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Abstract
Herewe showan application of our recently proposed information-geometric approach
to compositional data analysis (CoDA). This application regards relative count data,
which are, e.g., obtained from sequencing experiments. First we review in some
detail a variety of necessary concepts ranging from basic count distributions and
their information-geometric description over the link between Bayesian statistics and
shrinkage to the use of power transformations in CoDA. We then show that power-
ing, i.e., the equivalent to scalar multiplication on the simplex, can be understood as
a shrinkage problem on the tangent space of the simplex. In information-geometric
terms, traditional shrinkage corresponds to an optimization along a mixture (or m-)
geodesic, while powering (or, as we call it, exponential shrinkage) can be optimized
along an exponential (or e-) geodesic. While them-geodesic corresponds to the poste-
riormeanof themultinomial counts using a conjugate prior, the e-geodesic corresponds
to an alternative parametrization of the posterior where prior and data contributions
are weighted by geometric rather than arithmetic means. To optimize the exponential
shrinkage parameter, we use mean-squared error as a cost function on the tangent
space. This is just the expected squared Aitchison distance from the true parameter.
We derive an analytic solution for its minimum based on the delta method and test
it via simulations. We also discuss exponential shrinkage as an alternative to zero
imputation for dimension reduction and data normalization.
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1 Introduction

Counting discrete events seems one of the simplest ways of collecting data, but com-
positional bias when directly comparing such counts in varying contexts can lead
intuition astray. Often, the lack of a common scale in samples taken from different
environments or experimental conditions makes direct comparisons between counts
meaningless. We need to gauge by internal references before we can make external
comparisons. Compositional data analysis (CoDA, e.g. [1]) uses scale-free methods
on data occurring in form of percentages, and its log-ratio methodology [2] has been
applied to relative counts as well. While the sample spaces [3] of both data types are
certainly not the same, the underlying problematic is identical: direct comparisons
across samples can have paradoxical effects due to the lack of a common scale [4]. We
have recently proposed to make use of information geometry [5] to analyse composi-
tional data [6]. The information-geometric approach is even more natural for relative
count data, and simple count distributions like the categorical or multinomial have
served as examples to illustrate basic concepts in information geometry. Here we aim
to demonstrate the usefulness of information-geometric concepts for the analysis of
count data that are compositional in a well-defined sense.

Let us quickly sketch the main idea of this contribution. Consider a vector of
counts (ni )Di=1 that were produced by some process with unknown independent count
probabilities qi . It is well known that the empirical estimator for such multinomial
probabilities

q̂i = ni
∑D

k=1 nk
(1)

(although it is the one that maximizes the likelihood of the data) can bemuch improved
upon when the denominator is not large compared with D. In this case, a better
alternative is the convex combination

q̂i
sh = λ

1

D
+ (1 − λ)q̂i (2)

of the estimator with the equidistribution, for an optimized value of the parameter
0 ≤ λ ≤ 1. This is an example of what is known as shrinkage of q̂i toward the target
1/D. The reason why this works can be understood from a Bayesian perspective. The
shrinkage estimator (2), instead of maximizing the likelihood of the data, maximizes
the posterior probability of a suitable parameter of themultinomial (assuming a simple
conjugate prior). Optimization of λ corresponds to adjusting the weight that the prior
will have compared with the weight that will be assumed for the data. But why is q̂shi
a good approximation of qi? It turns out that maximizing the posterior probability
corresponds to minimizing the divergence of q̂shi from qi .

As the parameters (and estimators)we are dealingwith are probabilities themselves,
they can be understood as points in a finite simplex (which happens to be the CoDA
sample space). From an information-geometric point of view, the shrinkage estimator
is optimized along the mixture geodesic (or m-geodesic) between the equidistribution
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Fig. 1 Exponential (curved
orange line) and mixture (blue
straight line) geodesics between
the equidistribution
(1/3, 1/3, 1/3) and an observed
point (n1/n, n2/n, n3/n) in the
3-part simplex

and the observed point (q̂i )Di=1 (see the blue line in Fig. 1). Geodesics provide intuition,
e.g., a generalized Pythagorean theorem makes use of them. Unlike in Euclidean
geometry, however,we need two types of geodesics for Pythagoras towork. The natural
counterparts to m-geodesics are the exponential geodesics (or e-geodesics). These
are convex combinations of points in exponential coordinates, which are dual to the
mixture coordinates (via the Legendre duality that underlies information geometry).
Let us now consider the e-geodesic between the two points in question (see the orange
curve in Fig. 1).

It turns out that the e-geodesic corresponds to an alternative parametrization of
the posterior probability, where the prior and likelihood contribute via weighted geo-
metric means. A point on the e-geodesic is just another estimator of the posterior
mean that uses this alternative parametrization. When back-transforming exponential
coordinates to the original parameter, this geodesic can be written as

q̂esi = q̂β
i

∑D
k=1 q̂

β
k

, (3)

with 0 ≤ β ≤ 1. This kind of exponential scaling is well known in statistical physics,
where β is the inverse temperature. It is also used when Box–Cox transforming data
to reduce skew or to replace logarithms by approximate expressions when zeros are
involved. In the CoDA context, β can be used to mediate between χ -squared distance
and Aitchison distance and thus makes a connection between log-ratio analysis and
Correspondence Analysis (CA) [7]. The latter can handle zeros while the former needs
to impute them.

Forfinding the optimal value of the shrinkageparameterλ, a simple analytic solution
for minimization of the mean squared error (MSE) with respect to the true parameter
can be found [8, 9]. To use the same strategy for the β-parameter of the e-geodesic,
we propose to use an MSE on the tangent space. This is just expected Aitchison dis-
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tance between the estimator and the true parameter. We derive an analytic solution that
approximates an optimal β based on the Delta method (i.e., via Taylor expansion).
This is computationally inexpensive and can, e.g., be used as a data preprocessing for
dimension reduction techniques like CA. Simulations show that this approach holds
promise for data with many essential zeros. We discuss the exponential shrinkage
estimator as an additional tool that avoids the pseudocounts of current procedures
in contexts where zero imputation may be inappropriate. On a theoretical level, this
contribution aims to unify power transformations with shrinkage under the same con-
ceptual framework.

Section2 presents essentially review material, with the first two paragraphs dedi-
cated to some very general statistical motivation. We then introduce the information
geometric formulation of the multinomial likelihood and posterior and make some
methodological excursions of a more technical nature in paragraphs 2.6 and 2.8. In
these paragraphs, we reformulate known minimizations of relative entropy and of
expected quadratic loss in form of propositions that will serve us in the subsequent
application. Section3 is then dedicated to the application of the material presented. It
includes the definition of an alternative shrinkage estimator and its optimisation along
the exponential geodesic as well as a benchmark of it using simulations. All the proofs
and some of the more lengthy algebraic derivations are deferred to the Appendix.

2 Preliminaries

2.1 Sequencing data are relative

Let us first discuss the practical relevance of relative counts for contemporary biomed-
ical data. While it is usually acknowledged that data produced by DNA sequencing
instruments are relative [10], a number of arguments for the current dominance of
absolute approaches have been put forward. We will discuss one of these arguments
here: The constraint on the counts does not hold strictly, i.e., it is itself a fluctuating
quantity [11].

Counting the times n j a specific event j occurs within a fixed time interval, under
very general assumptions (i.e., independence of events from previous occurrences,
fixed average rate of occurrence, no simultaneous occurrences), the resulting data will
be distributed according to a Poisson distribution:

pP (n j | λ j ) = λ
n j
j

n j ! e
−λ j . (4)

Here, λ j denotes the average occurrence rate1 of an event j . When considering D such
events now, and assuming they don’t influence each other, we can write the overall
probability of the D-dimensional vector of counts n simply as a product of D such
distributions.

