation with explicitly dissipative dynamical systems. Muehlebach and
Jordan [8] and Diakonikolas and Jordan [9] considered a dynamical systems per-
spective on these systems, showing how relatively simple dissipations can achieve
state-of-the-art convergence. França et al. [10] took a more geometric perspective,
replacing the time-dependent Hamiltonian geometry of the variational systems with a
conformally symplectic geometry that generates dynamical systems of the form
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Ẋ = ∇P H(X , P) (14)

Ṗ = −∇X H(X , P) − c P, (15)

with c ∈ R a constant. Being a geometric dynamical system this approach also admits
effective geometric integrators similar to [3]. These conformally symplectic dynamical
systems, however, are less general than the time-dependent variational dynamical
systems; in particular NAG cannot be exactly recovered in this framework [10].

Another relevant aspect that has been uncovered by studying optimization algo-
rithms from a variational or Hamiltonian analysis is the focus on a very important
degree of freedom, the choice of the kinetic energy, that plays a fundamental role in
the construction of fast and stable algorithms that can possibly escape local minima,
in direct analogy with what happens in Hamiltonian Monte Carlo methods [11–13].
In particular, first Maddison et al. [14] and then França et al. [10] have motivated that
a careful choice of the kinetic energy term can stabilize the dynamical systems when
the objective function is rapidly changing, similar to the regularization induced by
trust regions. Indeed, like the popular Adam, AdaGrad and RMSprop algorithms, the
resulting Relativistic Gradient Descent (RGD) algorithm regularizes the dynamical
velocities to achieve a faster convergence and improved stability.

Finally Maddison et al. [14] introduced another way of incorporating dissipative
terms into Hamilton’s equations (12)–(13). Their Hamiltonian descent algorithm is
derived from the equations of motion

Ẋ = ∇P H(X , P) + X∗ − X (16)

Ṗ = −∇X H(X , P) + P∗ − P, (17)

where (X∗, P∗) = argmin H(X , P). Because the dynamics are defined using terms
only linear in X and P they converge to the optimal solution exponentially quickly
under mild conditions on H [15]. That said, this exponential convergence requires
already knowing the optimum (X∗, P∗) in order to generate the dynamics. Addition-
ally this particular dynamical system lies outside of the variational and conformal
symplectic families of dynamical systems and so can not take advantage of the geo-
metric integrators.

In this work we show that all of the above-mentioned dynamical systems can be
incorporated into a single family of contact Hamiltonian systems [16, 17] endowed
with a contact geometry. The geometric foundation provides a powerful set of tools
for both studying the convergence of the continuous dynamics as well as generat-
ing structure-preserving discretizations. More importantly, the geometric character
of these dynamics directly implies that they are invariant under contact transforma-
tions. This indeed will be the key property to prove that the Bregman dynamics can
always be re-written in new coordinates where the Hamiltonian is separable, thus
establishing a definitive positive answer to our guiding question (see Theorem 1).
This is the main result of our work. We argue that this property is of fundamental
interest for practitioners, as it enables to directly construct simple explicit structure-
preserving discretizations in the original phase space of the system. Finally, equipped
with all these results, we introduce the Relativistic Bregman Dynamics, and provide an
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explicit contact integrator that accurately follows the continuous flow in the original
phase space of the system, thus obtaining the associated Relativistic Bregman algo-
rithm. We also include numerical experiments showing that this simple construction is
comparable to state-of-the-art approaches to discretize the (non-separable) Relativistic
Bregman dynamics in terms of stability and rates of convergence (see [18]).

The structure of this work is as follows: in Sect. 2 we introduce contact Hamiltonian
systems and show that all systems corresponding to Eqs. (10), (14)–(15), and (16)–
(17) can be easily recovered as particular examples. Based on this result, we stress
the importance of (time-dependent) contact transformations and then we prove that
they can be used to make the Bregman Hamiltonian separable. To provide an explicit
example of this construction, we then introduce the Relativistic Bregman Dynamics.
Indeed, after applying Theorem 1, we obtain an equivalent but separable Hamiltonian
system that can be integrated by splitting, thus obtaining what we call the related
Relativistic Bregman algorithm (RB). Then in Sect. 3 we illustrate numerically that
theRBcan performaswell as other state-of-the-art algorithms in standard optimization
tasks (see also [18] for further numerical tests and for all the codes). Finally, in Sect. 4
we summarize the results and discuss future directions.

