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Abstract
A brief introduction of doubly minimal submanifolds of statistical manifolds is given.
A complex submanifold of a holomorphic statistical manifold is doubly minimal.
Similar properties are obtained in the case where the ambient space is a Sasakian
statistical manifold.
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1 Introduction

A differential geometric study of submanifolds of statistical manifolds is developing
as an interesting research field. Althoughmany research papers have been published, it
still has room for improvement on the basic part. The elementary differential geometry
of surfaces in the Euclidean 3-space is a hometown of the submanifold theory. In this
theory, we first see a totally geodesic surface (a plane, a part of a plane) and a totally
umbilical surface (a sphere, a part of a sphere, in addition) as fundamental objects,
which are characterized in terms of the second fundamental forms and should be
studied deeply. Moreover, a minimal surface has appealed to many mathematicians,
which is a surface with zero mean curvature vector field. In fact, beautiful and exciting
examples of such surfaces have been explicitly founded. In the statistical submanifold
theory, what are the counterparts of such submanifolds?

The author hopes that this small article will be useful in attracting interest in these
issues, though it does not have enough results. We here introduce doubly minimal
submanifolds of statistical manifolds, and will indicate that such submanifolds arise
from a special class of minimal submanifolds of Riemannian manifolds with other
additional structures like Kähler structures. We have that a complex submanifold of
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a holomorphic statistical manifold is doubly minimal (Theorem 3.1). We also study
doubly minimal submanifolds of a Sasakian statistical manifold (Theorem 3.3 and
Proposition 3.4).

2 Doubly totally-umbilical submanifolds

Throughout this paper, M denotes a smooth manifold of dimensionm ≥ 2, and all the
objects are assumed to be smooth. �(E) denotes the set of sections of a vector bundle
E → M . For example, �(T M (p,q)) means the set of all the tensor fields on M of type
(p, q), and �(T M) = �(T M (1,0)) means the set of all the vector fields on M .

Let ∇ be an affine connection on M , and g ∈ �(T M (0,2)) a Riemannian metric.
We denote by ∇g the Levi-Civita connection of g. A pair (∇, g) is called a statistical
structure on M if ∇ is of torsion free, and the Codazzi equation

(∇X g)(Y , Z) = (∇Y g)(X , Z)

holds for any X ,Y , Z ∈ �(T M). A manifold equipped with a statistical structure is
called a statistical manifold.

For an affine connection ∇ on a Riemannian manifold (M, g), define ∇∗ by the
formula

Xg(Y , Z) = g(∇XY , Z) + g(Y ,∇∗
X Z)

for any X ,Y , Z ∈ �(T M). Then ∇∗ is an affine connection on M which is called the
dual connection of ∇ with respect to g.

For a statistical structure (∇, g), we set

K (∇,g)
X Y = ∇XY − ∇g

XY

for any X ,Y ∈ �(T M). Then K = K (∇,g) ∈ �(T M (1,2)) satisfies

KXY = KY X , g(KXY , Z) = g(Y , KX Z). (2.1)

Remark 2.1 (1) For a Riemannian metric g and a (1, 2)-tensor field K satisfying (2.1),
a pair (∇ = ∇g + K , g) is a statistical structure.

(2) For a statistical structure (∇, g) and a real number α ∈ R, set

∇(α) = ∇g + αK (∇,g).

Then (∇(α), g) is a statistical structure with ∇(1) = ∇, ∇(0) = ∇g , and ∇(−1) = ∇∗.
Moreover, (∇(α))∗ = ∇(−α) holds.

We will now fix the notation in the statistical submanifold theory. Let ( ˜M, ˜∇, g̃) be
a statistical manifold of dimension n = m + p, and M a manifold of dimension m as
before.
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Toward differential geometry of statistical submanifolds S101

Let ι : M → ˜M be an immersion of M into ˜M . The readers not familiar with the
submanifold theory can consider ι as the inclusion map of M ⊂ ˜M , that is, M is a
subset of ˜M and ι : M � x 	→ x ∈ ˜M , and may omit ι, ι∗ and ι∗ in the following.

We then define g and ∇ on M by

g = ι∗g̃, g(∇XY , Z) = g̃(˜∇X ι∗Y , ι∗Z)

for X ,Y , Z ∈ �(T M). We show that (∇, g) is a statistical structure on M , and call it
the statistical structure induced by ι from (˜∇, g̃). Then (M,∇, g) is called a statistical
submanifold of ( ˜M, ˜∇, g̃).