1 Recall that the λ parameter coincides with the expected counts and also their variance. In practice, this
could, e.g., be gene-transcriptional activities [12].
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Consider now a modification of this scenario where we observe these D events
taking place but instead of fixing a time interval, we will simply stop counting after
we have observed n events. The resulting distribution is a multinomial

pn(n | q) = n!
∏D

j=1 n j !
D∏

j=1

q
n j
j , (5)

where q = (q j )
D
j=1 is the vector of individual event probabilities.

2 The multinomial
encodes a constraint on n that leads to a mutual dependence between the parts. In this
sense, it models a composition of counts.

To see the connection between these two scenarios, let us come back to the inde-
pendent Poisson distribution. It can be written as

pP(n | λ) =
D∏

j=1

λ
n j
j

n j ! e
−λ j

= λn

n! e
−λ n!

∏D
j=1 n j !

D∏

j=1

(
λ j

λ

)n j

= pP(n | λ) pn(n | q). (6)

Here λ denotes the sum over the components of λ, and q = λ/λ. We see that the
independent Poisson distributions factorize into a univariate Poisson of n with param-
eter λ as well as a multinomial distribution pn that has n and q as parameters. This
well-known relationship between the Poisson and the multinomial is interesting when
discussing the argument against compositionality above. First we note that a varia-
tion in the constraining variable n can only be used for a correct estimate of the rate
parameters λ j of the D Poisson processes if the overall rate λ is exactly their sum.
Modelling by a multinomial can thus be perfectly justified for a stochastic n whose
rate γ is of no interest to the analyst because it is decoupled from the λ, in the sense
that γ �= λ. For sequencing data, the constraint on n is imposed by the capacity of the
sequencing instrument while the variation in n can be caused by other aspects of the
protocol (e.g., the subsequent read mapping). The practical effects of the constraint
are well documented [13, 14] and aren’t invalidated by the stochastic nature of n.

For an applicaton of the multinomial to single-cell sequencing data, see [15]. A
pragmatic approach is taken in [12], where it is acknowledged that the q j , not the
λ j should be the modelling objective, but (for practical reasons) their modelling is
done by an independent Poisson that is reparametrized as pP(n | λ, q). The Poisson
can serve as an approximation whenever there are no dominant parts for which q j

becomes too large. The modelling gets complicated again as soon as co-variation of
parts across samples are taken into account.

2 Note that we chose to put the auxiliary parameter n as a subscript for a more compact notation.
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2.2 Variation across samples, Bayes

According to the Bayesian paradigm, probabilities are subjective in the sense that
they quantify degrees of knowledge [16]. This quantification involves both data and
model parameters, and both can be arguments to probability functions. While we
assume a fixed parameter when considering a single sample n, it makes sense to let
the parameter vary according to some distribution when considering many samples
that were obtained under different conditions. This is typically the case when we have
a data matrix where counts for D variables (or compositional parts) indexed by the
columns are collected in N samples indexed by the rows.

As an example, consider the special case of the multinomial pn . Our choice of the
prior π quantifying the probability of the parameter q will determine the functional
form of the joint distribution and thus affect our ability to capture the variability across
samples:

pn(n, q) = pn(n | q)π(q). (7)

Integrating the joint probability3 over the parameter q would leave us again with n
as the only argument. The resulting marginal distribution will depend on the hyper-
parameters of the prior (which we left out in the formula above).4 If we divide (7) by
it, we renormalize and obtain the posterior probability of the parameter q, giving us
Bayes’ theorem.

An excellent choice for π would be a D−1-dimensional multivariate normal of the
log-ratios log(qi/qD). This allows for a compositional modelling of the second-order
interactions between parts that captures the over-dispersion often observed in real-
world data [17, 18]. While this logistic-normal multinomial model has no analytic
solution, Markov-Chain Monte Carlo can be used, like in a recent application to
differential association networks in microbiome data [19]. Note that the interest is
now in the hyperparameters of the prior, especially in the covariance matrix of the
log-ratios of q.

A less realistic but more tractable solution is obtained when simply choosing the
conjugate prior to the multinomial, i.e., the Dirichlet distribution. While we will later
describe it inmore detail, let us here point out that thismodel implies that all interaction
between parts comes from the constraint that counts have to add to n. It is thus the
model with the greatest degree of independence that can be achieved for compositions
[2].

2.3 Dual coordinates for count distributions

Wehave recently proposed to treat compositional datawith themethods of information
geometry [6]. The fact that the geometric structure of the discrete probability simplex

3 While we use the convention to denote it by the same symbol as the likelihood, this is generally not a
multinomial.
4 An example that concerns much of the current modelling of sequencing data is going from the Poisson
distribution to the (overdispersed) negative binomial distribution when integrating out the original λ j
parameter with a conjugate gamma prior.
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can be exploited for the analysis of compositional data has been observed before, e.g.
[20]. Compositions q can be described as categorical distributions that live on a finite
dimensional open5 simplex

SD =
{

(q1, . . . , qD)T ∈ R
D : qi > 0, i = 1, . . . , D,

D∑

i

qi = 1

}

. (8)

The finite version of information geometry contains already all its important concepts
but often provides amore intuitive approach, see [5, 21]. For a comprehensive treatment
of the finite case, see Chapter 2 of [22]. We are now showing a concrete example of an
application to CoDA that slightly extends our framework in [6] to deal with relative
count data.

To briefly recapitulate, we start from the two natural coordinate systems used in
information geometry: the expectation parameters η (whose components carry lower
indices) and the exponential parameters θ (with upper indices). Consider again the
case where the occurrence of D discrete events is encoded by a random variable
R = r ∈ {1, . . . , D} with occurrence probabilities q. The D − 1-dimensional vector
of expectation parameters η consists simply of those probabilities that can vary freely
(while all of them have to sum to 1). The probability of an event in terms of η can then
be written as

p(r | η) =
{

ηr if r ≤ D − 1,
1 − ∑D−1

i=1 ηi if r = D,
r = 1, . . . , D. (9)

Alternatively, this distribution can be parametrized using what is known as the alr-
transformation in CoDA:

θ j = log
q j

qD
, j = 1, . . . , D − 1. (10)

Note that we are not (as often done in CoDA) log-ratio transforming the data them-
selves, but their underlying parameters q. With this, we can write our distribution in
the form

p(r | θ) = exp

(
D−1∑

k=1

θk1k(r) − ψ(θ)

)

, r = 1, . . . , D, (11)

where 1k(r) = 1 if r = k, and 1k(r) = 0 otherwise. The function ψ ensures normal-
ization and is known as the free energy. It is given by

ψ(θ) = log

(

1 +
D−1∑

i=1

eθ i

)

= − log qD. (12)

5 This is a technical requirement so we can use logarithms. More often than not, compositional data will
fall on a closed simplex [1].
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How do we get from a single outcome r to the multinomial counts n? Let us first
consider n outcomes r = (r1, . . . , rn). Their probability is simply the product over
(11):

p(r | n, θ) =
n∏

i=1

p(ri | θ)

= exp
n∑

i=1

(
D−1∑

k=1

θk1k(ri ) − ψ(θ)

)

,

= exp

(
D−1∑

k=1

θknk(r) − nψ(θ)

)

, (13)

where nk(r) := ∑n
i=1 1k(ri ). This latter expression encodes the D components of

our relative counts n. To obtain their probability of occurrence, we note that many
outcomes r lead to the same outcomes of counts. Counting these leads to a factor
given by the multinomial coefficient:

p0(n | n) = n!
n1! . . . nD! =

(
n

n1 . . . nD

)

. (14)

With this base measure, we can finally write our multinomial (5) in form of an expo-
nential family

pn(n | θ) = p0(n | n) exp

(
D−1∑

k=1

θknk − nψ(θ)

)

. (15)