2 Contact geometry in optimization

2.1 Definitions and examples

Contact geometry is a rich subject at the intersection among differential geometry,
topology and dynamical systems. Here in order to ease the exposition, we will present
some of the basic facts needed to compare with previous works using symplectic and
pre-symplectic structures in optimization in full generality, but we will soon specialize
them to the cases of interest. For a treatment of themore general theory see [17, 19–25].

Definition 1 A contact manifold is a pair (C,D), where C is a (2n + 1)-dimensional
manifold and D is a maximally non-integrable distribution of hyperplanes on C , that
is, a smooth assignment at each point p of C of a hyperplane in the tangent space TpC .

One can prove thatD can always be given locally as the kernel of a 1-form η satisfying
the condition η ∧ (dη)n �= 0, where ∧ is the wedge product and (dη)n means n times
the wedge product of the 2-form dη. This characterization will be enough for our
purposes, and therefore we can introduce the following less general but more direct
definition.

Definition 2 An exact contact manifold is a pair (C, η), where C is a (2n + 1)-
dimensional manifold and η is a 1-form satisfying η ∧ (dη)n �= 0.

In what follows we will always restrict to the case of exact contact manifolds.
As it is standard in geometry, transformations that preserve the contact structure,

and hence the contact geometry, play a special role on these spaces. By noticing that the
geometric object of interest is the kernel of a 1-form, one then defines isomorphisms
in the contact setting in the following way.
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Definition 3 A contact transformation or contactomorphism F : (C1, η1) → (C2, η2)

is a map that preserves the contact structure

F∗η2 = αFη1, (18)

where F∗ is the pullback induced by F , and αF : C1 → R is a nowhere-vanishing
function.

Remark 1 In words, Definition 3 states that a contact map re-scales the contact 1-
form by multiplying it by a nowhere-vanishing function. Indeed, such multiplication
preserves the kernel of the 1-form, and hence the resulting geometry.

Let us present a simple but important example of contact manifold: we take C =
R
2n+1 and specify the same contact structure in 2 different ways, corresponding to

different choices of coordinates. Afterwards we prove that it amounts to the same
structure by providing an explicit contactomorphism between the two.

Example 1 (The standard contact structure in canonical coordinates) The standard
structure is defined as the kernel of the 1-form

ηstd1 := d S − Pd X . (19)

We use “standard” because one can show that a contact structure on any manifold
looks like this one locally [20].

Example 2 (The standard contact structure in non-canonical coordinates) This struc-
ture is defined as the kernel of the 1-form

ηstd2 := d S̃ − 1

2
P̃d X̃ + 1

2
X̃d P̃ . (20)

Although this appears different from the structure in Example 1 they define equivalent
geometries, as we now show.

Remark 2 We can explicitly construct a contact transformation between ηstd1 and ηstd2
above. The map

F : (X , P, S) �→
(

X̃ = X + P, P̃ = P − X

2
, S̃ = S − X P

2

)
(21)

satisfies F∗ηstd2 = ηstd1. Consequently the two structures defined in Examples 1
and 2 are equivalent. The superficial difference arises only because they are written in
different coordinates.

Historically, one of the main motivations to introduce contact geometry is the study
of time-dependent Hamiltonian systems on a symplectic manifold. We briefly sketch
these ideas because they will be relevant for our discussion.

Definition 4 A symplectic manifold is a pair (M,�) where M is a 2n-dimensional
manifold and � a 2-form on M that is closed, d� = 0, and non-degenerate, �n �= 0.
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Definition 5 A Hamiltonian system on a symplectic manifold is a vector field X H

which is defined by the condition

�(X H , ·) = −d H (22)

where H : M → R is a function called theHamiltonian. The equations for the integral
curves of X H are usually called Hamilton’s equations, and they are the foundations
of the geometric treatment of mechanical systems.

Analogously towhat happens in the contact case, it can be proved that all symplectic
manifolds locally look the same; this result is known as Darboux’s Theorem [26]. In
particular, they all look like the Euclidean space R2n with coordinates (X , P), where
X ∈ R

n play the role in physics of the generalized coordinates, and P ∈ R
n of

the corresponding momenta. In such coordinates � = d P ∧ d Q, and thus Hamilton’s
equations (22) read like (12) and (13), but with the important difference that H : M →
R does not depend on time, thus giving rise to the so-called conservative mechanical
systems (the name is due to the fact that H(X , P) is usually the total mechanical
energy of the system and it is easy to show that it is conserved along the dynamics).

