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Abstract
Using a Banach manifold structure on the space of finite positive measures it is shown
that all critical points of the Gibbs/information entropy are grand canonical equilibria
when the constraints are scalar, and local equilibria when the constraints are integrable
functions. This provides a rigorous derivation of equilibrium and local equilibrium
Gibbs measures via Lagrange multipliers.

Keywords Gibbs ensembles · Lagrange multipliers · Local equilibrium · Banach
manifold

1 Introduction

In classical statistical mechanics one seeks to derive the Gibbs equilibrium distribu-
tions as critical points of the information entropy over a space of measures satisfying
certain constraints. Gibbs himself showed via an elementary argument that such dis-
tributions minimize information entropy for given energy, see [7, Theorem 2, p. 130].
See also also [13, p. 746] and (27) below.

Arguments using Lagrange multipliers to show that all critical points of entropy
under constraints are Gibbs distributions are widespread. For examples see Huang’s
classic text [11, p. 82] or the recent text [9, p. 24] and articles such as [12] or [24].
For the local equilibrium case see [27, p. 66]. These formal applications of Lagrange
multiplier theory on unspecified function spaces do not address the differentiability of

1 For Gibbs, the main feature of these distributions is that “when the system consists of parts with separate
energies, the [distribution] of the separate parts are of the same nature,” [7, p. 33].
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the entropyor of the constraints. They face the problem that strictly positive distribution
functions do not tend to form open sets in function spaces and therefore it is not always
clear how to differentiate.

The answer, of course, is to endow the relevant space of measures with a differ-
entiable manifold structure. In order to apply Lagrange multiplier theory on Banach
manifolds, as in [1] for example, we set the following minimum requirements for the
manifold structure we seek:

• The information entropy must be at least C1,
• all constraints must also be at least C1, and
• the manifold charts must map the measures we eventually work with into open
sets.

We show here that a Banach manifold structure closely related to the one introduced
in [22] and further developed in [3] satisfies these requirements. We can then apply
standard theorems for constrained optimization on Banach manifolds as in [1] to
conclude that all critical points1 are indeedGibbs distributions. For other constructions
of statistical manifolds see [16,18,19,25,26].

Here we shall insist on a manifold structure on spaces of finite measures as in
[3] and will impose the condition that we have probability measures as one of the
constraints. Starting with probabilitymeasures would introduce an extra complication
in the model space of functions (the functions would have to be “centered” as in [22,
p. 1553]) making the derivative formulas more difficult to work with. It is also the
custom in Physics to impose probability as a constraint.

Our main motivation is to characterize local equilibrium Gibbs ensembles, i.e. crit-
ical points of entropy under constraints that are functions on space domains rather
than constants. We have found this to be a necessary step in the further development
of ideas from Statistical Mechanics via Information Geometry, along the lines of [4]
for example. Local equilibrium measures also play a prominent role both in Morrey’s
seminal work on the derivation of hydrodynamic equations from microscopic dynam-
ics [17], as well as in one of the most important advances on the same problem to
date, [20]. For the role of local equilibrium ensembles in non-equilibrium statistical
mechanics in general see [5, §3].

It turns out that the same manifold structure works for both equilibrium measures
and local equilibrium measures: when the constraints are scalar the result is equilib-
rium Gibbs and scalar Lagrange multipliers (inverse temperature, chemical potential,
etc.); when the constraints are functions the result is local equilibrium Gibbs and the
multipliers are elements of the space dual to the function constraints (bounded func-
tions). An argument completely analogous to the equilibrium case shows that the local
equilibrium critical points are again minimizers. We find this to be one of the main
features of the method here: changing the target of the constraints gives the correct
multipliers while the manifold structure remains the same.

With these understood, the main results of this article are:

• the realization that the space of Definition 1 satisfies our requirements and

1 We always use the term “critical point” in the sense of calculus of variations and not in the sense of phase
transitions.
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• Theorem 2 that charecterizes local Gibbs equilibria in terms of entropy.

In Sect. 2 we show in a general setting how to define a manifold structure on
finite measures on some arbitrary space so that both entropy and scalar constraints
are continuously differentiable and we obtain the equilibrium Gibbs formulas for the
critical points.