We see that the exponential coordinates remain the same regardless of the number
of observations. It is often convenient to drop the base measure and, changing the
random variable, resort to the expression (13). Also, as we can see from (15), to obtain
the multi-event versions of η and ψ(θ), we just need to multiply by n. Due to the
Legendre duality of the natural coordinates, we can obtain the multi-event expectation
coordinates by taking partial derivatives

nη j = ∂

∂θ j
nψ(θ) = Epn (n j ) = nq j , j = 1, . . . , D − 1. (16)

Finally, the potential that is dual to themulti-event free energy nψ(θ), i.e., the negative
Shannon entropy of (13), is given by nφ(η), where

φ(η) =
D−1∑

k=1

ηk log ηk +
(

1 −
D−1∑

k=1

ηk

)

log

(

1 −
D−1∑

k=1

ηk

)

. (17)
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2.4 Parameter divergence from observed points

In the previous section, we have derived expressions for probabilities of data given
some model parameters. These parameters happen to be compositions, and as such
they can be depicted as points in a simplex. When normalizing a sample of count data
by their total, we can also represent it as a so-called observed point [5] in the simplex:

q̂ =
(n1
n

, . . . ,
nD

n

)T
. (18)

This is the empirical estimate of the parameter q. The empirical estimate is also known
as the type of a sequence r of independent random variables. Our dual coordinates
associated with the observed point are

θ̂ =
(

log
n1
nD

, . . . , log
nD−1

nD

)T

, (19)

nη̂ = (n1, . . . , nD−1)
T . (20)

One of the fundamental results of themethod of types (e.g., [23]) is an equality relating
the true distribution to the observed point:

p(r | n, θ) = exp
(
nφ(η̂) − nDφ(q̂ || q)

)
, (21)

where

Dφ(q̂ || q) =
D∑

j=1

n j

n
log

n j

nq j
(22)

is the relative entropy, or Kullback–Leibler (KL) divergence, between the empirical
and the true parameter compositions. The expression (21) can be easily derived by
simple algebraic rearrangement of (13) using the expressions for φ and Dφ . With (21),
it is clear that we can write the multi-event version of our divergence as

nDφ(q̂ || q) = nφ(η̂) − log p(r | n, θ). (23)

As the first term does not depend on θ , this shows why taking the maximum of the
likelihood p(r | n, θ)) over θ is equivalent to minimizing the KL-divergence between
the estimated and the true parameter composition.

More general relationships of this kind can be derived from a fundamental
information-geometric equality that is due to the Legendre duality between ψ and
φ:

Dφ(q̂ || q) = φ(η̂) + ψ(θ) − θT η̂. (24)

Minimizing a dissimilarity between distributions can be understood as a projection.
Here we project the observed point onto the manifold of distributions parametrized by
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θ . In information geometry, this minimization of the KL-divergence is known under
the name of m-projection, see [5]. In Sect. 2.6, we will show a result that is more
general than (23) in the sense that it does not only hold for the likelihood but also for
prior and posterior probability.

2.5 Posterior probability of the parameter

For theBayesian estimation of a parameterwe have to construct a posterior distribution
of the parameter that also takes into account its prior distribution π , which itself can
depend on a vector of hyperparameters α. For a review of Bayesian inference for
categorical data see [25]. The posterior probability density of the parameter in terms
of the exponential parameter θ is

p(θ | r, n,α) = p(r | n, θ)π(θ | α)
∫
dθ ′ p(r | n, θ ′)π(θ ′ | α)

. (25)

Instead of maximizing the likelihood over θ , we can now maximize the posterior to
obtain the best parameter estimate.6 Inserting (13), the posterior (25) evaluates to

p(θ | r, n,α) = π(θ | α) exp

(
D−1∑

k=1

θknk(r) − nψ(θ) − log p(r | α)

)

. (26)

where p(r | α) is the normalizing integral in the denominator of (25). Seeing this
as an exponential family, we note that the parameter and the random variables have
exchanged their roles. The prior can be written as a new base measure now, while the
new free energy is given by log p(r | α).7

A prior that has the same functional form as the resulting posterior is called a
conjugate prior. Using a conjugate prior makes closed-form solutions of the posterior
possible. The general form of the conjugate prior for an exponential family is well
known [24], but it is instructive to obtain it as follows. We copy the functional form
of (26) and obtain a D-parameter conjugate prior as

π(θ | α) = π0(θ) exp

(
D−1∑

k=1

θk fk(α) −
[

D∑

k=1

fk(α)

]

ψ(θ) − χ(α)

)

, (27)

6 Alternatively, we could take the expectation value of θ with respect to its posterior.
7 To explain the extra term −nψ(θ) in this picture, n and −ψ(θ) can be considered extra components of
the vectors n and θ , respectively.
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where π0 is a base measure, fk is a sufficient statistic of the k-th hyperparameter, and
χ the normalization. With this, the posterior (26) becomes

p(θ | r, n, α) = π0(θ)

× exp

⎛

⎝
D−1∑

k=1

θk (nk(r) + fk(α)) −
⎡

⎣n +
D∑

k=1

fk(α)

⎤

⎦ψ(θ) − χ(α) − log p(r | α)

⎞

⎠ .

(28)

In our categorical case it is well known [25] that the conjugate prior is a Dirichlet
distribution with parameters α. The expressions involved evaluate to

fk(α) = αk, (29)

π0(θ) = 1, (30)

χ(α) = log B(α), (31)

p(r | α) = B
(
(nk(r) + αk)

D
k=1

)

B(α)
, (32)

where B denotes the multivariate beta function. (For clarity, we give a short derivation
for p(r | α) in the Appendix.) With these expressions, the posterior simplifies to

p(θ | r, n,α)

= exp

(
D−1∑

k=1

θk (nk(r) + αk)) −
[

n +
D∑

k=1

αk

]

ψ(θ) − log B (n(r) + α)

)

.

(33)

We can see here thewidely-used result that the posterior is obtained from the likelihood
by simply adding the conjugate prior parameters as pseudo counts to the respective
event counts and then renormalizing.

2.6 Parameter divergence from general estimators

The similarity between the likelihood and our expression for the posterior suggests that
we can maximize the posterior similarly to the likelihood by minimizing a certain KL-
divergence. Indeed, the following proposition shows thatmaximizing prior, likelihood,
or posterior always corresponds to aminimization ofKL-divergence between a suitable
estimator and q:

Proposition 1 Let q be a parameter of probabilities with exponential coordinates θ

via p(r | θ) with free energy ψ(θ) as defined in (10)–(12). Further, let the function
f : SD × R+ × R

D−1 → R+ be given by

f (q̃, ñ, θ) = Z(ñ, q̃) exp
{
ñ
(
θT η̃ − ψ(θ)

)}
,
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where q̃ is an estimator of q with expectation coordinates η̃, ñ denotes a positive real,
and Z a positive function. We then have

ñDφ(q̃ || q) = ñφ(η̃) + Z(ñ, q̃) − log f (q̃, ñ, θ),

with φ the Lagrange dual to ψ as defined in (17) and Dφ the KL-divergence.

The proof makes use of (24) and otherwise consists in a simple rearrangement of terms
(see Appendix).

Corollary 1 Maximization of log f (q̃, ñ, θ) as a function of θ minimizes Dφ(q̃ || q)

as a function of q.

This is clear because the other (data-dependent) terms do not depend on the param-
eter.

Example 1 Shrinkage estimator:

We use as our estimator q̃ the expected value of q under the posterior (33), the so-called
shrinkage estimator q̂sh

q̃ = q̂sh := Eθ (q | r, n,α) = n + α

n + ∑D
k=1 αk

, (34)

and set ñ = n̂ := n + ∑D
k=1 αk . This allows us to reparametrize the posterior in the

required form

p(θ | q̂sh, n̂) = exp

(

n̂

[
D−1∑

k=1

θk q̂shk − ψ(θ)

]

− log B
(
n̂q̂sh

)
)

, (35)

and thus f (q̃, ñ, θ) = p(θ | r, n,α) and Z(ñ, q̃) = 1/B(n̂q̂sh). With this, the
proposition gives

n̂Dφ(q̂sh || q) = n̂φ(η̂
sh

) − log B(n̂q̂sh) − log p(θ | q̂sh, n̂). (36)

Thus finding the θ that maximizes the posterior is equivalent to minimizing the KL-
divergence between the shrinkage estimator and the true parameter q.

