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Abstract
We study a natural Wasserstein gradient flow on manifolds of probability distributions
with discrete sample spaces. We derive the Riemannian structure for the probability
simplex from the dynamical formulation of the Wasserstein distance on a weighted
graph. We pull back the geometric structure to the parameter space of any given
probability model, which allows us to define a natural gradient flow there. In contrast
to the natural Fisher–Rao gradient, the natural Wasserstein gradient incorporates a
ground metric on sample space. We illustrate the analysis of elementary exponential
family examples and demonstrate an application of the Wasserstein natural gradient
to maximum likelihood estimation.

Keywords Optimal transport · Information geometry · Wasserstein statistical
manifold · Displacement convexity · Machine learning

1 Introduction

The statistical distance between histograms plays a fundamental role in statistics and
machine learning. It provides the geometric structure on statistical manifolds [3].
Learning problems usually correspond to minimizing a loss function over these man-
ifolds. An important example is the Fisher–Rao metric on the probability simplex,
which has been studied especially within the field of information geometry [3,6]. A
classic result due to Chentsov [11] characterizes this Riemannian metric as the only
one, up to scaling, that is invariant with respect to natural statistical embeddings by
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Markov morphisms (see also [9,21,32]). Using the Fisher–Rao metric, a natural Rie-
mannian gradient descent method is introduced [2]. This natural gradient has found
numerous successful applications in machine learning (see, e.g., [1,27,35,36,40]).

Optimal transport provides another statistical distance, namedWasserstein or Earth
Mover’s distance. In recent years, this metric has attracted increasing attention within
the machine learning community [5,16,31]. One distinct feature of optimal transport
is that it provides a distance among histograms that incorporates a ground metric
on sample space. The L2-Wasserstein distance has a dynamical formulation, which
exhibits a metric tensor structure. The set of probability densities with this metric
forms an infinite-dimensional Riemannian manifold, named density manifold [20].
The gradient descent method in the density manifold, called Wasserstein gradient
flow, has been widely studied in the literature; see [34,38] and references.

A question intersecting optimal transport and information geometry arises: What is
the natural Wasserstein gradient descent method on the parameter space of a statistical
model? In optimal transport, the Wasserstein gradient flow is studied on the full space
of probability densities, and shown to have deep connections with the ground metrics
on sample space deriving from physics [33], fluid mechanics [10] and differential
geometry [25]. We expect that these relations also exist on parametrized probability
models, and that the Wasserstein gradient flow can be useful in the optimization of
objective functions that arise inmachine learning problems. By incorporating a ground
metric on sample space, thismethod can serve to implement useful priors in the learning
algorithms.

We are interested in developing synergies between the information geometry and
optimal transport communities. In this paper, we take a natural first step in this direc-
tion. We introduce the Wasserstein natural gradient flow on the parameter space of
probability models with discrete sample spaces. The L2-Wasserstein metric on dis-
crete states was introduced in [12,26,29]. Following the settings from [13,14,17,22],
the probability simplex forms the Riemannianmanifold calledWasserstein probability
manifold. The Wasserstein metric on the probability simplex can be pulled back to
the parameter space of a probability model. This metric allows us to define a natural
Wasserstein gradient method on parameter space.

We note that one finds several formulations of optimal transport for continuous
sample spaces.On the one hand, there is the static formulation, knownasKantorovich’s
linear programming [38]. Here, the linear program is to find the minimal value of a
functional over the set of jointmeasures with givenmarginal histograms. The objective
functional is given as the expectation value of the ground metric with respect to a joint
probability density measure. On the other hand, there is the dynamical formulation,
knownas theBenamou-Brenier formula [8]. This dynamic formulationgives themetric
tensor formeasures by lifting the groundmetric tensor of sample spaces.Both static and
dynamic formulations are equivalent in the case of continuous state spaces. However,
the two formulations lead to different metrics in the simplex of discrete probability
distributions. Themajor reason for this difference is that the discrete sample space is not
a length space.1 Thus the equivalence result in classical optimal transport is no longer

1 A length space is one in which the distance between points can be measured as the infimum length of
continuous curves between them.
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true in the setting of discrete sample spaces. We note that for the static formulation,
there is no Riemannian metric tensor for the discrete probability simplex. See [14,26]
for a detailed discussion.

In the literature, the exploration of connections between optimal transport and infor-
mation geometrywas initiated in [4,18,39]. Theseworks focus on the distance function
induced by linear programming on discrete sample spaces. As we pointed out above,
this approach can not cover the Riemannian and differential structures induced by opti-
mal transport. In this paper, we use the dynamical formulation of optimal transport
to define a Riemannian metric structure for general statistical manifolds. With this,
we obtain a natural gradient operator, which can be applied to any optimization prob-
lem over a parameterized statistical model. In particular, it is applicable to maximum
likelihood estimation. Other works have studied the Gaussian family of distributions
with L2-Wasserstein metric [30,37]. In that particular case, the constrained optimal
transport metric tensor can be written explicitly and the corresponding density sub-
manifold is a totally geodesic submanifold. In contrast to those works, our discussion
is applicable to arbitrary parametric models.

This paper is organized as follows. In Sect. 2 we briefly review the Riemannian
manifold structure in probability space introduced by optimal transport in the cases of
continuous and discrete sample spaces. In Sect. 3 we introduce Wasserstein statistical
manifolds by isometric embedding into the probability manifold, and in Sect. 4 we
derive the corresponding gradient flows. In Sect. 5 we discuss a few examples.

2 Optimal transport on continuous and discrete sample spaces

In this section, we briefly review the results of optimal transport. We introduce the
corresponding Riemannian structure for simplices of probability distributions with
discrete support.

2.1 Optimal transport on continuous sample space

We start with a review of the optimal transport problem on continuous spaces. This
will guide our discussion of the discrete state case. For related studies, we refer the
reader to [20,38] and the many references therein.

Denote the sample space by (�, g�). Here � is a finite dimensional smooth Rie-
mannian manifold, for example, Rd or the open unit ball therein. Its inner product
is denoted by g� and its volume form by dx . Denote the geodesic distance of � by
d� : � × � → R+.