To allow for H to depend also on time and thus to describe dissipative systems in
the geometric setting, one usually performs the following extension: first extend the
manifold M to M × R, where time t is defined to be the coordinate on R. At this
point H(X , P, t) is a well defined function on M × R. Now, define (locally at least)
the 1-form on θ = Pd X − H(X , P, t)dt . This is called the Poincaré–Cartan 1-form.
Finally, define the dynamics X̃ H by the two conditions

dθ(X̃ H , ·) = 0, dt(X̃ H ) = 1. (23)

It follows that the resulting equations for the integral curves of X̃ H in the coordinates
(X , P, t) are just (12) and (13) for a generic H (nowwith the explicit time dependence
on H ), plus a trivial equation for t , namely ṫ = 1.

Remark 3 Geometrically, the dynamics in (23) is precisely the cosymplectic dynamics
used in [7]. From the point of view of contact geometry, it can be viewed as a very spe-
cial type of non-autonomous contact Hamiltonian system (cf. item i) in Proposition 1
below). This is the point of view of the present work. However, this point of view can
be further geometrized by considering X̃ H as a cocontact Hamiltonian system, which
is the analogue in contact geometry of the cosymplectic construction (see [27–29]).
Similarly, the pre-symplectic dynamics used in [5] is exactly the dynamics of X̃ H .
Indeed one can check that their final manifold of states and dynamical equations, after
fixing the appropriate gauge, coincide with M × R and (23) respectively (indeed, it
suffices to specialize our discussion to the case M = T ∗M, and note that dθ = �

in their notation). A different although related approach to optimization based on the
symplectification of contact systems is considered in [30].

We can now define dynamical systems that generalize the Hamiltonian systems
arising in symplectic geometries.
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Definition 6 (Contact Hamiltonian systems) Given a possibly time-dependent differ-
entiable functionH on a contact manifold (C, η), we define the contact Hamiltonian
vector field associated to H as the vector field XH satisfying

£XHη = −R(H) η η(XH) = −H, (24)

where £XHη denotes the Lie derivative of η with respect to XH and R is the Reeb
vector field, that is, the vector field satisfying dη(R, ·) = 0 and η(R) = 1. We denote
the flow of XH the contact Hamiltonian system associated to H.

Remark 4 The first condition in (24) simply ensures that the flow of XH generates
contact transformations, while the second condition requires the vector field to be
generated by a Hamiltonian function.

As we did above where we introduced the standard model of contact manifolds in
two different useful coordinate systems, we write here the corresponding models for
contact Hamiltonian systems.

Lemma 1 (Contact Hamiltonian systems: std1) Given a (possibly time-dependent)
differentiable function H(X , P, S, t) on the contact state space (R2n+1, ηstd1), the
associated contact Hamiltonian system is the following dynamical system

Ẋ = ∇PH (25)

Ṗ = −∇XH − P
∂H
∂S

(26)

Ṡ = 〈∇PH, P〉 − H. (27)

Lemma 2 (Contact Hamiltonian system: std2) Given a (possibly time-dependent)
differentiable function H(X , P, S, t) on the contact state space (R2n+1, ηstd2), the
associated contact Hamiltonian system is the following dynamical system

Ẋ = ∇PH − 1

2
X

∂H
∂S

(28)

Ṗ = −∇XH − 1

2
P

∂H
∂S

(29)

Ṡ = 1

2
(〈X ,∇XH〉 + 〈P,∇PH〉) − H. (30)

The proofs of the above lemmas follow from writing explicitly the conditions in (24)
for ηstd1 and ηstd2 respectively, using Cartan’s identity for the Lie derivative of a 1-
form, and from the fact that R = ∂/∂S in both cases, as can be seen by writing its
definition in the corresponding coordinates.

Remark 5 (Variational formulation) Contact systems can alternatively be introduced
starting from Herglotz’ variational principle [31–34], with the Lagrangian function
L(X , V , S, t) and its corresponding generalized Euler–Lagrange equations

d

dt

(
∂L
∂V

)
− ∂L

∂ X
− ∂L

∂V

∂L
∂S

= 0, (31)
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together with the action equation

Ṡ = L(X , V , S, t). (32)

Indeed, for regular Lagrangians it can be shown that (25)–(27) are equivalent to the
system (31)–(32).

2.2 Main results

Wearrive at our firstmain resultwith a direct calculation usingEqs. (25)–(27) and (28)–
(30),

Proposition 1 (Recovering previous frameworks)All the previously-mentioned frame-
works for describing continuous-time optimization methods can be recovered as
follows:

(i) If H = H(X , P, t), that is, if H does not depend explicitly on S, then
from Eqs. (25)–(26) we obtain the standard Hamiltonian equations (12)–(13),
with (27) completely decoupled from the system. In particular, this includes the
Bregman dynamics (12) and (13) as a special case of contact Hamiltonian sys-
tems.