Example 2 Empirical estimator:

The empirical estimator of the multinomial distribution is a straightforward applica-
tion: q̃ = q̂ := n/n, ñ = n, and f (q̃, ñ, θ) = pn(n | θ) as given by (15), so Z(ñ, q̃)

is the multinomial coeffcient p0(n | n). The proposition gives (23) with an additional
subtraction of the log p0 term.

Clearly, another example consists in maximizing the prior probability of θ to min-
imize the divergence between α/

∑
k αk and q. In Sect. 3 we will define another

version of the shrinkage estimator, which will provide us with yet another application
of the proposition. Note that f (q̃, ñ, θ) has the general form of a conjugate prior of
an exponential family, so Proposition 1 holds for exponential families in general. A
more general treatment than the one presented here can be found in [26].
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2.7 Decision-theoretic risk

Decision theory (e.g., [27]) provides a foundational framework for statistics. While it
is closely linked with Bayesian analysis, it can also be formulated from a frequentist
point of view. In any case, it implies the construction of a loss function that incorporates
statistical knowledge in order to quantify the risk of a wrong decision. Such a loss
function L has the “true state of nature" and an action (based on some knowledge)
as its arguments. Perhaps the most important example for these arguments would be
the true parameter q of a distribution and some estimator q̂, where the latter would
be identified with the action based on it. Given some loss L(q, q̂), the risk we incur
when basing our decision on the estimator is then some expected value

R(q̂) = EL(q, q̂). (37)

Bayesian and frequentist schools disagree on the type of expectation that should be
taken here.While for the Bayesian the expectation is takenwith respect to the posterior
probability8 of the parameter q, the frequentist averages over all instances of the
random variables (which follow a distribution parametrized by q)9. As a consequence,
the risk remains a function of q. A frequentist then calls an estimator q̂1 R-better than
q̂2 when Rq(q̂1) ≤ Rq(q̂2) for all q, with strict inequality for some of them. An
estimator is called inadmissible if there exists an R-better estimator.

Often, for pragmatic reasons, a quadratic loss leading to a mean squared error
(MSE) risk function is assumed. Beside its simplicity, one benefit is that for unbiased
estimators, the (frequentist) risk is simply the variance of the estimator:

Rq(q̂) = E
[
(q̂ − q)2

]
=

D∑

j=1

[
var(q̂ j − q j ) + E2(q̂ j − q j )

]
=

D∑

j=1

var(q̂ j ).

(38)

Here, the bias-variance decomposition of the MSE was used, and the last equality
follows from the facts that q j is not stochastic and that the bias E

[
q̂ − q

]
vanishes.

Note that here we do not have to know the true value of q to evaluate its risk because
in practice, to evaluate the variance of the estimator, its empirical estimate is used.
As an example, for the empirical estimator (18), the variance components would be
estimated by q̂ j (1 − q̂ j )/(n − 1).

2.8 James–Stein shrinkage and regularization

The empirical estimator q̂ is (unlike the empirical estimator of the multivariate normal
mean) known to be admissible under quadratic loss [28], so there is no "Stein effect"
[29] for the multinomial. While the Bayesian estimator (34) isn’t uniformly better

8 In a data-free context, it can also be taken with respect to the prior probability.
9 An example of such a risk function is Dφ(q̂ || q).
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than the empirical estimator for all parameter values,10 its flattening of the data can
result in much smaller mean squared error than with the empirical estimate. This will
be made plausible in the following. Let us rewrite (34) as a convex combination

q̂sh = λτ + (1 − λ)q̂ (39)

between the target distribution τ and the empirical estimator q̂. That this is equivalent
to (34) can be seen when defining

λ :=
∑D

k=1 αk

n + ∑D
k=1 αk

, (40)

τ j := α j
∑D

k=1 αk
, j = 1, . . . , D. (41)

q̂sh is called a James-Stein type [30] shrinkage estimator of q, see also [31] as well as
the discussion in [9]. Choosing the maximum-entropy target, i.e., the equidistribution
τ j = 1/D for all j = 1, . . . , D, the target term can be understood as a regularization
of the empirical estimator.

Remember that q̂sh is the posterior expected value of q. The fact that the posterior
expected value of a random variable is a linear function of its empirical estimate is
equivalent to the use of a conjugate prior. This is a result that holds for exponential
families in general [24].

This linearity is helpful for evaluating the accuracy of the shrinkage estimator,
again using the expected quadratic loss as a risk function. We shall give a result that
is slightly more general than necessary for this estimator because we will again need
it in Sect. 3:

Proposition 2 Let f j , j = 1, . . . , D be the components of a function f : SD → R
D

acting on a vector of probabilities. Let τ be a D-dimensional probability parame-
ter and q̂ the multinomial empirical estimator. Then, for 0 ≤ λ ≤ 1, the convexly
combined estimator f (q̃) of f (q) given by its components

f j (q̃) := λ f j (τ ) + (1 − λ) f j (q̂), j = 1, . . . , D

(i) has a quadratic risk with respect to f (q) given by

Rq(q̃) = (1 − λ)2
D∑

j=1

var
(
f j (q̂)

) +
D∑

j=1

[

E f j (q̂) − f j (q) − λ
(
E f j (q̂) − f j (τ )

)
]2

.

10 An example where the empirical estimator gives a better value for q j is the case where n j = 0 and the
prior value of the Bayesian estimator is further away from q j than q j is from zero.
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(ii) The minimum risk is attained for

λ∗ =
∑D

j=1

[

var
(
f j (q̂)

) + (
E f j (q̂) − f j (q)

)(
E f j (q̂) − f j (τ )

)
]

∑D
j=1 E

[
f j (q̂) − f j (τ )

]2 .

The proof is provided in the Appendix. This is a slight modification of the lemma
shown in [8], see also the derivation in [32] and the application to the multinomial
in [9]. To apply the proposition to q̂sh, we observe that f j simply corresponds to
taking the j-th component and simplifications occur because the bias of q̂ vanishes:
E f j (q̂) − f j (q) = Eq̂ j − q j = 0. We obtain

Rq(q̂
sh

) = (1 − λ)2
D∑

j=1

var(q̂ j ) + λ2
D∑

j=1

E2(q̂ j − τ j ), (42)

with minimum risk at

λ∗ =
∑D

j=1 var(q̂ j )
∑D

j=1E
[
(q̂ j − τ j )2

] . (43)

We can see that the risk function is a weighted average over the risk of the empirical
estimator and an additional term that punishes expected difference from the target.
Tuning the size of λ, we can trade off the bias of the target against the variance of
the empirical estimate to obtain a smaller risk than (38). Estimators based on small
sample data will generalize better to new data when flattening the data to a well-
specified extent using an uninformative, maximum-entropy model. The amount of
flattening depends on the data at hand and is optimized via the weight λ of the target.
Note that the relationships (40) and (41) imply that this is similar to an empirical
Bayes procedure where we tune the size of the pseudocounts α j and by this, adjust
the a-priori sample size

∑
αk = nλ/(1−λ). To evaluate (43), the empirical estimates

for variance and expectation are used in practice.

2.9 Power-transformed compositions and their Euclidean distance in ordination

Power transformations [33] have traditionally been applied to data in order to fulfill
certain distributional assumptions. For instance, a suitable power transformation can
reduce skew so data appear approximately normal. In the case of Poisson counts,
where variance equals the mean, the square root transformation is a common choice
to “stabilize" the variance (i.e., make it approximately constant independently of the
mean). More generally, power transformations can appear through the link functions
of generalized linear models [35] and then enable a fit of the data to a true underlying
distribution.