In another setting, for two statistical manifolds (M,∇, g), ( ˜M, ˜∇, g̃) and an immer-
sion ι : M → ˜M , ι is called a statistical immersion if the statistical structure induced
by ι from (˜∇, g̃) coincides with (∇, g). In both settings, ( ˜M, ˜∇, g̃) is often called the
ambient space.

We denote the orthogonal decomposition of the induced bundle ι∗T ˜M → M with
respect to g̃ by

ι∗T ˜M = T M ⊕ T M⊥ (2.2)

and the orthogonal projection by

( )� : �(ι∗T ˜M) → �(T M), ( )⊥ : �(ι∗T ˜M) → �(T M⊥).

For the simplicity, the induced connection ι∗˜∇ is written as ˜∇. By using the decom-
position (2.2), we define B, A,∇⊥ by

˜∇X ι∗Y = ι∗∇XY + B(X ,Y ), X ,Y ∈ �(T M),

˜∇Xξ = −ι∗Aξ X + ∇⊥
X ξ, ξ ∈ �(T M⊥), X ∈ �(T M).

Then we call B ∈ �(T⊥M⊗T M (0,2)) the second fundamental form for ιwith respect
to ˜∇. We call A ∈ �((T M⊥)∗ ⊗ T M (1,1)) the shape operator, ∇⊥ : �(T M⊥) ×
�(T M) → �(T M⊥) the normal connection.

Taking ˜∇(α) in Remark 2.1 as the connection of the ambient space, we define

B(α), A(α),∇⊥(α)
in the same fashion:

˜∇(α)
X ι∗Y = ι∗∇(α)

X Y + B(α)(X ,Y ), ˜∇(α)
X ξ = −ι∗A(α)

ξ X + ∇⊥(α)

X ξ.

Moreover, we write B∗ = B(−1), ̂B = B(0), A∗ = A(−1), ̂A = A(0),∇⊥∗ = ∇⊥(−1)

and ̂∇⊥ = ∇⊥(0)
.

For a statistical submanifold (M,∇, g) of ( ˜M, ˜∇, g̃), the following hold for each
α ∈ R:

g̃(B(α)(X ,Y ), ξ) = g(A(−α)
ξ X ,Y ),

Xg̃(ξ, η) = g̃(∇⊥(α)

X ξ, η) + g̃(ξ,∇⊥(−α)

X η),
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̂B = 1

2
(B(α) + B(−α)), ̂A = 1

2
(A(α) + A(−α)),

̂∇⊥ = 1

2
(∇⊥(α) + ∇⊥(−α)

)

for X ,Y ∈ �(T M) and ξ, η ∈ �(T M⊥).
Moreover, we define the mean curvature vector field with respect to ˜∇(α) as

H (α) = 1

m
trg B

(α),

and set H = H (1), ̂H = H (0) and H∗ = H (−1). We remark that

̂H = 1

2
(H (α) + H (−α)), H (α) = 1 + α

2
H + 1 − α

2
H∗.

Definition 2.2 Let (M,∇, g) be a statistical submanifold of ( ˜M, ˜∇, g̃). (1) M is said
to be doubly totally-geodesic if B = B∗ = 0. (2) M is said to be doubly totally-
umbilical if B = g ⊗ H and B∗ = g ⊗ H∗. (3) M is said to be doubly minimal if
H = H∗ = 0.

Remark 2.3 The following conditions are equivalent: (1) A statistical submanifold
(M,∇, g) is doubly totally-umbilical. (2) B(α) = g ⊗ H (α) for all α ∈ R. (3)
B(α j ) = g ⊗ H (α j ) for some α1 �= α2 ∈ R. (4) B = g ⊗ H and Aξ = g̃(H∗, ξ)id.

The readerwill be able to list the similar properties for the other notions inDefinition
2.2.

In our setting, the term auto-parallel and the term totally-geodesic coincide with
each other. See [8] for example, in which related Information Geometric objects are
studied. The second fundamental form is sometimes called the embedding curvature.

We now denote by R∇ ∈ �(T M (1,3)) the curvature tensor field for a connection
∇:

R∇(X ,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z

for X ,Y , Z ∈ �(T M).

Example 2.4 The triplet ((R+)m, g0,∇) defined below is a statistical manifold with
R∇g0 = R∇ = 0.