Section 3 contains the application of the general result to the equilibrium grand
canonical Gibbs on the phase space of a physical system.

The case of the local equilibrium appears as Sect. 4.
As explained in [22, p. 1548], one is naturally led to model the space of finite

positive measures on Orlicz spaces. Here, we shall always set

Φ(x) = e|x | − 1 (1)

and we shall use the Orlicz space (for Young function Φ)

LΦ(μ) :=
{
f : Ω → R measurable :

∫
Ω

Φ(α f (x))μ(dx) < ∞ f or some α > 0

}
(2)

The norm

‖ f ‖LΦ(μ) = inf

{
k > 0 :

∫
Ω

Φ

(
f (x)

k

)
μ(dx) ≤ 1

}
, (3)

renders LΦ(μ) a Banach space [23, Chapter 3, Theorem 10]. We shall rely on the fact
that LΦ(μ), for this Φ, continuously embeds into L p(μ) for all p ≥ 1:

LΦ(μ) ↪→
⋂
p≥1

L p(μ), (4)

see [3, Equation 3.104], [22, Proposition 2.3].
To ensure that entropy is also continuously differentiable, we shall work on those

components of the manifold consisting of measures that have the logarithm of their
density (with respect to the fixed referencemeasure) in the correspondingOrlicz space.
This should be compared to the discussion in [21, p. 4055] regarding the differentia-
bility of entropy on the subspace of probability measures.

2 The general case for real-valued constraints

2.1 Manifold structure

For a fixed space Ω , with μ0 fixed positive (but not necessarily finite) measure, and
for

C : Ω → Rn; C(x) = (C1(x), . . . ,Cn(x)) (5)
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a measurable vector-valued function on Ω (out of which the constraints will be
defined), we are interested in a manifold structure (eventually rendering informa-
tion entropy and constraints differentiable) on the set of finite measures with strictly
positive densities

F :=
{
μ : μ � μ0,

dμ

dμ0
> 0,

∫
Ω

|Ci (x)| μ(dx) < +∞, i = 0, 1, . . . , n

}
. (6)

Note that here, and for the rest of this article, we setC0(x) ≡ 1 to include the finiteness
of the measures. To construct the manifold structure we use (and adapt) the approach
from [3, §3.3.3] for all of the finite measures |Ci |μ simultaneously:

Definition 1 Define

Xμ =
n⋂

i=0

LΦ(|Ci |μ), (7)

with norm

‖ f ‖Xμ = max
0≤i≤n

(‖ f ‖LΦ(|Ci |μ)

)
, (8)

using the notation of (3).

A few remarks regarding the intersection of (7) are in order. The intersection is
taken in the space of measurable functions. Given that all of the Ci ’s do not vanish
off a set of μ0 measure zero, the convergence in each LΦ(|Ci |μ) implies pointwise
convergence up to subsequence, therefore a sequence that is Cauchy with respect to
each of the norms has the same limit in each space. (This argument was suggested by
a diligent referee.)

Alternatively, use the standard metric for convergence in measure (see for example
[8, p. 63, Exercise 32]) and apply [2, p. 57] to show that Xμ is Banach.

In any case, from now on we will be working under the following

Assumption For all i and μ0-almost all x :

Ci (x) 	= 0. (9)

It will be easy to check that this assumption is satisfied in the applications that
follow.

Definition 2 Let μ,μ′ ∈ F . Define μ′ ≤ μ if μ′ = ψμ, ψ ∈ L p(|Ci |μ) for some
p > 1 and all i = 0, 1, . . . , n. Write μ′ ∼ μ when both μ ≤ μ′ and μ′ ≤ μ hold.

Then ∼ is an equivalence relation: this follows from the argument preceding Propo-
sition 3.11 in [3, p. 178], repeated for each of the finite measures |Ci |μ. Note that
once we have a ψi in L pi (|Ci |μ) from this argument we can choose the smallest pi
to satisfy Definition 2.
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Xμ will be the model space for each equivalence class of this equivalence relation
and the equivalence classes will be connected components with the same tangent space
with respect to the manifold structure we are after. More precisely:

Proposition 1 If μ′ ≤ μ then the identity map continuously embeds Xμ into Xμ′ . In
particular, μ′ ∼ μ implies Xμ = Xμ′ as Banach spaces, i.e. they consist of the same
elements and the norms are equivalent.