Methods for dimension reduction and data visualization (a.k.a. ordination) such as
Principal Component Analysis (PCA) often use some version of Euclidean distance
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between multivariate samples:

d2(q̂1, q̂2) =
D∑

j=1

ω j
(
q̂1 j − q̂2 j

)2
, (44)

where the ω j are suitable weights. Here, for the data, we used the empirical parameter
estimates of the count distribution q̂ instead of the counts n themselves. In the case
of relative counts, where the total of each sample is not of direct interest, this seems
a good idea because we want to visualize the “shape" of the data without their “size"
[34]. There are two main ordination methods that are relational in the sense that
they visualize shape only [35], Correspondence Analysis (CA) and log-ratio analysis
(LRA). CA uses a weighting scheme that involves row and column totals of the data
matrix. In this way, it takes into account the data size indirectly to account for the
precision of the shape estimates. LRA, in contrast, is a PCA of data that are log-
transformed and double-centred. Here, relationships between parts remain invariant
under taking subsets of the data,11 and it is better suited for true compositions. It
was shown [7] that via the following limit of the Box–Cox family [36] of power
transformations

lim
β→0

xβ − 1

β
= log(x), (45)

CA on power-transformed data converges to LRA. CA and LRA are thus special cases
of a more general family of ordination methods. To make this more precise in the case
of unweighted LRA, consider the following transformation of our empirical estimates:

fβ(q̂) =
(

q̂β
1

∑D
k=1 q̂

β
k

, . . . ,
q̂β
D

∑D
k=1 q̂

β
k

)T

. (46)

When now using uniform weights ω j = D2, the limit

lim
β→0

1

β2 d
2 (

fβ(q̂1), fβ(q̂2)
)

(47)

is the squared Aitchison distance

d2A(q̂1, q̂2) = 1

D

D∑

i=1

∑

j<i

(

log
q̂1i
q̂1 j

− log
q̂2i
q̂2 j

)2

(48)

(see [6] for a proof). Aitchison (or log-ratio) distance is the metric underlying
LRA. Using the transformation fβ before evaluating Euclidean distance induces a
parametrized class of distance measures that include the ones used in CA (β = 1)

11 This property is known as subcompositional coherence.
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and LRA (β = 0) as special cases.12 When using finite, “small enough" values of the
power parameter β, the subcompositional coherence of LRA remains approximately
satisfied while there is no need for zero imputation (as CA does not involve loga-
rithms). One can obtain an optimal value of the power parameter in the sense that it
maximizes the Procrustes correlation between the log-ratio transformed data (using
zero imputation) and the coordinates from the power-transformed CA (keeping the
zeros) [37].

3 Exponential shrinkage

In this section we want to define and test an estimator based on the power transforma-
tion (46). The justification of this estimator comes from a formal analogy with q̂sh.
This analogy is more apparent when introducing the generalized notions of addition
(a.k.a. perturbation) and scalar multiplication (a.k.a. powering) that equip the simplex
with a linear structure. For q, p ∈ SD , and some β ∈ R, they are defined as the vectors

q ⊕ p := C(q1 p1, . . . , qD pD)T , (49)

β 	 q := C(qβ
1 , . . . , qβ

D)T , (50)

where C denotes the closure operation Cq := q/
∑

i qi . An inverse perturbation is
given by 
q := ⊕(−1) 	 q.

3.1 Power transformed compositions as convex combinations, dual geodesics

The shrinkage estimator (39) is a weighted mean of the target and the observed point.
This convex combination is an example for what is known as a mixture geodesic
(or m-geodesic) in information geometry. Consider now a similar structure using the
operations of perturbation and powering introduced above:

q̃ = λ 	 τ ⊕ (1 − λ) 	 q̂. (51)

This describes a so-called exponential geodesic (or e-geodesic).13 Usually [5], both
types of geodesics are written in terms of their dual coordinates:

η(λ) = λητ + (1 − λ)ηq̂, (52)

θ(λ) = λθτ + (1 − λ)θ q̂, (53)

where we used subscripts to indicate at which points the coordinates are evaluated.
Coming back to the power-transformation (46), we can easily see that it is described by
the exponential geodesic between theobservedpoint and theuniform target: Evaluating

12 Note that the row weights are assumed to be uniform for the special case of compositional data.
13 This is also known as the Hellinger arc connecting two distributions.
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the exponential coordinates at fβ(q̂), we have

θ fβ(q̂) =
(

log
q̂β
1

q̂β
D

, . . . , log
q̂β
D−1

q̂β
D

)T

= βθ q̂ . (54)

We also notice that for τ = (1/D)Di=1, θτ vanishes. Setting β = 1−λ, we immediately
obtain (53). When evaluating (53) for a general target, we can use the form (51) to
obtain a generalized power transformation in terms of the original parameters:

q̂es :=
(

τ
1−β
1 q̂β

1
∑D

k=1 τ
1−β
k q̂β

k

, . . . ,
τ
1−β
D q̂β

D
∑D

k=1 τ
1−β
k q̂β

k

)T

. (55)

Comparing q̂es with the shrinkage estimator (34), we see that instead of a weighted
arithmetic mean between the target and the empirical estimator, here we evaluate a
weighted geometric mean between them.

3.2 Another reparametrization of the posterior

Since the generalized power transformation (55) can be described as a convex combi-
nation in exponential coordinates, it shares a structural similarity with the shrinkage
estimator (34), which is obtained from a convex combination of expectation (a.k.a.
mixture) coordinates. To make this a shrinkage problem, however, we need the result-
ing quantity q̂es to be interpreted as an estimator. Here we argue that q̂es is simply a
reparametrization of q̂sh similar to (39). There, wewent from C(n+α) to an expression
involving λ, τ , and q̂. We also showed a simple reparametrization of the posterior of
θ in terms of q̂sh together with the posterior sample size n̂, see (35). Such alternative
ways of writing posterior and posterior expectation can be obtained using q̂es as well,
as we will show in the following.

As we have seen in the previous section, an alternative parameter β can be
used to define a geometric mean between target and observed point. Defining ñ :=
∑D

k=1 τ
1−β
k nβ

k , in the expression for the posterior (35) we can simply replace n̂q̂sh by
new Dirichlet parameters ñq̂es to obtain the following expression of the posterior:

p(θ | q̂es, ñ) = exp

(

ñ

[
D−1∑

k=1

θk q̂esk − ψ(θ)

]

− log B
(
ñq̂es

)
)

. (56)

This provides us with another example for Proposition 1. Maximizing the posterior
thus corresponds to a minimization of the KL-divergence between q̂es and the true
parameter. Furthermore, the derivation of (32) given in the Appendix also shows that
B(n̂q̂es) normalizes (35).14 Note that this also implies that the posterior expectation of
q can bewritten equally valid as either the shrinkage estimator q̂sh or as the exponential

14 As n̂q̂sh = n + α, and ñq̂es has the exact same form.
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Fig. 2 a The shrinkage estimator q̂sh (in red) obtained by an addition of scaled vectors (in blue) ending
in the unit simplex (shown in black). The m-geodesic connecting τ and q̂ is shown as a thin blue line.
b The exponential shrinkage estimator q̂es (in red) obtained by vector addition in the tangent space. The
e-geodesic is shown as a curved orange line in the simplex and a straight orange line in the tangent space

shrinkage estimator q̂es. Thismeans that the exponential shrinkage estimator is nothing
but the reparametrized posterior expectation of q.