Consider the setP2(�) of Borelmeasurable probability density functions on�with
finite second moment. Given ρ0, ρ1 ∈ P2(�), the L2-Wasserstein distance between
ρ0 and ρ1 is denoted by W : P(�) ×P(�) → R+. There are two equivalent ways of
defining this distance. On one hand, there is the static formulation. This refers to the
following linear programming problem:
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W (ρ0, ρ1)2 = inf
π∈�(ρ0,ρ1)

∫
�×�

d�(x, y)2π(dx, dy), (1)

where the infimum is taken over the set �(ρ0, ρ1) of joint probability measures on
� × � that have marginals ρ0, ρ1.

On the other hand, the Wasserstein distance W can be written in a dynamic formu-
lation, where a probability path ρ : [0, 1] → P2(�) connecting ρ0, ρ1 is considered.
This refers to a variational problem known as the Benamou-Brenier formula:

W (ρ0, ρ1)2 = inf
�

∫ 1

0

∫
�

g�
x (∇�(t, x),∇�(t, x))ρ(t, x)dxdt, (2a)

where the infimum is taken over the set of Borel potential functions [0, 1] × � → R.
Each potential function � determines a corresponding density path ρ as the solution
of the continuity equation

∂ρ(t, x)

∂t
+ div(ρ(t, x)∇�(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x). (2b)

Here div and∇ are the divergence and gradient operators in�. The continuity equation
is well known in physics.

The equivalence of the static (1) and dynamic (2) formulations is well known (for
continuous�). For the reader’s convenience we give a sketch of proof in the appendix.
In this paperwe focus on the variational formulation (2). In fact, this formulation entails
the definition of a Riemannian structure as we now discuss. For simplicity, we only
consider the set of smooth and strictly positive probability densities

P+(�) =
{
ρ ∈ C∞(�) : ρ(x) > 0,

∫
�

ρ(x)dx = 1
}

⊂ P2(�).

Denote F(�) := C∞(�) the set of smooth real valued functions on �. The tangent
space of P+(�) is given by

TρP+(�) =
{
σ ∈ F(�) :

∫
�

σ(x)dx = 0
}
.

Given � ∈ F(�) and ρ ∈ P+(�), define

V�(x) := −div(ρ(x)∇�(x)).

We assume the zero flux condition
∫

�

V�(x)dx = 0.

In view of the continuity equation, the zero flux condition is equivalent to requiring
that

∫
�

∂ρ
∂t dx = 0, which means that the space integral of ρ is always 1. When �
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is compact without boundary, this is automatically satisfied. This is also true when
� = R

d and ρ has finite second moment. Thus V� ∈ TρP+(�). The elliptic operator
∇·(ρ∇) identifies the function� on�modulo additive constants with a tangent vector
V� of the space of densities (for more details see [20,25]). This gives an isomorphism

F(�)/R → TρP+(�); � �→ V�.

Define theRiemannianmetric (inner product) on the tangent space of positive densities
gW : TρP+(�) × TρP+(�) → R by

gWρ (V�, V�̃) =
∫

�

g�
x (∇�(x),∇�̃(x))ρ(x)dx,

where �(x), �̃(x) ∈ F(�)/R. This inner product endows P+(�) with an infinite
dimensional Riemannian metric tensor. In other words, the variational problem (2) is
a geometric action energy in (P+(�), gW ) in the sense of [8,25]. In literature [20],
(P+(�), gW ) is called density manifold.

2.2 Dynamical optimal transport on discrete sample spaces

We translate the dynamical perspective from the previous section to discrete state
spaces, i.e., we replace the continuous space � by a discrete space I = {1, . . . , n}.

To encode the metric tensor of discrete states, we first need to introduce a ground
metric notion on sample space. We do this in terms of a graph with weighted edges,
G = (V , E, ω), where V = I is the vertex set, E is the edge set, andω = (ωi j )i, j∈I ∈
R
n×n are the edge weights. These weights satisfy

ωi j =
{

ω j i > 0, if (i, j) ∈ E

0, otherwise
.

Asmentioned above, the weights encode the ground metric on the discrete state space.
More precisely, we write

ωi j = 1

(dGi j )
2
, if (i, j) ∈ E, (3)

where dGi j represents the distance or ground metric between states i and j . The set of
neighbors or adjacent vertices of i is denoted by N (i) = { j ∈ V : (i, j) ∈ E}.

The probability simplex supported on the vertices of G is defined by

P(I ) =
{
(p1, . . . , pn) ∈ R

n :
n∑
i=i

pi = 1, pi ≥ 0
}
.

Here p = (p1, . . . , pn) is a probability vector with coordinates pi corresponding
to the probabilities assigned to each node i ∈ I . We denote the relative interior of
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the probability simplex by P+(I ). This consists of the strictly positive probability
distributions, p ∈ P(I ) with pi > 0, i ∈ I .

Next we introduce the variational problem (2) on discrete states. First we need to
define the “metric tensor” on graphs. A vector field v = (vi j )i, j∈V ∈ R

n×n on G is a
skew-symmetric matrix:

vi j =
{

−v j i , if (i, j) ∈ E

0, otherwise
.

A potential function � = (�i )
n
i=1 ∈ R

n defines a gradient vector field ∇G� =
(∇G�i j )i, j∈V ∈ R

n×n on the graph G by the finite differences

∇G�i j =
{√

ωi j (�i − � j ) if (i, j) ∈ E

0 otherwise
.

Here we use
√

ω rather than 1/dG for simplicity of notations. In this way, we can
represent the gradient, divergence, and Laplacian matrix in a multiplicity of weight,
instead of dividing the ground metric.

We define an inner product of vector fields vi j , ṽi j at each state i ∈ I by

gIi (v, ṽ) := 1

2

∑
j∈N (i)

vi j ṽi j .

In particular, the gradient vector field∇G� defines a kinetic energy at each state i ∈ I
by

gIi (∇G�,∇G�) := 1

2

∑
j∈N (i)

(�i − � j )
2ωi j .

We next define the expectation value of kinetic energy with respect to a probability
distribution p:

(∇G�,∇G�)p :=
∑
i∈I

pi g
I
i (∇G�,∇G�) = 1

2

∑
(i, j)∈E

ωi j (�i − � j )
2 pi + p j

2
.