Proof Proposition 3.11 in [3, p. 178] shows the equality of each of the spaces in the
intersection of Definition 2. �
Proposition 2 For μ in F and K the equivalence class of μ, the map

sμ : μ′ = ψμ �→ logψ (10)

has open and convex image sμ(K ) in Xμ.

Proof That the image is in Xμ follows directly from Definition 2 of the equivalence
relation once the comments at the beginning of section 3.3.3 at [3, p. 176] are repeated
for each of the spaces in the intersection (7).

Given this, the proof of [3, Theorem 3.4] applies verbatim to show that the image
is open and covex. �
Remark 1 Both sμ and its inverse on sμ(K ), given by s−1

μ (u) = euμ, are continu-
ous with respect to the following modification of the standard e-convergence, cf. [3,
Definition 3.13 and Proposition 3.13]:

Definition 3 For {gkμ0, k ∈ N } and gμ0 in F we say that gkμ0 is e-convergent to
gμ0 if for all i = 0, 1, . . . , n and all p ≥ 1 we have

lim
k→∞

∫
Ω

∣∣∣∣
(
gk
g

)
− 1

∣∣∣∣
p

|Ci |gμ0 = 0, and lim
k→∞

∫
Ω

∣∣∣∣
(

g

gk

)
− 1

∣∣∣∣
p

|Ci |gμ0 = 0.

(11)

Changing from μ to μ′ = ψμ in the same equivalence class replaces sμ with a
homeomorphism sμ′ from the same K to Xμ′ . The transition function

s−1
μ ◦ sμ′ : sμ(Xμ) → sμ′(Xμ′) (12)

between open sets in equivalent Banach spaces is

u �→ u + logψ, (13)

clearly a C∞ diffeomorphism.
This provides the Banach manifold structure we shall use: F is a disjoint union of

open, connected components, the equivalence classes, and every component is mod-
eled by any of the equivalentBanach spaces Xμ, forμ in the corresponding equivalence
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class, cf. [3, Remark 3.13]. Via the chart sμ the tangent space TμF of F at μ (defined

as equivalence classes of curves) can be identified with Xμ =
⋂n

i=0
LΦ(|Ci |μ),

with the norm (8) or any of the equivalent norms ‖ f ‖Xμ′ , μ′ ∼ μ, via an isomor-

phism (the restriction on fibres of a bundle isomorphism
⋃

μ∈K TμF � sμ(K )× Xμ

corresponding to sμ, see [1, p. 155]).

2.2 Entropy and constraints

Consider now the information entropy2

H : F → R ∪ {+∞}
H(φμ0) =

∫
Ω

φ logφ μ0.
(14)

It turns out that if μ′ ∼ μ with μ = φμ0 and μ′ = τμ0 then logφ ∈ LΦ(μ) iff
log τ ∈ LΦ(μ′) and H(φμ0) is finite iff H(τμ0) is, see [21, p. 4055, §4.3]. Recalling
standard facts from [1, Corollary 2.4.10, Definition 3.2.5], to show that H is C1 it is
enough to show that H ◦ s−1

μ is C1-Gateaux on Xμ.

Proposition 3 Let μ = φμ0 be such that logφ ∈ LΦ(μ). Then H is is a real valued
C1 function on K and

d0(H ◦ s−1
μ )[v] =

∫
(logφ(x) + 1)v(x)φ(x)μ0(dx). (15)

Proof Following [1, Corollary 2.4.20 and Definition 3.2.5] it is enough to check that
H ◦ s−1

μ is C1-Gateaux on sμ(Kμ). For this, calculate

du(H ◦ s−1
μ )[v] = d

dt

∣∣∣∣
t=0

(
H ◦ s−1

μ

)
(u + tv)

=
∫

veu
[
1 + u + logφ

]
μ(dx)

(16)

for u, v ∈ Xμ. Applying Hölder on the last two terms and using that logφ ∈ LΦ(μ)

and (4) we get

∣∣∣du(H ◦ s−1
μ )[v]

∣∣∣ ≤ ‖u‖Xμ′ ‖v‖Xμ′ + C‖v‖Xμ′ , (17)

for μ′ = euμ. Then use Proposition 1 to see that duH is bounded. The continuous
dependence on u follows from (16) with the use of (11). �
Definition 4 Define Fe to be the union of all the components K of F such that for
μ = φμ0 in K the condition logφ in LΦ(μ) holds.