3.3 Quadratic risk on the tangent space

To evaluate the accuracy of the exponential shrinkage estimator, we would like a
simple risk function like the MSE. We saw previously that with this risk function, an
analytic estimate of the optimal prior weight was essentially possible because of the
linearity of the shrinkage estimator. However, a generalized notion of linearity is now
needed: While m-geodesics are straight lines in the simplex, e-geodesics are straight
lines in its tangent space

T D =
{

v ∈ R
D :

D∑

i=1

vi = 0

}

. (57)

A mapping from the simplex to T D (a.k.a. clr plane in CoDA) is known as the clr
transformation

clr(q) =
(

log
q1
g(q)

, . . . , log
qD
g(q)

)T

, (58)

where g denotes the geometric mean g(x) =
(∏D

i=1 qi
)1/D

. This mapping is funda-

mental in both informationgeometry andCoDA.The constraint that the clr components
sum to zeromeans that the points on an exponential geodesic retain their normalization
on the simplex.

With this, a quadratic loss function in analogy to the one on the simplex can be
obtained by first mapping the compositions in question to the tangent space and then
using squared Euclidean distance again (see Fig. 2).
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Let us first define the loss function on the tangent space for the empirical estimator:

L A(q, q̂) =
D∑

j=1

(
clr j (q̂) − clr j (q)

)2
. (59)

This is the (squared) Aitchison distance, i.e., an alternative expression of (48). Via
the mapping of the simplex to T D , the expression clr(q̂) − clr(q) can be interpreted
as a difference vector between compositions [6]. One can write this in form of a
perturbation with the notation q̂ 
 q, which makes the analogy with (38) even more
compelling. The “exponential" analogue to the MSE of Sect. 2.7 is the risk function
associated with the squared Aitchison loss, i.e. the expectation

R̃q(q̂) = EL A(q, q̂) =
D∑

j=1

[
var

(
clr j (q̂)

) + E2 (
clr j (q̂) − clr j (q)

)]
. (60)

Unfortunately, in this case the bias term does not vanish for the empirical estimator,
and we shall need an approximation to evaluate it.

3.4 Optimization along the exponential geodesic

We can now use our modified risk function on the exponential shrinkage estimator, in
analogy to (42), to minimize it with respect to λ = 1 − β. Using Proposition 2 with
f j (·) = clr j (·), and λ = 1 − β, for the MSE of clr(q̂es) we obtain

Rq(q̂
es

) = (1 − λ)2
D∑

j=1

var
(
clr j (q̂)

)

+
D∑

j=1

[

λE
(
clr j (τ ) − clr j (q̂)

) + Eclr j (q̂) − clr j (q)

]2
. (61)

A solution for the minimum can be found at

λmin =
∑D

j=1

[

var
(
clr j (q̂)

) − E
(
clr j (τ ) − clr j (q̂)

) (
Eclr j (q̂) − clr j (q)

)
]

∑D
j=1E

[
(
clr j (τ ) − clr j (q̂)

)2
]

(62)

Again, this can be evaluated in practice by replacing q by the best estimator available.
To estimate the variance and the expectation terms of the clr-transformed empirical
estimator, we resort to Taylor expansion. While the expressions become a bit more
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unwieldy comparedwith the ones on them-geodesic, we can still evaluate them explic-
itly. For the mean we get

Eclr j (q̂) ≈ E j := clr j (q) − 1 − q j

2q jn
+ 1

2D

D∑

k=1

1 − qk
qkn

, (63)

and for the variance (where this approximation is known as the Delta method)

var
(
clr j (q̂)

) ≈

Vj :=
(

1 − 2

D

)
1 − q j

q j n
+ 1

D2

D∑

k=1

1 − qk
qkn

− 1

n

(

3 − 7

D
+ 4

D2

)

(64)

(see Appendix for a derivation). In the case of themaximum-entropy target, the clr j (τ )

terms in (62) vanish, and an estimator of the optimal power can be obtained by

β∗ = 1 −
∑D

k=1

[
Vk − Ek(Ek − clrk(q))

]

∑D
k=1

[
Vk + E2

k

] . (65)

3.5 Performance on simulated data

We can now test how well we can infer true frequencies from simulated data using
the exponential shrinkage estimator. For this, we use the equidistribution as the target
and optimize the β parameter as described before.

This should not be understood as an intent at a comprehensive benchmark but rather
as a proof of concept. We test performance on multinomial counts only. The three dif-
ferent multinomial distributions (D=100) shown in Fig. 3 were obtained by sampling
from Dirichlet distributions with three different choices for the hyper parameters.
These were chosen to obtain multinomial parameters that are far from equidistributed
and have an increasing number of essential zeros. As a measure of performance, we
chose MSE as in [9]. Beside being simple and intuitive, MSE has the advantage that
zeros are not problematic as there are no logarithms involved. Both zeros as obtained
from undersampling (i.e., count zeros) as well as those that occur because parame-
ters are truly (or almost) zero (so-called essential zeros) will have the effect that the
observed point q̂ falls on the boundary of the simplex. This is not a problem for the
shrinkage estimator, asm-geodesics can go from the centre to the boundary. However,
e-geodesics are only defined inside the simplex, and we have to redefine the observed
point as its projection to the nonzero parts, with a subsequent change in the dimension
D. In any case, it is only the nonzero parts that can be modified by the exponential
shrinkage estimator. As an approximation of the true parameter in the expressions (63)
and (64), we use the shrinkage estimator q̂sh. The exponential shrinkage estimator is
optimized over the nonzero parts only. The results show that exponential shrinkage
outperforms the empirical estimator but cannot compete with the shrinkage estimator
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Fig. 3 Mean squared error (MSE) of the empirical estimator (green), the shrinkage estimator (blue), and the
exponential shrinkage estimator (orange). Data are sampled frommultinomial distributions with increasing
sparsity. Boxplots in each row show the MSEs of 500 samples from the multinomial whose histogram
is shown in the first column. Sample size increases from left to right (n = D/5, D, 5D), while sparsity
increases from top down. As D = 100, the vertical axis in the histograms can be read as a percentage. Note
that the vertical boxplot axes change their range between columns

if the data are severely undersampled (first column in Fig.3). There is a sweet spot of
performance when many essential zeros are present and the data are sampled at rea-
sonable depth (middle column). In this case, the exponential shrinkage estimator can
outperform the shrinkage estimator. Clearly, it is “already correct" for the unobserved
values, while the shrinkage estimator imputes them. Further increasing sample size
essentially equalizes the performance of all estimators (right column). Note that the
presence of zeros in the multinomial parameters effectively increases the sample size
as the same counts are now distributed over fewer parts. The two factors studied in
Fig. 3, sample size and sparsity, are thus not independent of each other in their effects.

3.6 Discussion

We have shown that power transformations of relative count data can be understood
as a shrinkage problem. An analytic solution for the optimal power for given data
can be obtained in a way that is analogous to what was proposed for finding an
optimal flattening constant. We find the underlying information-geometric structure
intriguing: Both types of geodesics between the empirical estimate and the maximum-
entropy estimate give rise to their own shrinkage problem. But we think that there
are also practical implications for data anlysis. In the context of compositional data
visualization, power transformations have been proposed as an approximation to log-
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ratio transformations, which require zero imputation. Correspondence Analysis (CA),
one of the best methods for visualizing two-way tables containing counts, can be
made more suitable for relative count data when applying such a transformation. It
then approximates log-ratio analysis (LRA), whose visualization appeals more to our
Euclidean intuition butwhose zero imputed datamay be suboptimal or even impossible
for very sparse data sets. For side-by-side visualizations of geochemical and single-
cell data using both methods, see [37]. While CA is a visualization of the stretched
out (weighted) simplex, LRA is a PCA on its tangent space (the clr plane). When
using the hybrid approach of CA with power transformed counts, currently a uniform
power parameter is applied to an entire data matrix that could contain rows with
heterogeneous sample sizes. As we have seen, in terms of an optimal approximation
to the underlying parameters in each row, this would work best if samples follow
the same distribution and the sample sizes are not too different. On the other hand,
we could argue that, from a modelling perspective, it would be better to find the
best power for each row in the data matrix separately. While the deformation with
respect to LRA would now be heterogeneous among samples, the fit with underlying
population parameters would be better. The shrinkage approach is of course applicable
beyond data visualization, and we think that applying it as a kind of data normalization
holds some promise for very sparse data sets as occurring in microbiome analysis or
single-cell genomics. Not all of these zeros are essential zeros, but many of them
may be caused by truly small occurrence probabilities. If so, the commonly applied
log transform with a uniform pseudocount would almost certainly be less suitable
than a data-driven power transformation as proposed here. While this approach may
still appear overly simplistic, given today’s highly complex data acquisition protocols
where effects of statistical and engineering decisions are hard to disentangle, simple
approaches often perform similarly well as highly complex ones [38].