(R+)m = {p ∈ R
m | y1(p) > 0, . . . , ym(p) > 0},

g0 =
m

∑

j=1

(dy j )2, that is, the restriction of the Euclidean metric,

∇(∂i )p∂ j = −δi j {y j (p)}−1(∂ j )p, where ∂ j = ∂/∂ y j .

Theorem 2.5 A round hypersphere of center the origin is the only doubly totally-
umbilical hypersurface of ((R+)m, g0,∇) which is not doubly totally-geodesic.
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See [5] for example.

Example 2.6 The triplet ( ˜M, ˜∇ = ∇ g̃ + ˜K , g̃) defined below is a statistical manifold
with R˜∇ = 0.

˜M = H
n = {y = (y1, . . . , yn−1, yn) ∈ R

n | yn > 0},

g̃ = (yn)−2
n

∑

A=1

(dyA)2,

˜K (˜∂i ,˜∂ j ) = δi j (y
n)−1

˜∂n, i, j = 1, . . . , n − 1,

˜K (˜∂i ,˜∂n) = ˜K (˜∂n,˜∂i ) = (yn)−1
˜∂i ,

˜K (˜∂n,˜∂n) = 2(yn)−1
˜∂n,

where˜∂A = ∂/∂ yA, A = 1, . . . , n.
(1) For (a1, . . . , a p) ∈ R

p, m + p = n, the inclusion map

ι1 : Hm � (x1, . . . , xm−1, xm) 	→ (a1, . . . , a p, x1, . . . , xm−1, xm) ∈ H
n (2.3)

is doubly totally-geodesic; B = B∗ = 0.
(2) For (a1, . . . , a p−1, a p) ∈ R

p−1 × R
+, the inclusion map

ι2 : Rm � (x1, . . . , xm) 	→ (x1, . . . , xm, a1, . . . , a p−1, a p) ∈ H
n (2.4)

is doubly totally-umbilical. In fact, we have

g = (a p)−2
m

∑

j=1

(dx j )2, ∇∂/∂x j
∂

∂xi
= ∇g

∂/∂x j

∂

∂xi
= 0,

B = 2a pg ⊗ ∂

∂ yn
= g ⊗ H , B∗ = 0.

A hypersurface of the form in (2) is studied in [4].

3 Doubly minimal submanifolds

In this section, we introduce typical examples of doubly minimal statistical immer-
sions.

Let ( ˜M, ˜∇, g̃, ˜J ) be a holomorphic statistical manifold. By definition, ( ˜M, ˜∇ =
∇ g̃ + ˜K , g̃) is a statistical manifold with an almost complex structure ˜J ∈ �(T ˜M (1,1))

such that (g̃, ˜J ) is a Kähler structure on ˜M and

˜KX ˜JY + ˜J ˜KXY = 0
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holds for X ,Y ∈ �(T ˜M). It is easy to show that

˜∇X (˜JY ) = ˜J˜∇∗
XY

for X ,Y ∈ �(T ˜M). See [4] for example.
Let (M, g, J ) be a Kähler manifold of dimension m = 2l. Let ι : M → ˜M be a

holomorphic isometric immersion, that is, ι∗g̃ = g and

ι∗ J X = ˜J ι∗X

holds for X ∈ �(T M). We often call such an M a complex submanifold of ˜M . It is
known that M is a minimal submanifold of ˜M as well.

Let (∇, g) be the statistical structure onM induced by ι from (˜∇, g̃). Then (∇, g, J )

is a holomorphic statistical structure on M . Besides, we have the following:

Theorem 3.1 Let ( ˜M, ˜∇, g̃, ˜J ) be a holomorphic statistical manifold and ι :
(M, g, J ) → ( ˜M, g̃, ˜J ) a holomorphic isometric immersion. Then ι is doubly mini-
mal. In fact,

B(X , JY ) = ˜J B∗(X ,Y ) (3.1)

holds for X ,Y ∈ �(T M).

Proof We have for X ,Y ∈ �(T M),

˜∇X (˜J ι∗Y ) = ˜J˜∇∗
X ι∗Y = ˜J {ι∗∇∗

XY + B∗(X ,Y )}
= ι∗ J∇∗

XY + ˜J B∗(X ,Y ),

˜∇X ι∗ JY = ι∗∇X (JY ) + B(X , JY ),

which imply that ∇X (JY ) = J∇∗
XY and Equation (3.1). In the same way, we have

B∗(X , JY ) = ˜J B(X ,Y ).