2 For the relation between this information entropy and thermodynamic entropy, see formula (14) of [14,
p. 63].

123



Information Geometry (2021) 4:377–391 383

Define now, for Ci as in (5),

Gi : F → R, Gi (μ) =
∫

Ci (x)μ(dx)

G : F → Rn+1,G(μ) = (G0(μ), . . . ,Gn(μ)).
(18)

Proposition 4 G is C1 on F and

d0(G ◦ s−1
μ )[v] =

∫
v(x)C(x)μ(dx). (19)

Proof First calculate

d0(Gi ◦ s−1
μ )[v] = d

dt

∣∣∣∣
t=0

∫
Cie

tvμ =
∫

Ci vμ, (20)

and repeat the argument of Proposition 3 for the measure |Ci |μ for each i . �
Remark 2 The Propositions above provide C1 differentiability which is sufficient for
applying Proposition 5 below. Higher differentiability is likely, but we shall not insist
on it here.

Recall now that a closed subspace F of a Banach space E is “split” if there is a closed
subspace H of E such that E = F

⊕
H , where F

⊕
H is the direct sum of F and

H (i.e. the product of F and H with the product topology and any of the equivalent
norms that produce this topology).

Also recall that a map f between Banach manifolds M and N is a submersion if
for each m in M , dm f is surjective with split kernel.

Lemma 1 dμG : TμF → Rn+1 is surjective for all μ in F .

Proof If not, there is i such that for all v in Xμ

∫
Ci (x) v(x)μ(dx) = 0. (21)

This implies Ci ≡ 0 as the characteristic function of the set M = {x : Ci (x) > 0} is
in Xμ, contradicting our standing Assumption (9). �
Lemma 2 TμF = ker dμG ⊕ F, with F, ker dμG closed subspaces.

Proof Since dμG is continuous, it is standard that ker dμG is closed, cf. [8, Chapter 5,
Exercise 15]). Take F to be the span of y0, y1, . . . , yn ∈ TμF such that dμG[yi ] = ei
for all i , and ei the standard basis vectors in Rn+1. The statement follows from the
fact that

P(x) =
n∑

i=0

dμGi [x]yi (22)
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is a projection with F as fixed points and the characterization of direct sums in terms
of projections as in [1, Proposition 2.2.17]. �
We are now ready to apply the following, see [1, Proposition 3.5.24]:

Proposition 5 Let M and P be Banach manifolds, let f : M → R be C1, and let
g : M → P be a C1 submersion. For N = g−1(p0) for some p0 in P a point n in N is
a critical point of f

∣∣
N if and only if there exists λ in (Tp0 P)∗, a Lagrange multiplier,

such that dn f = λ ◦ dng.

Recalling Definition 4, we then have

Theorem 1 Let G : F → Rn+1 as in (18). Then μ = φμ0 is a critical point of the
Gibbs entropy H as in (14) in G−1(γ ) ∩ Fe, for some γ in the image of G and Fe as
in Definition 4, if and only if there exist λi ’s inR such that

φ =
exp

(
n∑

i=1

λiCi (x)

)

∫
Ω

exp

(
n∑

i=1

λiCi (x)

)
μ0(dx)

. (23)

Proof Apply Proposition 5 to G and H at φμ0 using the formulas for the derivative
from (19) and (15) respectively to get λ ∈ Rn+1 such that

∫
Ω

[
logφ(x) + 1

]
v(x) μ(dx) = λ ·

∫
Ω

C(x) v(x)μ(dx) (24)

for all v ∈ Xμ. Equivalently,

∫
Ω

(
logφ(x) + 1 −

n∑
i=0

λiCi (x)