This can also be written as

(∇G�,∇G�)p =
n∑

i=1

�i

∑
j∈N (i)

ωi j (�i − � j )
pi + p j

2
= �T( − divG(p∇G�)

)
,

where

− divG(p∇G�) :=
( ∑
j∈N (i)

ωi j (�i − � j )
pi + p j

2

)
i∈I . (4)
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There are two definitions hidden in (4). First, divG : Rn×n → R
n maps any given

vector field m on the graph G to a potential function

divG(m) =
( ∑

j∈N (i)

√
ωi jm ji

)
i∈I

.

Second, the probability weighted gradient vector field m = p∇G� defined by

mi j =
{

pi+p j
2 (�i − � j )

√
ωi j , if (i, j) ∈ E

0, otherwise
,

where
pi+p j

2 represents the probability weight on the edge (i, j) ∈ E .
We are now ready to introduce the L2-Wasserstein metric on P+(I ).

Definition 1 For any p0, p1 ∈ P+(I ), define the Wasserstein distance W : P+(I ) ×
P+(I ) → R by

W (p0, p1)2 := inf
p(t),�(t)

{∫ 1

0
(∇G�(t),∇G�(t))p(t)dt

}
.

Here the infimum is taken over pairs (p(t),�(t)) with p ∈ H1((0, 1),Rn) and
� : [0, 1] → R

n measurable, satisfying

ṗ(t) + divG(p(t)∇G�(t)) = 0, p(0) = p0, p(1) = p1.

Remark 1 It is worth mentioning that the metric given in Definition 1 is different from
themetric defined by linear programming. In other words, denote the distance dG(i, j)
between two vertices i and j as the length of a shortest (i, j)-path. If (i, j) ∈ E , then
dG(i, j) is same as the ground metric defined in (3). Then

(
W (p0, p1)

)2 
≡ min
π

{ ∑
1≤i, j≤n

dG(i, j)2πi j :
n∑

i=1

πi j = p0j ,
n∑
j=1

πi j = p1i , πi j ≥ 0
}
.

(5)
The reason for this in-equivalence is that the discrete sample space I is not a length
space. In other words, there is no continuous path in I connecting two nodes in I . For
more details see discussions in the appendix.

2.3 Wasserstein geometry and discrete probability simplex

In this section we introduce the primal coordinates of the discrete probability simplex
with L2-Wasserstein Riemannian metric. Our discussion follows the recent work [22].
The probability simplexP(I ) is a manifold with boundary. To simplify the discussion,
we focus on the interior P+(I ). The geodesic properties on the boundary ∂P(I ) have
been studied in [17].
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Let us focus on the Riemannian structure. In the following we introduce an inner
product on the tangent space

TpP+(I ) =
{
(σi )

n
i=1 ∈ R

n :
n∑

i=1

σi = 0
}
.

Denote the space of potential functions on I by F(I ) = R
n . Consider the quotient

space
F(I )/R = {[�] : (�i )

n
i=1 ∈ R

n},
where [�] = {(�1 + c, . . . , �n + c) : c ∈ R} are functions defined up to addition of
constants.

We introduce an identification map via (4)

V : F(I )/R → TpP+(I ), V� = −divG(p∇G�).

In [12] it is shown that V� : F(I )/R → TpP+(I ) is a well defined map which
is linear and one-to-one. I.e., F(I )/R ∼= T ∗

pP+(I ), where T ∗
pP+(I ) is the cotangent

space of P+(I ). This identification induces the following inner product on TpP+(I ).
We first present this in a dual formulation, which is known in the literature [25].

Definition 2 (Inner product in dual coordinates) The inner product gWp : TpP+(I ) ×
TpP+(I ) → R takes any two tangent vectors V� and V�̃ ∈ TpP+(I ) to

gWp (V�, V�̃) = (∇G�,∇G�̃)p. (6)

We shall now give the inner product in primal coordinates. The following matrix
operator will be the key to the Riemannian metric tensor of (P+(I ), gW ).

Definition 3 (Linear weighted Laplacian matrix) Given I = {1, . . . , n} and a
weighted graph G = (I , E, ω), the matrix function L(·) : Rn → R

n×n is defined by

L(a) = DT
(a)D, a = (ai )
n
i=1 ∈ R

n,

where

• D ∈ R
|E |×n is the discrete gradient operator

D(i, j)∈E,k∈V =

⎧⎪⎨
⎪⎩

√
ωi j , if i = k, i > j

−√
ωi j , if j = k, i > j

0, otherwise

,

• −DT ∈ R
n×|E | is the discrete divergence operator, also called oriented incidence

matrix [15], and
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• 
(a) ∈ R
|E |×|E | is a weight matrix depending on a,


(a)(i, j)∈E,(k,l)∈E =
{

ai+a j
2 if (i, j) = (k, l) ∈ E

0 otherwise
.

Consider some p ∈ P+(I ). From spectral graph theory [15], we know that L(p)
can be decomposed as

L(p) = U (p)

⎛
⎜⎜⎜⎝

0
λ1(p)

. . .

λn−1(p)

⎞
⎟⎟⎟⎠U (p)T.

Here 0 < λ1(p) ≤ · · · ≤ λn−1(p) are the eigenvalues of L(p) in ascending order,
andU (p) = (u0(p), u1(p), · · · , un−1(p)) is the corresponding orthogonal matrix of
eigenvectors with

u0 = 1√
n
(1, . . . , 1)T.

We write L(p)† for the pseudo-inverse of L(p), i.e.,

L(p)† = U (p)

⎛
⎜⎜⎜⎜⎝

0
1

λ1(p)
. . .

1
λn−1(p)

⎞
⎟⎟⎟⎟⎠U (p)T.

With σ = L(p)�, σ̃ = L(p)�̃, we see that

σ TL(p)†σ̃ = �TL(p)L(p)†L(p)�̃ = �TL(p)�̃ = (∇G�,∇G�̃)p.

Now we are ready to give the inner product in primal coordinates.

Definition 4 (Inner product in primal coordinates) The inner product gWp : TpP+(I )×
TpP+(I ) → R is defined by

gWp (σ, σ̃ ) := σ TL(p)†σ̃ , for any σ, σ̃ ∈ TpP+(I ).