(ii) IfH = H(X , P)+c S, then from Eqs. (25)–(26)we obtain the standard equations
for conformally symplectic systems (14)–(15), with (27) once again completely
decoupled from the system.

(iii) If H = H(X , P) + 〈X∗, P〉 − 〈P∗, X〉 + 2 S, then from Eqs. (28)–(29) we
obtain the Hamiltonian descent equations (16)–(17), with (30) decoupled from
the system.

(iv) If H = 1
2 ‖P‖2+ f (X)+ 3

t S, then from Eqs. (25)–(26) we obtain the continuous
limit of NAG (3), with (27) decoupled from the system.

Three immediate but powerful consequences of Proposition 1 are given in the
following corollaries.

Corollary 1 All the convergence analyses of the above dynamics provided in the cor-
responding literature hold.

In particular, by choosing the contact Hamiltonian H = HBr(X , P, t), and for the
appropriate choice of the free functions α, β and γ we can obtain contact systems with
polynomial convergence rates of any order and even exponential convergence rates
(see Eq.9). So we see that in the class of contact Hamiltonian systems we can at least
reproduce all the conventional approaches to convergence rates from the Hamiltonian
perspective. Moreover, contact systems provide the opportunity to generalize all these
dynamics, for instance by fixing nonlinear dependences on the additional variable
S, a strategy that will be considered in future works. As a second consequence of
Proposition 1, we have

Corollary 2 All the dynamics in Proposition 1 have a variational formulation.
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This important observation outlines the fact that all such dynamics may be studied by
variational methods, either in the continuous case (see e.g. the interesting analysis in
[35] and comparewith [36]) or in the discrete one (cf. [7] and [32, 34]).All these aspects
can now be analyzed through the lens of the corresponding contact tools, cf. Remark 5.
In this work we focus on the following (third) key aspect of the geometric approach:

Corollary 3 All the systems in Proposition 1 share invariance under a very large group
of transformations, the group of (time-dependent) contact transformations.

Corollary 3 has interesting practical ramifications: on the one hand, invariance under
all contact transformations guarantees that all such dynamics, and the corresponding
algorithms obtained through geometric discretizations, are much less sensitive to the
conditioning of the problem rather than other algorithms that do not possess a geo-
metric structure (we refer to Maddison et al. [14] for an illuminating discussion on
this, and we remark that contact transformations are more general than the symplectic
transformations considered therein in Sect. 2.1). On the other hand, one can exploit
contact transformations to re-write the dynamics in particular sets of coordinateswhere
the system takes a simpler form, with great benefit for the ensuing discretization.

As a first “warm-up” example of the utility of contact transformations in optimiza-
tion, we now prove that NAG is a composition of a contact transformation followed by
a simple gradient descent step. This result is inspired by the conjecture put forward in
[3], who argued that symplectic maps followed by gradient descent steps can generate
the exponential convergence near convex optima empirically observed in discrete-time
NAG. Here instead we provide an actual proof that NAG is based on the composition
of a contact map and a gradient step.

Proposition 2 (NAG is contact + gradient) Discrete-time NAG, (1)–(2), is given by
the composition of a contact map and a gradient descent step.

Proof First we recall from Definition 3 that a contact transformation for the contact
structure given by (20) is a map that satisfies

d Sk+1 − 1

2
Pk+1d Xk+1 + 1

2
Xk+1d Pk+1

= f (Xk, Pk, Sk)

(
d Sk − 1

2
Pkd Xk + 1

2
Xkd Pk

)
, (33)

for some function f (Xk, Pk, Sk) that is nowhere 0. Then one can directly verify that
NAG can be exactly decomposed in the contact state space as the composition of the
map

Xk+1 = Pk (34)

Pk+1 = Xk+1 + k − 1

k + 2
(Xk+1 − Xk), (35)

Sk+1 = k − 1

k + 2
Sk, (36)

123



366 Information Geometry (2023) 6:355–377

which is readily seen to be a contact transformation satisfying

d Sk+1 − 1

2
Pk+1d Xk+1 + 1

2
Xk+1d Pk+1 = k − 1

k + 2

[
d Sk − 1

2
Pkd Xk + 1

2
Xkd Pk

]
,

(37)

followed by a standard gradient descent map,

Xk+1 = Xk − τ∇ f (Xk) (38)

Pk+1 = Pk (39)

Sk+1 = Sk . (40)

�
Now we come to the main point of our work: in order to further illustrate the utility

of contact transformations in a case of great current interest in the literature (see e.g.
[37–41]), in the remainder of this sectionwe focus on the Bregman dynamics and show
how to use time-dependent contact transformation in order to re-write the Bregman
dynamics in its most general form in such a way that it is clear that it is always derived
from a separable Hamiltonian, and is thus amenable of simple, geometric and explicit
discretizations by direct splitting.