)
v(x) μ(dx) = 0 (25)

for all v ∈ Xμ. As in the proof of Lemma 1, this implies

logφ(x) = −1 + λ0 +
n∑

i=1

λi Ci (x). (26)

Since the first constraint is 1, this implies the statement. �
Recall here the standard argument from [13] to see that the the Gibbs measure (23)

is an entropy minimizer: for any other μ = τμ0 satisfying the same constraints

H(τμ0) =
∫

(τ log
τ

φ
+ τ logφ)μ0

≥
∫

τ logφμ0

=
∫

τ
∑

λiCiμ0 − log Z = H(φμ0),

(27)
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for Z the denominator of (23).

3 The grand canonical ensemble in statistical mechanics

3.1 The grand canonical ensembles as entropyminimizers

We now apply the previous section to derive the grand canonical Gibbs measure in
Statistical Mechanics as a ctitical point of Gibbs entropy under function constraints,
as explained in the Introduction.

Recall first that a classical system of N particles in an open bounded domain
Λ of R3 is described at any time by the positions q1, . . . , qN of the particles and
the corresponding momenta p1, . . . , pN , with the qi ’s in Λ and the pi ’s in R3. In
classical statistical mechanics, see [7], one examines ensembles of systems, with each
system in the ensemble occuring according to some probability law. This means that
one works with ΛN × (R3)N . And if one does not fix the number of particles then

the relevant space is
⊔∞

N=1

(
Λ × R3

)N
. At equilibrium the probability does not

change. Prominent among equilibrium distributions are the canonical (for fixed N )
and the grand canonical Gibbs distributions (when N is not fixed). We examine here
the grand canonical - the argument for the canonical follows by restricting on a fixed
N component.

Then let Λ be a finite volume, open set in R3 and XΛ the corresponding phase
space

XΛ =
⊔
N≥1

(
ΛN × R3N

)
=

(
Λ × R3

)
�

(
Λ2 × R6

)
� . . . (28)

Each of the components of this disjoint union has the topology from R6N . The
underlying σ -algebra will be

⋃
N≥1 B(ΛN ×R3N ) where B(ΛN ×R3N ) is the Borel

σ -algebra on ΛN × R3N .
The reference measure μ0 on XΛ will be

μ0 =
∞∑
N=1

dq1 . . . dN
N ! dp1 . . . dpN . (29)

Then for f measurable on XΛ

∫
XΛ

f μ0 =
∑
N≥1

∫
ΛN×R3N

f (q1, . . . , qN , p1, . . . , pN )
dq1 . . . dN

N ! dp1 . . . dpN .

(30)

For more on XΛ see [15, p. 18].
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To describe the constraints, start with U a stable interaction potential (measuring
the potential energy of a particle configuration), i.e.

U : XΛ → R, measurable and symmetric,
(q1, . . . , qN ) → U (q1, . . . , qN ), f or each N
U (q1, . . . , qN ) ≥ −NL,

(31)

for some L > 0 and for all N ∈ N , and define the total energy of a configuration
(q,p) = (q1, . . . , qN , p1, . . . , pN ) as the sum of the potential and the kinetic energy

E : XΛ → R,

E(q1, . . . , qN , p1, . . . , pN ) = 1

2

N∑
i=1

|pi |2 +U (q1, . . . , qN ).
(32)

(We are implicitely setting all masses equal to 1.)
The total momentum and particle number are defined as

P : XΛ → R3, P(q1, . . . , qN , p1, . . . , pN ) =
N∑
i=1

pi (33)

and

N : XΛ → N , N(q1, . . . , qN , p1, . . . , pN ) = N , (34)

respectively. The constraints now are

E[μ] :=
∫
XΛ

E(q,p)μ(dq, dp) = e0,

P[μ] :=
∫
XΛ

P(q,p)μ(dq, dp) = p0,

Ñ[μ] :=
∫
XΛ

N(q,p)μ(dq, dp) = n0,

(35)

with derivatives

dμE[v] =
∫
XΛ

E(q,p) v(q,p)μ(dq, dp),

dμP[v] =
∫
XΛ

P(q,p) v(q,p)μ(dq, dp),

dμÑ[v] =
∫
XΛ

N(q,p) v(q,p)μ(dq, dp),

(36)
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respectively. The Gibbs grand canonical distribution for paramaters β, λ, ν is defined
as φβ,λ,νμ0 with

φβ,λ,ν(q,p) = exp (βE(q,p) + λ · P(q,p) + νN (q,p))

Zβ,λ,ν

,

Zβ,λ,ν =
∫
XΛ

eβE+λ·P+νEμ0.