In otherwords, the variational problem fromDefinition 1 is aminimization of geometry
energy functional in P+(I ), i.e.,

W (p0, p1)2 = inf
p(t)∈P+(I ),t∈[0,1]

{ ∫ 1

0
ṗ(t)TL(p(t))† ṗ(t)dt : p(0) = p0, p(1) = p1

}
.
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This defines a Wasserstein Riemannian structure on the probability simplex. For more
details of Riemannian formulas see [22]. Following [20] we could call (P+(I ), gW )

discrete density manifold. However, this could be easily confused with other notions
from information geometry, and hence we will use the more explicit terminology
Wasserstein statistical manifold, or Wasserstein manifold for short.

3 Wasserstein statistical manifold

In this section we study parametric probability models endowed with the L2-
Wasserstein Riemannian metric. We define this in the natural way, by pulling back the
Riemannian structure from theWasserstein manifold that we discussed in the previous
section. This allows us to introduce a natural gradient flow on the parameter space of
a statistical model.

3.1 Wasserstein statistical manifold

Consider a statistical model defined by a triplet (�, I , p). Here, I = {1, . . . , n} is the
sample space, � is the parameter space, which is an open subset of Rd , d ≤ n − 1,
and p : � → P+(I ) is the parametrization function,

p(θ) = (pi (θ))ni=1, θ ∈ �.

In the sequel we will assume that rank(Jθ p(θ)) = d, so that the parametrization is
locally injective.

We define a Riemannian metric g on � as the pull-back of metric gW on P+(I ). In
other words, we require that p : (�, g) → (P+(I ), gW ) is an isometric embedding:

gθ (a, b) := gWp(θ)(dp(θ)(a), dp(θ)(b))

= (
dp(θ)(a)

)T
L(p(θ))†

(
dp(θ)(b)

)
.

Here dp(θ)(a) = (∑n
j=1

∂ pi (θ)
∂θ j

a j
)n
i=1 = Jθ p(θ)a, where Jθ p(θ) is the Jacobimatrix

of p(θ) with respect to θ . We arrive at the following definition.

Definition 5 For any pair of tangent vectors a, b ∈ Tθ� = R
d , define

gθ (a, b) := aT Jθ p(θ)TL(p(θ))† Jθ p(θ)b,

where Jθ p(θ) = (
∂ pi (θ)
∂θ j

)1≤i≤n,1≤ j≤d ∈ R
n×d is the Jacobi matrix of the parametriza-

tion p, and L(p(θ))† ∈ R
n×n is the pseudo-inverse of the linear weighted Laplacian

matrix.

This inner product is consistent with the restriction of the Wasserstein metric gW

to p(�). For this reason, we call p(�), or (�, I , p), together with the induced Rie-
mannian metric g,Wasserstein statistical manifold.
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We need to make sure that the embedding procedure is valid, because the metric
tensor L(p)† is only of rank n−1. The next lemma shows that (�, g) is a well defined
d-dimensional Riemannian manifold.

Lemma 6 For any θ ∈ �, we have

λmin(θ) = inf
a∈Rd ,‖a‖2=1

gθ (a, a) > 0.

In addition, gθ is smooth as a function of θ , so that (�, g) is a smooth Riemannian
manifold.

Proof We only need to show that Jθ p(θ)TL(p(θ))† Jθ p(θ) ∈ R
d×d is a positive

definite matrix. Consider

aT Jθ p(θ)TL(p(θ))† Jθ p(θ)a = 0,

where 0 ∈ R
n−1. Since L(p) only has one simple eigenvalue 0 with eigenvector u0,

then
Jθ p(θ)a = cu0, for some constant c ∈ R

1. (7)

Since uT0 p(θ) = 1√
n

∑n
i=1 pi (θ) = 0, we have that uT0

∂ p(θ)
∂θ j

= 1√
n

∑n
i=1

∂ pi (θ)
∂θ j

= 0,
i.e.,

uT0 Jθ p(θ) = 0.

Left multiply u0 into (7), we obtain

0 = uT0 Jθ p(θ)a = cuT0u0 = c.

Thus c = 0, and (7) forms
Jθ p(θ)a = 0.

Since rank(Jθ p(θ)) = d < n, we have a = 0, which finishes the proof. ��

We illustrate somegeometric calculations on parameter space (�, g). For simplicity
of illustration, we assume � ⊂ R

d , and denote a matrix function G(θ) ∈ R
d×d with

gθ (θ̇ , θ̇ ) = θ̇TG(θ)θ̇ , i.e.,

G(θ) = (Jθ p(θ))TL(p(θ))†(Jθ p(θ)). (8)

Under this notation, given θ0, θ1 ∈ �, the Riemannian distance on (�, g) is defined
by the geometric action functional:

Dist(θ0, θ1)
2 = inf

θ(·)∈C1([0,1];�)

{ ∫ 1

0
θ̇ (t)TG(θ(t))θ̇(t)dt : θ(0) = θ0, θ(1) = θ1

}
.

(9)
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Denote θ(t) = θt , and St is the Legendre transformation of θ̇t in (�, g), then the
cotangent geodesic flow satisfies

{
θ̇t − G(θt )

−1St = 0

Ṡt + 1
2

∂
∂θ
STt G(θt )

−1St = 0.
(10)

It is worth recalling the following facts. If p is an identity map, then (10) translates
to {

ṗ + divG(p∇GS) = 0

Ṡ + 1
4

∑
j∈N (i)(∇GS)2 = 0.

In addition, if I = � and we replace i by x and pi (t) by ρ(t, x), the above becomes

{
∂ρ(t,x)

∂t + div(ρ(t, x)∇S(t, x)) = 0
∂S(t,x)

∂t + 1
2 (∇S(t, x))2 = 0,

which are the standard continuity and Hamilton-Jacobi equations on �. For these
reasons, we call the two equations in (10) the continuity equation and the Hamilton-
Jacobi equation on parameter space.

3.2 Geometry calculations in statistical manifold

Wenext present the geometric formulas in a probabilitymodel. This approach connects
the geometry formulas in the full probability set to the ones in a submanifold (p(�), g),
and in the parameter space (�, g).