As a first step, we need to introduce time-dependent contact transformations, which
we do now following closely [17], and proceeding analogously to the case of time-
dependent canonical (symplectic) transformations usually encountered in classical
mechanics [19]. First, we extend the contact manifold C to C × R by including the
time variable as a coordinate on R; then we also extend the contact form η to

ηE = η + H(X , P, S, t)dt, (41)

where H(X , P, S, t) is the contact Hamiltonian of the system. Recall as usual that
locally we can think C � R

2n+1 and ηE = d S − Pd X +H(X , P, S, t)dt . Then, we
define a time-dependent contact transformation as follows.

Definition 7 (Time-dependent contact transformation) A time-dependent contact
transformation for a systemwith contact HamiltonianH is a map F : C ×R → C ×R

such that

F∗ηE = σ ηE and F∗t = t, (42)

where σ : C × R → R is a nowhere-vanishing function.

Remark 6 In local coordinates (X , P, S, t) on C ×R, this is equivalent to saying that
a contact transformation maps to new coordinates

X̃ = X̃(X , P, S, t), P̃ = P̃(X , P, S, t), S̃ = S̃(X , P, S, t), t̃ = t,
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such that

d S̃ − P̃d X̃ + K (X̃ , P̃, S̃, t)dt = σ(X , P, S, t) (d S − Pd X + H(X , P, S, t)dt) ,

(43)

where K (X̃ , P̃, S̃, t) is the new contact Hamiltonian in the new coordinates.

It follows directly from (43), that a necessary condition for a time-dependent trans-
formation to be contact is

∂ S̃

∂t
− P̃

∂ X̃

∂t
+ K = σ H, (44)

that is, the new contact Hamiltonian is found from the original one according to

K = σ H − ∂ S̃

∂t
+ P̃

∂ X̃

∂t
. (45)

Finally, it can be proved that the time-dependent contact Hamiltonian equations are
preserved under the above transformations if and only if

− σ
∂K

∂ S̃
= −σ

∂H
∂S

− dσ(X E
H), (46)

where X E
H = XH + ∂t (see [17] for more details).

Now we can use the above results to simplify the Bregman Hamiltonian. In par-
ticular, we construct a time-dependent contact transformation that brings HBr to a
Hamiltonian KBr which is equivalent to the original one but separable, and hence
directly amenable to an explicit discretization by splitting. Let us consider the trans-
formation

X̃ = X , P̃ = e−γ p + ∇h(X), S̃ = e−γ S + h(X), t̃ = t, (47)

with h(X) the same convex function as in (11). We have the following

Lemma 3 For any contact Hamiltonian system with Hamiltonian H, the transforma-
tion (47) is not canonical (symplectic) but it is contact, with

σ(X , P, S, t) = e−γ , K = e−γ (H + γ̇ S) . (48)

Proof The proof proceeds by directly calculating the differential of the transforma-
tion (47). In this way we obtain that

d P̃ ∧ d X̃ = e−γ d P ∧ d X ,
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showing that it is not a canonical (symplectic) transformation. Moreover, one can also
verify that

d S̃ − P̃d X̃ + K (X̃ , P̃, S̃, t)dt = e−γ (d S − Pd X + H(X , P, S, t)dt) ,

and that (46) holds for K as in (48), showing that indeed it is a time-dependent contact
transformation that preserves the dynamics. �

Now we are finally ready to prove the second main result of our work.

Theorem 1 (The Bregman Hamiltonian is always separable) Under the ideal scaling
condition γ̇ = eα , the generally non-separable Bregman Hamiltonian

HBr(X , P, t) = eα+γ
(
Dh∗(e−γ P + ∇h(X),∇h(X)) + eβ f (X)

)
, (49)

is equivalent to the separable contact Hamiltonian

KBr(X̃ , P̃, S̃, t) = eα
(

h∗(P̃) − 〈P̃, X̃〉 + eβ f (X̃) + S̃
)

, (50)

for any choice of the convex function h(X).