(37)

We now show that the requirement of Theorem 1 does not eliminate the Gibbs grand
canonical distribution.

Proposition 6 For U stable potential as in (31) and β < 0, logφβ,λ,ν is in
LΦ(φβ,λ,νμ0).

Proof As in [3, Proposition 3.9 of §3.3.2] it suffices to show logφβ,λ,ν is in
Lcosh(t)−1(φβ,λ,νμ0). We show there exists ε > 0 such that

∫
XΛ

(
cosh

(
ε logφβ,λ,ν

) − 1
)
φβ,λ,νμ0 < +∞. (38)

For this, after disposing of constants, it is enough to show that there exists ε > 0 such
that

∫
XΛ

(
e(1+ε)[βE+λ·P+νN ] + e(1−ε)[βE+λ·P+νN ])μ0 < +∞. (39)

For the second term in the integral complete the square to get

∫
XΛ

e

(1 − ε)

[
βU +

N∑
i=1

β

2

(
pi + λ

2β

)2

− λ2

2β
+ νN

]

μ0 (40)

and integrate with respect to dp1 . . . dpN to get, up to constant, when ε < 1,

∑
N

(
2π

(1 − ε)β

)N/2

e(1−ε)λ2/2βe(1−ε)νN
∫

ΛN
e(1−ε)βU dq1 . . . dqN

N ! . (41)

The stability condition gives

∫
ΛN

e(1−ε)βU dq1 . . . dqN
N ! ≤

∫
ΛN

e(1−ε)βLN dq1 . . . dqN
N !

= e(1−ε)βLN |Λ|N
N ! < +∞,

(42)

where |Λ| denotes the Lebesgue measure of Λ. Therefore (41) is finite for any ε < 1.
The argument repeats for the first term in (39), this time without restrictions on ε. �
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Apply Theorem 1 to get

Corollary 1 A probability measure μ is a critical point for the entropy H amongst all
probabiliy measures inFe with fixed E , P , andN if and only if μ is a grand canonical
Gibbs φβ,λ,νμ0 for some β,λ, ν.

3.2 The range of the constraints

For applications, it is important to know the possible values that we gan give the
constraints (35). An answer to this was given in [6], without the use of any manifold
structure, where an intricate step was to show that the set of all such values is open.
Given what we have already developed here, we can show directly the openess of this
set, in the general setting of the previous section.

Proposition 7 Let

G : F → Rn+1, G[μ] =
∫

C(x)μ(dx), (43)

for C as in (5). Then G has an open image.

Proof We have already established the surjectivity of dμG under the assumptions of
the Proposition in 1. The openess then follows from the local surjectivity theorem [1,
Proposition 2.5.9]. �

The uniqueness of (β,λ, ν) given (e0,p0, n0) was also shown in [6, Proposition
1] using the Legendre transform of H (the log-partition function). In future work we
shall address this point in the framework of information geometry.

4 The local equilibrium

The main application of what we have developed so far is that we can rigorously
address the case of local equilibrium Gibbs measures, i.e. we can find critical points
of the same entropy function subject to different constraints to get measures on the
XΛ of the form

1

Z
exp

{
N∑
i=1

β(qi )E(q1, . . . , qN , p1, . . . , pN ) +
N∑
i=1

ν(qi ) +
N∑
i=1

λ(qi )pi

}
μ0,

(44)

for Z the partition function (normalizing constant).
To achieve this, we start from the same space of measures, with the difference that

now the constraints are functions rather than constants, and the (unaltered) defintion of
F renders these functions integrable. The function constraints are defined as follows,
where we always use the max norm on the product of Banach spaces: let