We first study the orthogonal projection operator from (P+(I ), gW ) to (p(�), g).

Theorem 7 Given θ ∈ �, for any tangent vector σ ∈ Tp(θ)P+(I ), there exists a
unique orthogonal decomposition

σ = σ ‖ + σ⊥, (11)

with σ ‖ ∈ Tp(θ) p(�) and σ⊥ ∈ Np(θ) p(�), i.e., gWp(θ)(σ
‖, σ⊥) = 0. At each point

p(θ), the projection matrix

H(p(θ)) = Jθ p(θ)
(
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)†
Jθ p(θ)TL(p(θ))† ∈ R

n×n,

gives the decomposition by

σ ‖ = H(p(θ))σ, σ⊥ = (I − H(p(θ)))σ,

where I is an identity matrix in Rn×n.
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Proof Wefirst prove that (11) is a decomposition. It is to check that gWp(θ)(σ
‖, σ⊥) = 0,

i.e.

σ TH(p(θ))TL(p(θ))†(I − H(p(θ)))σ

= σ T
(
H(p(θ))TL(p(θ))†H(p(θ)) − H(p(θ))TL(p(θ))†

)
σ = 0.

Recall G(θ) = Jθ p(θ)TL(p(θ))† Jθ p(θ). We check that

H(p(θ))TL(p(θ))†H(p(θ))

= L(p(θ))† Jθ p(θ)G(θ)† Jθ p(θ)TL(p(θ))† Jθ p(θ)G(θ)† Jθ p(θ)TL(p(θ))†

= L(p(θ))† Jθ p(θ)G(θ)†G(θ)G(θ)† Jθ p(θ)TL(p(θ))†

= L(p(θ))† Jθ p(θ)G(θ)† Jθ p(θ)TL(p(θ))†

= H(p(θ))TL(p(θ))†,

which shows the claim.We next prove the uniqueness of decomposition (11). Suppose
there are two decomposition σ = σ || + σ⊥, σ̃ = σ̃ || + σ̃⊥, where σ || = Jθ p(θ)θ̇ and

σ̃ || = Jθ p(θ)
˙̃
θ . From the definition, then

0 = gWp (σ || − σ̃ ||, σ̃⊥ − σ⊥) = gWp (σ || − σ̃ ||, σ || − σ̃ ||)

= (Jθ p(θ)θ̇ − Jθ p(θ)
˙̃
θ)TL(p(θ))†(Jθ p(θ)θ̇ − Jθ p(θ)

˙̃
θ)

= (θ̇ − ˙̃
θ)T Jθ p(θ)TL(p(θ))† Jθ p(θ)(θ̇ − ˙̃

θ)

= (θ̇ − ˙̃
θ)TG(θ)(θ̇ − ˙̃

θ).

Since G(θ) is positive definite, we have θ̇ = ˙̃
θ and σ || = σ̃ ||, which finishes the proof.

��

Wenext present the second fundamental form for submanifold (p(�), g). Given any
σ , σ̃ ∈ Tp(θ) p(�), consider the orthogonal decomposition of Levi–Civita connection
in (P+(I ), gW ):

∇W
σ σ̃ = (∇W

σ σ̃ )‖ + (∇W
σ σ̃ )⊥.

The second fundamental form is the orthogonal part of this decomposition, i.e.,
Bp(θ)(σ, σ̃ ) := (∇W

σ σ̃ )⊥.

Proposition 8 (Second fundamental form) Let ∇G · ◦∇G · : Rn × R
n → R

n so that,
for any �, �̃ ∈ R

n,

(∇G� ◦ ∇G�̃) :=
(
gIi (∇G�,∇G�̃)

)n
i=1

= 1

2

( ∑
j∈N (i)

ωi j (�i − � j )(�̃i − �̃ j )
)n
i=1

.
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Then

Bp(θ)(σ, σ̃ ) = −1

2

(
I − H(p(θ))

){
L(σ )L(p(θ))†σ̃ + L(σ̃ )L(p(θ))†σ

− L(p(θ))(∇GL(p(θ))†σ ◦ ∇GL(p(θ))†σ̃ )
}
.

Proof As shown in [22, Proposition 11], the Christoffel formula in (P+(I ), gW ) sat-
isfies

∇W
σ σ̃ = 1

2

{
L(σ )L(p(θ))†σ̃ + L(σ̃ )L(p(θ))†σ

−L(p(θ))(∇GL(p(θ))†σ ◦ ∇GL(p(θ))†σ̃ )
}
. (12)

Following the projection operator H(p(θ)), we finish the proof. ��
We next establish the parallel transport and geodesic equation in (p(�), g).

Proposition 9 (Parallel transport) Let p(θt ) ∈ p(�), t ∈ (0, 1) be a smooth curve.
Consider a vector field σt ∈ Tp(θt ) p(�) along curve p(θt ). Then the equation for σt
to be parallel along p(θt ) satisfies

σ̇t = 1

2
H(p(θt ))

{
L(σ )L(p(θt ))

† ṗ(θt ) + L( ṗ(θt ))L(p(θt ))
†σt

−L(p(θt ))(∇GL(p(θt ))
† p(θt ) ◦ ∇GL(p(θt ))

† ṗ(θt ))
}
.

If σt = ṗ(θt ), then the geodesic equation satisfies

p̈(θt ) = H(p(θt ))
{
L( ṗ(θt ))L(p(θt ))

† ṗ(θt )

− 1

2
L(p(θt ))(∇GL(p(θt ))

† p(θt ) ◦ ∇GL(p(θt ))
† ṗ(θt ))

}
.

Proof The parallel equation in a submanifold is given by

σ̇t +
(
∇W

ṗ(θt )
σt

)‖ = 0.

In other words, we have
σ̇t = −H(p(θt ))∇W

ṗ(θt )
σt ,

where ∇W is defined in (12). Let σt = ṗ(θt ), then

p̈(θt ) +
(
∇W

ṗ(θt )
ṗ(θt )

)‖ = 0.

This means that
p̈(θt ) = −H(θt )∇W

ṗ(θt )
ṗ(θt ).

Following the projection operator and (12), we finish the proof. ��
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We last present the curvature tensor in (p(�), g), denoted by R(·, ·)· : Tp(�) p(�)×
Tp(θ) p(�) × Tp(θ) p(�) → Tp(θ) p(�).