Using them and the symmetricity of the second fundamental forms, we have
B(X , X) + B(J X , J X) = B(X , X) + ˜J B∗(J X , X) = B(X , X) + ˜J 2B(X , X) = 0.
Since (g, J ) is a Hermitian structure, taking orthonormal frame fields of the form
{e2 j−1, Je2 j−1} j=1,...,l , we calculate the mean curvature vector field by

2lH =
l

∑

j=1

{B(e2 j−1, e2 j−1) + B(e2 j , e2 j )}

=
l

∑

j=1

{B(e2 j−1, e2 j−1) + B(Je2 j−1, Je2 j−1)} = 0.

We have H∗ = 0 in the similar fashion. Therefore, ι is doubly minimal. ��
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Remark 3.2 Although Theorem 3.1 itself seems trivial, it is an interesting problem to
determine when a doubly minimal submanifold is holomorphic conversely.

Let ( ˜M, ˜∇, g̃, ˜φ,˜ξ) be a Sasakian statistical manifold. By definition, ( ˜M, ˜∇ =
∇ g̃ + ˜K , g̃) is a statistical manifold with a Sasakian structure (g̃, ˜φ,˜ξ) such that

˜KX˜φY + ˜φ ˜KXY = 0 (3.2)

holds for X ,Y ∈ �(T ˜M). We briefly review the notion of Sasakian structures; ( ˜M, g̃)
is a Riemannian manifold, ˜φ ∈ �(T ˜M (1,1)),˜ξ ∈ �(T ˜M), and the triplet (g̃, ˜φ,˜ξ)

satisfies (1) ˜φ˜ξ = 0, (2) g̃(˜ξ,˜ξ) = 1, (3) ˜φ2X = −X + g̃(X ,˜ξ)˜ξ , (4) g̃(˜φX ,Y ) +
g̃(X , ˜φY ) = 0, (5) (∇ g̃

X
˜φ)Y = g̃(Y ,˜ξ)X − g̃(Y , X)˜ξ for X ,Y ∈ �(T ˜M). We also

remark that the dimension of such a manifold is odd.
Let ( ˜M, g̃, ˜φ,˜ξ) be a Sasakian manifold. We set ˜K ∈ �(T ˜M (1,2)) as

˜KXY = g̃(X ,˜ξ)g̃(Y ,˜ξ)˜ξ (3.3)

for X ,Y ∈ �(T ˜M). Then, the quadruplet (g̃, ˜∇ = ∇ g̃ + ˜K , ˜φ,˜ξ) is a Sasakian
statistical structure, because ˜K satisfies (2.1) and (3.2).

Let (M, g, φ, ξ) be a Sasakian manifold, and ι : M → ˜M an invariant immersion,
that is,

ι∗g̃ = g, ι∗ ◦ φ = ˜φ ◦ ι∗, and ˜ξ ◦ ι = ξ

hold. Let (∇, g) be the statistical structure on M induced by ι from (˜∇, g̃). Then
(∇, g, φ, ξ) is a Sasakian statistical structure on M .

Theorem 3.3 Let ( ˜M, ˜∇, g̃, ˜φ,˜ξ)beaSasakian statisticalmanifold and ι : (M, g, φ, ξ) →
( ˜M, g̃, ˜φ,˜ξ) an invariant immersion. Then ι is doubly minimal. In fact,

B(X , φY ) = ˜φB∗(X ,Y )

holds for X ,Y ∈ �(T M).

See [6] for example.
An immersion ι of M into a Sasakian manifold ( ˜M, g̃, ˜φ,˜ξ) is said to be C-totally

real if g̃(ι∗X ,˜ξ) = 0 for all X ∈ �(T M). In particular, a C-totally real submanifold
M is said to be Legendrian if dim ˜M = 2 dim M + 1.

Proposition 3.4 Let ( ˜M, ˜∇, g̃, ˜φ,˜ξ) be a Sasakian statistical manifold with ˜K in (3.3).
If ι : M → ( ˜M, g̃, ˜φ,˜ξ) is aC-totally real immersion, then B = B∗ = ̂B. Inparticular,
if ι is a minimal C-totally real immersion, then it is doubly minimal.