C(q1, . . . , qN , p1, . . . , pN ) = (E,P,N)(q1, . . . , qN , p1, . . . , pN ), (45)
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for E,P,N as in (32), (33), (34), and define now

G : F → R+ × L1(Λ, dx) × · · · × L1(Λ, dx),

G(μ)(x) =
(∫

μ(dq, dp),

∫ N∑
i=1

C(q1, . . . , qN , p1, . . . , pN )δx (qi )μ(dq, dp)

)
,

(46)

where we use the Dirac δx (qi ) merely as a shorthand for replacing x for qi and
integrating with respect to all q j ’s except qi . The result is a function of x . Integrating
with respect to the x variable restores the missing qi integration and the definition of
F shows that the last five components of G are indeed in L1(Λ) with respect to dx .

Proposition 8 G is C1 on F with

d0(G ◦ s−1
μ ) : Xμ → R+ × L1(Λ, dx) × · · · × L1(Λ, dx)

d0(G ◦ s−1
μ )[v] =

(∫
XΛ

vμ(dq, dp),

∫
XΛ

N∑
i=1

C v δx (qi )μ(dq, dp).

)
(47)

Proof As in the proof of Proposition 4,

d0(G j ◦ s−1
μ )[v] = d

dt

∣∣∣∣
t=0

∫
XΛ

N∑
i=1

C je
tvδ(qi − x)μ

=
∫
XΛ

N∑
i=1

C j v δ(qi − x)μ.

(48)

Then

‖d0(G j ◦ s−1
μ )[v]‖L1(dx) ≤

∫
Λ

∫
XΛ

N∑
i=1

|C j | |v| δ(qi − x)μ dx

≤
∑
N≥1

N
∫

|v| |C j |μ.

(49)

Use now (4) and apply Proposition 1 for μ ∼ Nμ to conclude as in Proposition 3. �
Define nowR to be the set of regular values of G, i.e. values of G with pre-image

consisting of measures where the derivative of G is surjective with split kernel.

Theorem 2 A measure μ is a critical point for the entropy H as in (14) amongst all
measures μ′ = φμ0 in Fe which satisfy G(μ′) = (1, f1, . . . f5) ∈ R if and only if
μ is a local equilibrium Gibbs probability measure as in (44) for some L∞(Λ, dx)
functions β,λ, ν.

Proof Let μ = φμ0 be a critical point. By Theorem 5, there exist

(λ0, β(x),λ(x), ν(x)) ∈ (R × L1(Λ, dx) × · · · × L1(Λ, dx)
)∗

= R × L∞(Λ, dx) × · · · × L∞(Λ, dx)
(50)
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(for the sum norm on the last product) such that

∫
XΛ

(logφ + 1) v φ μ0 = λ0

∫
XΛ

vμ(dq, dp)

+
∫

Λ

β(x)
∫
XΛ

∑
i

Evδx (qi )μ(dq, dp) dx

+
∫

Λ

λ(x)
∫
XΛ

∑
i

Pvδx (qi )μ(dq, dp) dx

+ ∫
Λ

ν(x)
∫
XΛ

∑
i Nvδx (qi )μ(dq, dp) dx,

(51)

for all v. Replace qi for x to get

∫
XΛ

(
logφ + 1 − λ0 −

N∑
i=1

β(qi )E −
N∑
i=1

λ(qi )P −
N∑
i=1

ν(qi )N

)
v μ = 0, (52)

for all v. As in the proof of Theorem 1, for
∫

μ = 1 this implies

φ = 1

Z
exp

(
N∑
i=1

β(qi )E +
N∑
i=1

λ(qi )P +
N∑
i=1

ν(qi )N

)
. (53)

�
An argument completely analogous to the equilibrium case shows that the critical
points are again minimizers.

In the case of the local equilibrium it turns out to be substantial more difficult
to check the conditions for a regular value, i.e. surjectivity and split kernel. As in
corresponding finite dimensional cases, regular values are dense provided certain con-
ditions are satisfied, see [1, Appendix E]. In future work we address the problem of
characterizing the elements of R.
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