Proposition 10 (Curvature tensor) Given σ1, σ2, σ3, σ4 ∈ Tp(θ) p(�), then

gp(θ)(R(σ1, σ2)σ3, σ4) = m(σ1, σ4)
T
(
I − H(p(θ))

)T
L(p(θ))†

(
I − H(p(θ))

)
m(σ2, σ3)

− m(σ1, σ3)
T
(
I − H(p(θ))

)T
L(p(θ))†

(
I − H(p(θ))

)
m(σ2, σ4)

+ 1

2

{
σ T
2 L(p(θ))†L(m(σ1, σ3))L(p(θ))†σ4

+ σ T
1 L(p(θ))†L(m(σ2, σ4))L(p(θ))†σ3

− σ T
2 L(p(θ))†L(m(σ1, σ4))L(p(θ))†σ3

− σ T
1 L(p(θ))†L(m(σ2, σ3))L(p(θ))†σ4

}

+ 1

4

{
2n(σ1, σ2)

TL(p(θ))†n(σ3, σ4)

+ n(σ1, σ3)
TL(p(θ))†n(σ2, σ4)

− n(σ2, σ3)
TL(p(θ))†n(σ1, σ4)

}
,

where m, n : Tp(θ) p(�) × Tp(θ) p(�) → Tp(θ) p(�) are symmetric, antisymmetric
operators respectively, which are defined by

m(σa, σb) := ∇W
σa

σb = 1

2

{
L(σa)L(p(θ))†σb + L(σb)L(p(θ))†σa

−L(p(θ))(∇GL(p(θ))†σa ◦ ∇GL(p(θ))†σb)
}
,

and
n(σa, σb) := L(σa)L(p(θ))†σb − L(σb)L(p(θ))†σa .

Proof The curvature tensor in submanifold relates to the one in full manifold as fol-
lows:

gp(θ)(R(σ1, σ2)σ3, σ4) = Bp(θ)(σ1, σ4)
TL(p(θ))†Bp(θ)(σ2, σ3)

− Bp(θ)(σ1, σ3)
TL(p(θ))†Bp(θ)(σ2, σ4)

+ gp(θ)(RW (σ1, σ2)σ3, σ4),

where RW is the curvature tensor of (P+(I ), gW ) derived in [22, Proposition 6].
Combining RW and the second fundamental form in Proposition 8, we derive the
result. ��

4 Gradient flow onWasserstein statistical manifold

In this section we introduce the natural Riemannian gradient flow on Wasserstein
statistical manifold (�, g).
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4.1 Gradient flow on parameter space

Consider a smooth loss function F : P+(I ) → R. Thus we focus on the composition
F ◦ p : � → R. The Riemannian gradient of F(p(θ)) is defined as follows. Given
∇gF(p(θ)) ∈ Tθ�, we have

gθ (∇gF(p(θ)), a) = ∇θ F(p(θ)) · a, for any a ∈ Tθ�, (13)

where ∇θ F(p(θ)) · a = ∑d
i=1

∂
∂θi

F(p(θ))ai . The gradient flow satisfies

θ̇t = −∇gF(p(θt )).

The next theorem establishes an explicit formulation of the gradient flow.

Theorem 11 (Wasserstein gradient flow) The gradient flow of a functional F :
P+(I ) → R is given by

θ̇t = −G(θt )
−1∇θ F(p(θt )),

where ∇θ is the Euclidean gradient of F(p(θ)) with respect to θ . More explicitly,

θ̇t = −
(
Jθ p(θt )

TL(p(θt ))
† Jθ p(θt )

)†
Jθ p(θt )

T∇pF(p(θt ), (14)

where ∇p is the Euclidean gradient of F(p) with respect to p.

Proof The proof follows directly from (13). Notice that

gθ (∇gF(p(θ)), a) = ∇gF(p(θ))T Jθ p(θ)TL(p(θ))† Jθ p(θ)a = ∇θ F(p(θ))Ta,

and Jθ p(θ)TL(p(θ))† Jθ p(θ) is an invertible matrix. Hence

∇gF(p(θ)) =
(
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)†

∇θ F(p(θ)).

We compute ∇θ F(p(θ)) as

∇θ F(p(θ)) =
(

∂

∂θi
F(p(θ))

)n

i=1
=

( n∑
j=1

∂

∂ p j
F(p(θ)) · ∂ p j (θ)

∂θi

)n

i=1
= Jθ p(θ)T∇p F(p(θ)).

This concludes the proof of (14). ��
Equation (14) is the generalization of Wasserstein gradient flow in probability

simplex to the one on parameter space. If p is an identity map with the parameter
space � equal to the entire probability simplex, then (14) is

ṗt = −∇gF(pt ) = divG(pt∇G∇pF(pt )),

123



Information Geometry (2018) 1:181–214 197

which is theWasserstein gradient flowon the discrete probability simplex. In particular,
if I = �, then it represents

∂tρt = −∇W F(ρt ) = div(ρt∇δρF(ρt )),

which is theWasserstein gradient flowon�. Fromnowon,we call (14) theWasserstein
gradient flow on parameter space.

The definition ofWasserstein gradient flow shares many similarities with the steep-
est gradient descent defined as follows. Consider

arg min
h∈Tθ�

F(p(θ + h)) s.t.
1

2
W (p(θ), p(θ + h))2 = ε, (15)

where ε ∈ R+ is a given small constant. By taking the second-order Taylor approxi-
mation of the Wasserstein distance at θ , we get

W (p(θ), p(θ + h))2 = hTG(θ)h + o(h2),

where G(θ) is the metric tensor of (�, g) defined in (8), inherited from Wasserstein
manifold. We take the first-order approximation of F(p(θ + h)) in (15) by

arg min
h∈Tθ�

F(p(θ)) + hT∇θ F(p(θ)) s.t.
1

2
hTG(θ)h = ε.

By the Lagrangian method with Lagrange multiplier λ, we have

h = λG(θ)−1∇θ F(p(θ)).

The above derivations lead to the Wasserstein natural gradient direction

∇gF(p(θ)) = G(θ)−1∇θ F(p(θ)).