Appendix

Derivation of Equation 32

Inserting the expressions (29–31) into the general conjugate prior (27), we obtain

π(θ | α) = exp

(
D−1∑

k=1

αkθ
k − ψ(θ)

D∑

k=1

αk − log B(α)

)

. (66)

Together with (13), the denominator in (25) becomes

p(r | α) = 1

B(α)

∫

dθ exp

(
D−1∑

k=1

θk(nk(r) + αk) −
(

n +
D∑

k=1

αk

)

ψ(θ)

)

. (67)

Now a variable transformation to the original parameter q with Jacobian
det(∂θ j/∂q j )

D−1
j=1 = ∏D

k=1 q
−1
k gives for the integral
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B(α)p(r | α)

=
∫

dq
∏D

k=1 qk
exp

(
D−1∑

k=1

(nk + αk) log
qk
qD

+
(

n +
D∑

k=1

αk

)

log qD

)

=
∫

dq
∏D

k=1 qk
exp

(
D−1∑

k=1

(nk + αk) log qk + (nD + αD) log qD

)

=
∫

dq
D∏

k=1

qnk+αk−1
k = B (n + α) , (68)

by definition of the multivariate beta function. We shortened nk(r) to nk here.

Proof of Proposition 1

By definition of f we have

− log f (q̃, ñ, θ) = − log Z(ñ, q̃) − {ñ (θη̃ − ψ(θ))} . (69)

Using (24), the negative curly brackets can be replaced by ñ(Dφ − φ), so we obtain

− log f (q̃, ñ, θ) = − log Z(ñ, q̃) + ñ (D(q̃ || q) − φ(η̃)) . (70)

Rearranging terms, we obtain the proposition:

ñD(q̃ || q) = ñφ(η̃) + log Z(ñ, q̃) − log f (q̃, ñ, θ). (71)

Proof of Proposition 2

(i) Using the bias-variance decomposition as in (38), for the quadratic risk of q̃ we
obtain

Rq(q̃) = E(q̃ − f (q))2

=
D∑

j=1

var
(
λ f j (τ ) + (1 − λ) f j (q̂) − f j (q)

)

+
D∑

j=1

E2(λ f j (τ ) + (1 − λ) f j (q̂) − f j (q)
)

=
D∑

j=1

[
λ2var

(
f j (τ )

) + (1 − λ)2var
(
f j (q̂)

) + 2λ(1 − λ)cov
(
f j (τ ), f j (q̂

)]

+
D∑

j=1

E2 (
λ( f j (τ ) − f j (q̂)) + f j (q̂) − f j (q)

)
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= (1 − λ)2
D∑

j=1

var
(
f j (q̂)

) +
D∑

j=1

(

E f j (q̂) − f j (q) − λ
(
E f j (q̂) − f j (τ )

)
)2

.

(72)

For the first equality, the variance of the sum is evaluated in the usual way as a quadratic
form. We can ignore the f j (q) term because it is constant. Similarly, the last equality
uses the fact that the f j (τ ) are fixed parameters, so their variance and covariance terms
vanish, showing the first part of the proposition.

(ii) To obtain the minimum of the cost function, we derive by λ and set the result
zero (while the second derivative is always greater 0):

dRq(q̃)

dλ
= −2(1 − λ)

D∑

j=1

var
(
f j (q̂)

)

−2
D∑

j=1

(
E f j (q̂) − f j (τ )

)
(

E f j (q̂) − f j (q) − λ
(
E f j (q̂) − f j (τ )

)
)

= 0. (73)

From this it follows that

D∑

j=1

var
(
f j (q̂)

) +
D∑

j=1

(
E f j (q̂) − f j (τ )

)(
E f j (q̂) − f j (q)

)

= λ

D∑

j=1

var
(
f j (q̂)

) + λ

D∑

j=1

(
E f j (q̂) − f j (τ )

)2
. (74)

Finally, using the fact that var
(
f j (q̂)

)+ (
E f j (q̂) − f j (τ )

)2=E
[(

f j (q̂) − f j (τ )
)2

]
,

we obtain (ii), concluding the proof.

Expectation and variance of the CLR-transformed empirical estimator

Consider the Taylor expansion of the j-th component of clr(q̂) around q up to second
order terms

clr j (q̂) ≈ clr j (q)

+
D∑

k=1

∂clr j (q)

∂qk
(q̂k − qk) + 1

2

∑

k,l

∂2clr j (q)

∂qk∂ql
(q̂k − qk)(q̂l − ql). (75)

The first derivatives evaluate to

∂clr j (q)

∂qk
=

{
1−1/D

q j
if j = k,

1
Dqk

if j �= k,
(76)
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and the second derivatives are

∂2clr j (q)

∂qk∂ql
=

⎧
⎪⎪⎨

⎪⎪⎩

− 1−1/D
q2j

if j = k = l,

1
Dq2k

if j �= k = l,

0 else.

(77)

When taking the expectation of (75), the first-order terms vanish due to the linearity
of expectation. In the second-order terms, only those where k = l remain. We thus
obtain

Eclr j (q̂) ≈ clr j (q) − E(q̂ j − q j )
2

2q2j
+ 1

2D

D∑

k=1

E(q̂k − qk)2

q2k
. (78)

Now using the bias-variance decomposition (38), we have

E(q̂ j − q j )
2 = var(q̂ j ) = 1

n2
var(n j ) = q j (1 − q j )

n
. (79)

Inserting this into (78),weobtain (63). Similarly, for the variance of the clr-transformed
empirical estimator,we evaluate the variance of (75). The 0-th order does not contribute
because it is non-stochastic, and we ignore the second-order terms as commonly done
using the Delta method. The variance Vj of the first order terms evaluates to

Vj = var

(
D∑

k=1

∂clr j (q)

∂qk
q̂k

)

=
∑

k,l

(
∂clr j (q)

∂qk

)(
∂clr j (q)

∂ql

)

cov(q̂k, q̂l), (80)

by evaluating the square and using bilinearity of covariance. The covariance elements
for equal indices are given in (79). The off-diagonal terms are

cov(q̂k, q̂l) = cov
(nk
n

,
nl
n

)
= 1

n2
cov(nk, nl)

k �=l= −qkql
n

, (81)

by the well-known expression in the multinomial case. We now collect the respective
covariance terms and first derivatives to evaluate (80). The double sum decomposes
into four terms that correspond to the cases where the indices are not equal and do not
contain j , are equal and don’t contain j , are not equal and one of them is j , and are
both equal to j , respectively:

Vj =
∑

k �= j

∑

l �= j,
l �=k

−qkql
D2qkqln

+
∑

l �= j

ql(1 − ql)

D2q2l n
+ 2

∑

k �= j

(1 − 1/D)(−qkq j )

Dqkq jn
+ (1 − 1/D)2q j (1 − q j )

q2j n
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= −(D − 1)(D − 2)

D2n
+

∑

l �= j

1 − ql
D2qln

− 2
(1 − 1/D)(D − 1)

Dn

+ (1 − 1/D)2(1 − q j )

q jn
. (82)

This can be further simplified including a part of the last term in the summation of the
second term (getting rid of l �= j) and joining the two terms independent of q into a
single expression. After this we obtain

Vj = (1 − 2/D)
1 − q j

q j n
+ 1

D2

D∑

l=1

1 − ql
qln

−1

n

(
(D − 1)(D − 2)

D2 + 2
(1 − 1/D)(D − 1)

D

)

. (83)

With further simplification of the last term, this is (64).