Proof We start by applying the above contact transformation (47) to the Bregman
Hamiltonian (49) and use that γ̇ = eα (ideal scaling condition from [2]) to obtain the
new Bregman Hamiltonian in the new coordinates, which, using (48), reads

KBr(X̃ , P̃, S̃, t) = eα
(

Dh∗(P̃,∇h(X̃)) + eβ f (X̃) + S̃ − h(X̃)
)

. (51)

Interestingly, by the very definition of the Bregman divergence, Eq. (4), we can rewrite
the above expression as

KBr(X̃ , P̃, S̃, t) = eα
(

h∗(P̃) − h∗(∇h(X̃)) − 〈P̃, X̃〉 + 〈∇h(X̃), X̃〉 + eβ f (X̃) + S̃ − h(X̃)
)

.

(52)

Moreover, by definition of the Legendre transform,

h∗(∇h(X̃)) = 〈∇h(X̃), X̃〉 − h(X̃),

and thus some of the terms in (52) cancel, to give the sought-for final result (50). �
We remark at this point that non-separable Hamiltonians systems are notoriously

hard to discretize, since a direct application of standard symplectic (or contact) integra-
tors leads to implicit algorithms. To bypass this problem for the Bregman dynamics,
in [5] the authors suggested to use a technique first proposed in [42] that consists
in doubling the phase space and then propose an “augmented Hamiltonian” on such
space that is separable and thus can be integrated using standard explicit symplectic
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integrators. However, it must be remarked that the geometric (pre-symplectic) char-
acter of such algorithms is only guaranteed in the doubled phase space, not in the
original one, and this signals that such procedure has to be handled with care. Instead,
using Theorem 1, we will be able to perform a direct splitting that on the one side
simplifies the algorithm and requires less computational burden, and on the other side
guarantees structure-preservation in the original phase space of the system.

2.3 Relativistic Bregman algorithm

To illustrate the benefits of our approach and motivated by the arguments in [10] on
the advantage of choosing a “relativistic” kinetic term in the Hamiltonian approach
to optimization, we first define the Relativistic Bregman dynamics as a motivating
example of a non-separable BregmanHamiltonian that can be turned into an equivalent
(but separable) one bymeans of Theorem 1. Afterwards, by a direct splitting we obtain
the corresponding Relativistic Bregman algorithm (RB).

Let us consider the case in which HBr in (11) is generated by the convex function

h(X) = −mv2

√

1 − ‖X‖2
v2

, (53)

where this function is inspired in the relativistic Lagrangian for a particle of mass m
and v is the analogue of the speed of light. Moreover, let us fix the functions

α = log c − log t, β = c log t + logC, γ = c log t, c, C > 0,

which satisfy the ideal scaling conditions (6) and (7). With this choice, the Bregman
dynamics is guaranteed to have a polynomial convergence rate of order c [2].

From (53) and (11) we obtain the Relativistic Bregman Hamiltonian

H R
Br = eα+γ

⎡

⎢⎢
⎣v

√√√√√√

∥∥∥∥
∥∥
e−γ P + m X

√
1 − ‖X‖2

v2

∥∥∥∥
∥∥

2

+ m2v2

− mv3
√

v2 − ‖X‖2
− e−γ 〈P, X〉 + eβ f (X)

⎤

⎥⎥
⎦ , (54)

which is clearly non-separable. However, using (50) we get the much simpler but
equivalent

K R
Br = eα

(
v

√
‖P‖2 + m2v2 − 〈P, X〉 + eβ f (X) + S

)
, (55)
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where, from now on, we drop the notation with a tilde above the new coordinates
in (55), as there will be no problem of confusion. We emphasize that the Relativistic
Bregman Hamiltonian (54) is different from the Relativistic Gradient Descent pro-
posed in [10]. Indeed, although both are defined using a relativistic kinetic term, the
former belongs to the Bregman family of Hamiltonian functions, while the latter does
not.

In [5] in order to integrate Hamilton’s equation stemming from a non-separable
Hamiltonian like (54), the authors suggest to use the technique first proposed in [42],
according to which one first doubles the phase space dimensions to a space with
coordinates (X , P, t, X̄ , P̄, t̄), and then defines the augmented Hamiltonian

H(X , P, t, X̄ , P̄, t̄) = H R
Br(X , P̄, t) + H R

Br(X̄ , P, t̄)

+ξ

2

(∥∥X − X̄
∥∥2 + ∥∥P − P̄

∥∥2
)

, (56)

where ξ > 0 is a free parameter whose value controls the strength of the last term, that
is included in order to bias the dynamics towards X = X̄ and P = P̄ , and whose value
has to be tuned in practice. The equations of motion for the augmented Hamiltonian
are equivalent to those of the original system when X = X̄ , P = P̄ , and t = t̄ and
the Hamiltonian is now separable and thus one can integrate the dynamics using a
splitting scheme.