Proof Since ˜K (ι∗X , ι∗Y ) = 0 for any X ,Y ∈ �(T M), we have that˜∇X ι∗Y = ∇ g̃
X ι∗Y ,

and that B = ̂B. ��
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Example 3.5 (1) Let S2n−1 be a unit hypersphere in the Euclidean space R2n . Let J
be a standard almost complex structure on R

2n considered as Cn . Set ξ = −J N ,
where N is a unit normal vector filed of S2n−1. Define φ ∈ �(T (S2n−1)(1,1)) by
φX = J X − g(J X , N )N . Denote by g the standard metric of the hypersphere.
Then such a (g, φ, ξ) is known as a standard Sasakian structure of S2n−1. We set
K ∈ �(T (S2n−1)(1,2)) as in (3.3). Then, the quadruplet (g,∇ = ∇g + K , φ, ξ) is a
Sasakian statistical structure on S2n−1.

(2) The natural inclusion of S3 into S5 is an invariant immersion between two
Sasakian manifolds defined above. By Theorem 3.3, it is a doubly minimal immer-
sion, in fact, a doubly totally-geodesic immersion between two Sasakian statistical
manifolds.

(3) The immersion from a torus into the above Sasakian manifold (S5, g, φ, ξ)

defined by

S1 × S1 � (u, v) 	→ 1√
3
(cos u, sin u, cos v, sin v, cos(u + v),− sin(u + v)) ∈ S5

is a minimal C-totally real immersion. By Proposition 3.4, this torus is a doubly
minimal submanifold of the above statistical manifold (S5,∇, g).

In the end, we will state a non-existence theorem of doubly minimal immersions.
For a statistical manifold (M,∇, g), we define

U (∇,g) = 2R∇g − 1

2
(R∇ + R∇∗

).

Then U = U (∇,g) ∈ �(T M (1,3)) has similar properties to those of the Riemannian
curvature tensor field R∇g ∈ �(T M (1,3)) for g, from which we can define ρU =
trgRicU like the scalar curvature. The tensor field U vanishes for a Hessian manifold
of constant Hessian curvature zero, for example. See [7] for details.

Theorem 3.6 Let ( ˜M, ˜∇, g̃) be aHessianmanifold of constantHessian curvature zero.
Suppose that a statistical manifold (M,∇, g) has a point x such that ρU (x) > 0. Then
there exists no doubly minimal statistical immersion of (M,∇, g) into ( ˜M, ˜∇, g̃).

Proof We prove in [7] the following inequality at each point in M :

1

2
(‖H‖2 + ‖H∗‖2) ≥ 1

m(m − 1)
ρU (3.4)

The theorem is a direct consequence. ��
It is a classical result that a 2-dimensional Riemannian manifold with a positive

Gaussian curvature point admits no minimal isometric immersion into the Euclidean
space. In the casewhere the ambient space is the Euclidean space, Theorem3.6 reduces
to this fact. See [7] again for details and a generalization of Theorem 3.6.
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4 Appendix

We will present several related problems in this section, which is added by following
the suggestion of the editorial committee.

1. Characterize doubly minimal statistical immersions from a variation problem. In
the Riemannian submanifold theory, minimal immersions are characterized as critical
points of the volume functional determined by the induced metric. What is the coun-
terpart of this fact in the statistical submanifold theory? Is it related to the stability in
the Riemannian minimal submanifold theory?

2. Characterize statistical structures which admit doubly minimal statistical immer-
sions into standard statistical manifolds. In other words, construct the statistical
submanifold version of the following theorem (See [3]).

Theorem 4.1 Let (M, g) be a simply connected Riemannian manifold of dimension 2.
Denote by Kg the Gaussian curvature of g. Let M(c) be the 3-dimensional space form
of section curvature c ∈ R. Suppose that Kg < c everywhere, and set a Riemannian
metric on M by ĝ = (c−Kg)g. The Riemannian manifold (M, g) admits an isometric
minimal immersion into M(c) if and only if the Gaussian curvature of ĝ satisfies

Kĝ = 1 + c

Kg − c
.

This themealso includes an important problemwhich is to determine the counterpart
for M(c). Is our tensor field U useful for this problem? Is the property to admit many
doubly totally-geodesic submanifolds useful for this problem as well?

The elementary contents of this article should have been written much earlier than
many detailed works on inequalities for statistical submanifolds got published. We
refer the readers to the surveys [1, 2] due to B.-Y. Chen.
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