Remark 2 In the standard Fisher–Rao natural gradient [2], we replace (15) by

argmin
h

F(p(θ + h)) s.t. KL(p(θ)‖p(θ + h)) = ε,

where KL stands for the Kullback-Leibler divergence (relative entropy) from p(θ) to
p(θ + h). Our definition changes the KL-divergence by the Wasserstein distance.

4.2 Displacement convexity on parameter space

TheWasserstein structure on the statistical manifold not only provides us the gradient
operator, but also the Hessian operator on (�, g). The latter allows us to introduce the
displacement convexity on parameter space.

We first review some facts. One remarkable property of Wasserstein geometry is
that it yields a correspondence between differential operators on sample space and
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differential operators on probability space. E.g., the Hessian operator on Wasserstein
manifold is equal to the expectation of Hessian operator on sample space.

An important example is stochastic relaxation. Given f (x) ∈ C∞(�), consider

F(ρ) = EX∼ρ[ f (X)] =
∫

�

f (x)ρ(x)dx .

It is known that the Hessian operator of F(ρ) on Wasserstein manifold satisfies

HessW F(ρ)(V�, V�̃) = EX∼ρ(Hess f (X)∇�(X),∇�̃(X)).

One can show that Hess f � λI if and only if HessW F(ρ)(V�, V�) � λgWρ (V�, V�).
This means that f is λ-geodesic convex in (�, g�) if and only if F(ρ) is λ-geodesic
convex in (P(�), gW ). In literature [38], the geodesic convexity on Wasserstein man-
ifold is known as the displacement convexity.

In this section we would like to extend the displacement convexity to parameter
space �. In other words, we relate the parameter to the differential structures of
sample space via constrainedWasserstein geometry (�, g). If� is the full probability
manifold, our definition coincides with the classical Hessian operator in sample space.

Definition 12 (Displacement convexity on parameter space) Given F ◦ p : � → R,
we say that F(p(θ)) is λ-displacement convex if for any constant speed geodesic θt ,
t ∈ [0, 1] connecting θ0, θ1 ∈ (�, g), it holds that

F(p(θt )) ≥ (1 − t)F(p(θ0)) + t F(p(θ1)) − λ

2
t(1 − t)Dist(θ0, θ1)

2,

where Dist is defined in (9). If F(p(θ)) = ∑n
i=1 fi pi (θ) is λ-displacement convex,

then we call f ∈ R
n λ-convex in (�, I , p).

Remark 3 In particular, the displacement convexity of KL divergence relates to the
Ricci curvature lower bound on sample space. We elaborate this notion in [23].

We next derive the displacement convexity condition for stochastic relaxation.

Theorem 13 Assume � ⊂ R
d is a compact set and f = ( fi )ni=1 ∈ R

n. Then f is
λ-convex if and only if

n∑
i=1

pi (θ)
(
�(�( f ,�),�) − 1

2
�(�(�,�), f )

)
i
+

n∑
i=1

fi Bp(θ)(V�, V�)i

≥ λ

n∑
i=1

�(�,�)i pi (θ), (16)

for any � ∈ F(I )/R and θ ∈ �. Here � : Rn × R
n → R

n is given by

�(�, �̃)i : = gIi (∇G�,∇G�̃) = 1

2

∑
j∈N (i)

ωi j (�i − � j )(�̃i − �̃ j ),
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and B is the second fundamental form given in Proposition 8.

Proof If� is a compact set, then theλ-displacement convexity of F(p(θ)) is equivalent
to

Hessg F(p(θ)) � λG(θ),

where Hessg F is the Hessian operator in (�, g). We next calculate this Hessian
operator explicitly. Notice that

Hessg F(σ, σ̃ ) = HessW F(σ, σ̃ ) + Bp(θ)(σ, σ̃ )T∇pF(p(θ)),

where HessW is the Hessian operator in (P+(I ), gW ). Denote the above in dual coor-
dinates, i.e. σ = σ̃ = V� = V�̃ = L(p(θ))�, and follow the geometric computations
in [22, Proposition 18], we finish the proof. ��
Here� is the discrete Bakry-EmeryGammaone operator [7]. The geometry ofWasser-
stein manifold is directly related to the expectation of Bakry-Emery Gamma one
operators [22]. In particular, if p is the identity mapping and I = �, then our defini-
tion (16) represents

∫
�

(
�(�( f ,�),�) − 1

2
�(�(�,�), f )

)
ρ(x)dx ≥ λ�(�,�)ρdx,

i.e. ∫
�

Hess f (x)(∇�(x),∇�(x))ρ(x)dx ≥ λ

∫
�

g�
x (∇�,∇�)ρ(x)dx

for anyρ, and vector fields∇�. The above inequality is same as requiringHess f � λI .
Our definition extends this concept to parameter space.

4.3 Numerical methods

Here we discuss the numerical computation of theWasserstein metric and theWasser-
stein gradient flow.

Let us give a simple reformulation of the gradient that can be useful in practice,
where typically n � d. Note that

(
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)† = Jθ p(θ)†L(p(θ))(Jθ p(θ)T)†.

Hence (7) can be written as

dθ

dt
= −Jθ p(θ)†L(p(θ))(Jθ p(θ)T)† Jθ p(θ)T∇pF(p(θ) .

In this formulation, the computation of the pseudo inverse of L(p(θ)) ∈ R
n×n is

not needed, and the computation complexity reduces to that of obtaining the pseudo
inverse of Jθ p(θ) ∈ R

n×d .
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Natural Wasserstein gradient method

for k = 1, 2, . . . while not converged
1. Choose a suitable step size λk > 0 ;

2. θk+1 = θk − λk
(
(Jθ p(θ

k ))TL(p(θk ))† Jθ p(θ
k )

)†
(Jθ p(θ

k ))T∇p F(p(θk )) ;
end

Natural Jordan–Kinderlehrer–Otto scheme

for k = 1, 2, . . . while not converged
1. Choose a suitable adaptive step size λk > 0 ;

2. θk+1 = argminθ∈� F(p(θ)) + Dist(θ,θk )2

2λk
;

end

Given the gradient flow (7), there are two standard choices of time discretization,
namely the forward Euler scheme and the backward Euler scheme. Denote the step
size by λ > 0. The forward Euler method computes a discretized trajectory by

θk+1 = θk − λ∇gF(p(θk)),

while the backward Euler method computes

θk+1 = argmin
θ∈�

F(p(θ)) + Dist(θ, θk)2

2λ
,

where Dist is the geodesic distance in parameter space (�, g).
In the information geometry literature, the forward Euler method is often referred

to as natural gradient method. In Wasserstein geometry, the backward Euler method
is often called the Jordan–Kinderlehrer–Otto (JKO) scheme. In the following we give
pseudo code for both numerical methods.