Acknowledgements I thank Nihat Ay for helpful comments on an early version of the manuscript. An
anonymous reviewer’s suggestions led to further improvements.

Data availibility R scripts for synthetic data and analysis can be downloaded from the GitHub repository
ionase/exshrink.

Declaration

Conflict of interest I declare that there is no conflict of interest.

References

1. Greenacre, M.: Compositional data analysis. Annu. Rev. Stat. Appl. 8(1), 271–299 (2021)
2. Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London (1986)
3. Egozcue, J.J., Pawlowsky-Glahn, V.: Compositional data: the sample space and its structure. TEST

28(3), 599–638 (2019)
4. Erb, I., Gloor, G.B., Quinn, T.P.: Editorial: Compositional data analysis and related methods applied

to genomics-a first special issue from NAR Genomics and Bioinformatics. NAR Genom Bioinform
2(4), lqaa103 (2020)

5. Amari, S.: Information Geometry and Its Applications. Applied Mathematical Sciences, vol. 194.
Springer, Berlin (2016)

6. Erb, I., Ay, N.: The information-geometric perspective of compositional data analysis. In: Filzmoser,
P., Hron, K., Martín-Fernández, J.A., Palarea-Albaladejo, J. (eds.) Advances in Compositional Data
Analysis, pp. 21–43. Springer, New York (2021)

7. Greenacre, M.: Log-ratio analysis is a limiting case of correspondence analysis. Math. Geosci. 42, 129
(2010)

8. Ledoit, O.,Wolf, M.: Improved estimation of the covariance matrix of stock returns with an application
to portfolio selection. J. Empir. Financ. 10, 603–621 (2003)

9. Hausser, J., Strimmer, K.: Entropy inference and the James–Stein estimator, with application to non-
linear gene association networks. J. Mach. Learn. Res. 10, 1469–1484 (2009)

10. Quinn, T.P., Erb, I., Richardson,M.F., Crowley, T.M.: Understanding sequencing data as compositions:
an outlook and review. Bioinformatics 34(16), 2870–2878 (2018)

11. Jeganathan, P., Holmes, S.P.: A statistical perspective on the challenges inmolecular microbial biology.
J. Agric. Biol. Environ. Stat. 26, 131–160 (2021)

123



354 Information Geometry (2023) 6:327–354

12. Breda, J., Zavolan,M., vanNimwegen, E.: Bayesian inference of gene expression states from single-cell
RNA-seq data. Nat. Biotechnol. 39, 1008–1016 (2021)

13. Robinson, M.D., Oshlack, A.: A scaling normalization method for differential expression analysis of
RNA-seq data. Genome Biol. 11, R25 (2010)

14. Lovén, J., Orlando, D.A., Sigova, A.A., Lin, C.Y., Rahl, P.B., Burge, C.B., Levens, D.L., Lee, T.I.,
Young, R.A.: Revisiting global gene expression analysis. Cell 151, 476–482 (2012)

15. Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and dimension reduction for
single-cell RNA-Seq based on a multinomial model. Genome Biol. 20, 295 (2019)

16. de Finetti, B.: Theory of Probability, A critical Introductory Treatment. Wiley, Oxford (2017)
17. Billheimer, D., Guttorp, P., Fagan, W.F.: Statistical interpretation of species composition. J. Am. Stat.

Assoc. 96, 1205–1214 (2001)
18. Xia, F., Chen, J., Fung, W.K., Li, H.: A logistic normal multinomial regression model for microbiome

compositional data analysis. Biometrics 69, 1053–1063 (2013)
19. McGregor, K., Labbe, A., Greenwood, C.M.T.: MDiNE: amodel to estimate differential co-occurrence

networks in microbiome studies. Bioinformatics 36(6), 1840–1847 (2020)
20. Avalos, M., Nock, R., Ong, C. S., Rouar, J., Sun, K.: Representation learning of compositional data.

Adv. Neural Inf. Process. Syst. 31 (2018)
21. Gzyl, H., Nielsen, F.: Geometry of the probability simplex and its connection to the maximum entropy

method. J. Appl. Math. Stat. Inform. 16(1), 25–35 (2020)
22. Ay, N., Jost, J., Le, H.V., Schwachhöfer, L.: Information Geometry. A Series of Modern Surveys in

Mathematics, vol. 64. Springer, Berlin (2017)
23. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Oxford (2006)
24. Diaconis, P., Ylvisaker, D.: Conjugate priors for exponential families. Ann. Stat. 7(2), 269–281 (1979)
25. Agresti, A., Hitchcock, D.B.: Bayesian inference for categorical data analysis. Stat. Methods Appl.

14, 297–330 (2005)
26. Agarwal, A., Daumé, I.I.I.H.: A geometric view of conjugate priors. Mach. Learn. 81, 99–113 (2010)
27. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Berlin (1985)
28. Johnson, B.M.: On the admissible estimators for certain fixed sample binomial problems. Ann. Math.

Stat. 42(5), 1579–1587 (1971)
29. Stein, C: Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Proc.

Third Berkeley Symp. Math. Statist. Probab., vol. 1. Univ. California Press, pp. 197–206 (1956)
30. James, W, Stein, C: Estimation with quadratic loss. In: Proc. Fourth Berkeley Symp. Math. Statist.

Probab., vol. 1. Univ. California Press, pp. 361–379 (1961)
31. Efron, B., Morris, C.: Stein’s estimation rule and its competitors—an empirical Bayes approach. J.

Am. Stat. Assoc. 68(341), 117–130 (1973)
32. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and impli-

cations for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1), 32 (2005)
33. Greenacre, M.: Power transformations in correspondence analysis. Comput. Stat. Data Anal. 53(8),

3107–3116 (2009)
34. Greenacre, M.: ‘Size’ and ‘shape’ in the measurement of multivariate proximity. Methods Ecol. Evol.

8(11), 1415–1424 (2017)
35. Greenacre, M: Biplots in Practice. Fundación BBVA (2010)
36. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. B 26(2), 211–252 (1964)
37. Greenacre, M., Grunsky, E., Bacon-Shone, J., Erb, I., Quinn, T.: Aitchison’s Compositional Data

Analysis 40 years On: A Reappraisal. Stat. Sci. Advance Publication 1–25 (2023). https://doi.org/10.
1214/22-STS880

38. Booeshaghi, A.S., Hallgrímsdóttir, I.B., Gálvez-Merchán, A., Pachter, L.: Depth normalization for
single-cell genomics count data. bioRxiv 2022.05.06.490859 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1214/22-STS880
https://doi.org/10.1214/22-STS880

	Power transformations of relative count data as a shrinkage problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Sequencing data are relative
	2.2 Variation across samples, Bayes
	2.3 Dual coordinates for count distributions
	2.4 Parameter divergence from observed points
	2.5 Posterior probability of the parameter
	2.6 Parameter divergence from general estimators
	2.7 Decision-theoretic risk
	2.8 James–Stein shrinkage and regularization
	2.9 Power-transformed compositions and their Euclidean distance in ordination

	3 Exponential shrinkage
	3.1 Power transformed compositions as convex combinations, dual geodesics
	3.2 Another reparametrization of the posterior
	3.3 Quadratic risk on the tangent space
	3.4 Optimization along the exponential geodesic
	3.5 Performance on simulated data
	3.6 Discussion

	Appendix
	Derivation of Equation 32
	Proof of Proposition 1
	Proof of Proposition 2
	Expectation and variance of the CLR-transformed empirical estimator

	Acknowledgements
	References