On the other hand, theHamiltonian K R
Br in (55) can be splitted directly in the original

contact phase space, with coordinates (X , P, S) (and time). For instance, using the
splitting

K A := eαv

√
‖P‖2 + v2m2, K B = −eα〈X , P〉, KC = eα+β f (X), K D = eα S

(57)

we get the maps

ϕA
τ

⎛

⎝
X
P
S

⎞

⎠ =

⎛

⎜⎜⎜
⎝

X + eαv P√
‖P‖2+v2m2

τ

P

S + eαv

(
−v2m2√

‖P‖2+v2m2

)
τ

⎞

⎟⎟⎟
⎠

ϕB
τ

⎛

⎝
X
P
S

⎞

⎠ =
⎛

⎝
X exp (−eατ)

P exp (eατ)

S

⎞

⎠

ϕC
τ

⎛

⎝
X
P
S

⎞

⎠ =
⎛

⎝
X

−eα+β∇ f (X)τ + P
−eα+β f (X)τ + S

⎞

⎠

ϕD
τ

⎛

⎝
X
P
S

⎞

⎠ =
⎛

⎝
X

P exp (−eατ)

S exp (−eατ)

⎞

⎠
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and, using the composition

ϕD
τ/2 ◦ ϕB

τ/2 ◦ ϕC
τ/2 ◦ ϕA

τ ◦ ϕC
τ/2 ◦ ϕB

τ/2 ◦ ϕD
τ/2,

weobtain a second-order contact integrator (we refer to e.g. [43] for the study of contact
integrators derived by splitting. See also [30] for a different but related approach
to optimization using these types of algorithms). Clearly this integrator yields an
optimization algorithm that we shall call the Relativistic Bregman algorithm (RB).

We remark on the most important difference between the strategy put forward in [5]
as compared to ours: while the integrators proposed in [5] for the “non-separable” case
are geometric (pre-symplectic) only in the enlarged phase space, thus not guaranteeing
that such property holds in the original phase space of the system, the RB that we have
just described, as well as any other algorithm based on the use of contact splitting
integrators after Theorem 1, are structure-preserving in the original (contact) phase
space. Therefore we expect the RB to be both more stable and efficient, with direct
benefits for the optimization task, especially as the dimension of the problem increases.
The numerical simulations reported in [18] provide evidence for these conclusions.

3 Numerical experiments

The purpose of this section is just illustrative:we aim to show that theRelativistic Breg-
manalgorithm (RB)proposed above can effectively beused in benchmarkoptimization
and machine learning tasks. To show this point, we report here the performance of RB
on some reference examples and present a comparison with its Euclidean counterpart,
namely the Euclidean Bregman algorithm (EB), and two standard optimization algo-
rithms such as NAG and CM.We refer to [18] for the details of the EB and for a much
larger comparison with further test functions and algorithms.

In all the following examples we set P0 = 0 and S0 = 0 whenever such initial
conditions are required.

Example 3 (Quadratic function) Let us start with a simple quadratic function

f (X) = 1

2
X T AX , X ∈ R

500, λ(A) ∼ U(10−3, 1), (58)

where A ∈ R
500×500 is a positive-definite random matrix with eigenvalues uniformly

distributed over the range [10−3, 1]. In Fig. 1a, we compare the performance of EB
and RB on this problem using initial condition X0 = (1, 1, ..., 1), step size τ = 10−4,
speed of light v = 1000, mass m = 10−3, and varying c ∈ {2, 4, 8}. For these
parameters, both RB and EB exhibit similar rates of convergence, which are close to
the theoretical ones, see Table 1.

Example 4 (Quartic function) Next let us consider the quartic function

f (X) = [(X − 1)T �(X − 1)]2, X ∈ R
50, �i j = 0.9|i− j |. (59)
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Fig. 1 Comparison of the performance of the RB and EB methods, both with the same parameters, and for
varying c ∈ {2, 4, 8}. Left panel: Quadratic function. Right panel: Quartic function

Table 1 Numerical convergence rates of the RB and EB algorithms for the Quadratic function (58) achieved
at 1000, 2000, and 4000 iterations respectively

Order c = 2 c = 4 c = 8

Iterations 103 2 × 103 4 × 103 103 2 × 103 4 × 103 103 2 × 103 4 × 103

RB t−1.75 t−1.91 t−2.03 t−4.99 t−4.80 t−4.84 t−10.25 t−10.77 t−10.84

EB t−2.26 t−2.59 t−2.37 t−4.89 t−5.19 t−5.67 t−10.25 t−10.76 t−11.21

Table 2 Numerical convergence rates of the RB and EB algorithms for the Quartic function (59), achieved
at 1000, 2000, and 4000 iterations respectively

Order c = 2 c = 4 c = 8

Iterations 103 2 × 103 4 × 103 103 2 × 103 4 × 103 103 2 × 103 4 × 103

RB t−2.07 t−2.29 t−2.28 t−2.17 t−2.47 t−3.01 t−2.34 t−3.86 t−5.64

EB t−1.20 t−1.16 t−1.24 t−1.21 t−1.35 t−2.03 t−1.22 t−2.30 t−3.69

This convex function achieves its minimum value 0 at X∗ = 1. In Fig. 1b, we compare
the performance of EB and RB on this problem using initial condition X0 ∼ U(0, 1),
step size τ = 10−3, and the rest of the parameters as in the previous example. In this
case, RB shows better convergence rates than those of EB, being also closer to the
theoretical ones, see Table 2.

Example 5 (Machine learning examples) Nowwe test the RB in two classical machine
learning tasks, and compare its performance with those of EB, CM and NAG. We use
two popular datasets for classification from the UCI machine learning repository and
try to fit a Two-regularized logistic regression model. The profiles of these datasets
are summarized in Table 3. We set the regularization parameter for all methods to be
λreg = 10−2; for the RB and EB algorithms, we set v = 1000, m = 10−3, C = 1,
and c = 2. The rest of the parameters were tuned in the validation dataset.
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Table 3 Profiles of the datasets Dataset Diabetes Breast cancer

Train 460 340

Test 192 143

Validation 115 86

Feat 8 6

Class 2 2

Fig. 2 Two-regularized logistic regression model trained with RB, EB, CM, and NAG on the Pima Indians
Diabetes dataset. Left panel: Objective function values. Right panel: Classification error. Both panels com-
pare with respect to the iteration of optimization on log–log scale. The initial conditions are taken uniformly
on (0, 1)

Diabetes

In the first example, we use the Pima Indians Diabetes dataset. The objective is to pre-
dict, based on diagnostic measurements, whether a patient has diabetes. The dataset
was separated into training 460, test 192, and validation 115 sets. Figure2 shows the
mean over 50 random initial conditions, the 0.025 and 0.975 quantiles of the loss func-
tion, and the classification error evaluated in the test set. The RB algorithm converges
faster to the optimum, which is reached by the other algorithms a few iterations later.
The RB and EB algorithms showed less sensitivity to the initial condition compared
to CM and NAG.

Breast cancer

The objective is to classify breast cancer from some features. The datasetwas separated
into training 460, test 192 and validation 115 sets. The RB algorithm exhibits similar
behavior as in the previous example, converging faster than the other algorithms in
the first few iterations, see Fig. 3.
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Fig. 3 Two-regularized logistic regression model trained with RB, EB, CM, and NAG on the Breast Cancer
dataset. Left panel: Objective function values. Right panel: Classification error. Both panels compare with
respect to the iteration of optimization on a log–log scale. All themethods are initiated at the initial condition
X0 = 0

4 Conclusions

Geometry is a powerful tool in pure and applied mathematics. Among other things, it
enables to describe phenomena independently of the particular choice of coordinates.
This is because geometric objects are invariant under somegroup of transformations. In
thiswork,we have shown that contact geometry and the related contact transformations
can be extremely useful in optimization. Indeed, we have shown that invariance under
contact transformations is a common feature of all the recently-proposed dynamics in
the context of the dynamical systems approach to convex optimization (Proposition 1).
More importantly, we have proved that the Bregman dynamics, which is perhaps
the single most important recent finding in this context but whose implementation
is seriously hindered by the fact that the Hamiltonian is non-separable, is actually
always separable up to a contact transformation (Theorem 1). This opens the way to
applying explicit and fast numerical integration methods for simulating the Bregman
dynamics, which in turn provides new efficient optimization algorithms, evenwhen the
original Hamiltonian looks non-separable. Finally, in order to illustrate the relevance
of considering algorithms that stem from non-separable Bregman Hamiltonians, we
have shown in some benchmark examples from the optimization andmachine learning
literature that the thus-proposed Relativistic Bregman algorithm compares favorably
with respect to the standardClassicalMomentum andNesterov’sAcceleratedGradient
algorithms, and also to the Euclidean Bregman algorithm.

In future work, we plan to perform a more in-depth analysis of the properties
of the Relativistic Bregman algorithm. Moreover, as commented in the text, it will
be interesting to study several optimization dynamics through the lens of Herglotz’s
variational principle. Finally, all the results presented here have a natural generalization
to the case of general differentiablemanifolds, and thereforewe can extend our analysis
with methods similar to those employed in [39–41].
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