In practice, the forward Euler method is usually easier to implement than the back-
ward Euler method. We would also suggest to implement the natural Wasserstein
gradient using this method for minimization problems. As known in optimization, the
JKO scheme can also be useful for non-smooth objective functions. Moreover, the
backward Euler method is usually unconditionally stable, which means that one can
choose a large step size h for computations.

5 Examples

Example 1 ( Wasserstein geodesics) Consider the sample space I = {1, 2, 3} with an
unweighted graph 1−2−3. The probability simplex for this sample space is a triangle
in R3:

123



Information Geometry (2018) 1:181–214 201

P(I ) =
{
(pi )

3
i=1 ∈ R

3 :
3∑

i=1

pi = 1, pi ≥ 0
}
.

Following Definition 1, the L2-Wasserstein distance is given by

W (p0, p1)2 := inf
�(t)

∫ 1

0

{
(�1(t) − �2(t))

2 p1(t) + p2(t)

2

+(�2(t) − �3(t))
2 p2(t) + p3(t)

2

}
dt, (17)

where the infimum is taken over paths � : [0, 1] → R
3. Each � defines p : [0, 1] →

R
3 as the solution of the differential equation

⎧⎪⎨
⎪⎩
ṗ1 = (�1 − �2)

p1+p2
2

ṗ2 = (�2 − �1)
p1+p2

2 + (�2 − �3)
p2+p3

2

ṗ3 = (�3 − �2)
p2+p3

2

with boundary condition p(0) = p0, p(1) = p1.
Consider local coordinates in (17). We parametrize a probability vector as p =

(p1, 1 − p1 − p3, p3), with parameters (p1, p3). Then (17) can be written as

W (p0, p1)2 := inf
p(t) : p(0)=p0, p(1)=p1

∫ 1

0

{ ṗ1(t)2

1 − p3(t)
+ ṗ3(t)2

1 − p1(t)

}
dt . (18)

where the infimum is taken over paths p : [0, 1] → P+(I ). We also compare the
Wasserstein metric (18) with the Fisher–Rao metric. In this case, the Fisher–Rao
metric function is given by

FR(p0, p1)2 := inf
p(t) : p(0)=p0, p(1)=p1

∫ 1

0

{ ṗ1(t)2

p1(t)
+ ( ṗ1(t) + ṗ3(t))2

p2(t)
+ ṗ3(t)2

p3(t)

}
dt .

This clearly demonstrates the difference between Wasserstein Riemannian metric and
Fisher–Rao metric. We would also compare the dynamical optimal transport with the
statistical one. In particular, if the groundmetric is given by c12 = 1, c13 = 2, c23 = 1,
which is of homogenous degree one type. Then the statistical optimal transport defined
by

d(p0, p1) = inf
π≥0

{
c12π12 + c13π13 + c12π23 :

3∑
i=1

πi j = p0j ,
3∑
j=1

πi j = p1i

}
,

can be reformulated by

d(p0, p1) = inf
p(t) : p(0)=p0, p(1)=p1

∫ 1

0

{
| ṗ1(t)| + | ṗ3(t)|

}
dt .
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Fig. 1 The Wasserstein geodesic triangle from Example 1 plotted in the probability simplex (left) and in
exponential parameter space (right). The path connecting q1 and q3 bends towards q2; something that does
not happen for the other two paths. This illustrates how, as a result of the ground metric on sample space,
state 2 is treated differently from 1 and 3

Here the statistical formulation does not provide a Riemannian metric, but gives a
Finslerian metric.

We next compute (18) numerically2 for different choices of the boundary conditions
p0, p1. We fix three distributions

q1 = 1

8
(6, 1, 1), q2 = 1

8
(1, 6, 1), q3 = 1

8
(1, 1, 6) (19)

and solve (18) for three choices of the boundary conditions:

p0 = q1, p1 = q2; p0 = q1, p1 = q3; p0 = q2, p1 = q3. (20)

This gives us a geodesic triangle between q1, q2, q3, which is illustrated in Fig. 1. It
can be seen that (P+(I ),W ) has a non Euclidean geometry. Moreover, we see that the
geodesics depend on the graph structure on sample space, where state 2 is qualitatively
different from states 1 and 3.

We can make the same derivations in terms of an exponential parametrization.
Consider the parameter space � = {θ = (θ1, θ2) ∈ R

2} and the parametrization
p : � → P+(I ) with

p1(θ) = eθ1

eθ1 + eθ2 + 1
, p3(θ) = eθ2

eθ1 + eθ2 + 1
,

2 We use the direct method, which is a standard technique in optimal control. Here the time is dis-
cretized, and the sum replacing the integral is minimized by means of gradient descent with respect to
(p(t)i )i=1,3,t∈{t1,...,tN } ∈ R

2×N . A reference for these techniques is [24].
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Fig. 2 Exponential geodesic triangle plotted in the probability simplex (left) and in exponential parameter
space (right). Exponential geodesics correspond to straight lines in exponential parameter space

p2(θ) = 1 − p1(θ) − p3(θ) = 1

eθ1 + eθ2 + 1
.

We rewrite the Wasserstein metric (18) in terms of θ . Denote p(θk) = pk , k = 0, 1.
Then the Wasserstein metric in the coordinate system θ is

Dist(θ0, θ1)2

= inf
θ(t) : θ(0)=θ0, θ(1)=θ1

{ ∫ 1

0
θ̇T Jθ (p1, p3)

T

(
1

1−p3(θ)
0

0 1
1−p1(θ)

)
Jθ (p1, p3)θ̇dt

}
.

The resulting geodesic triangle in � is plotted in the right panel of Fig. 1.
For comparison, we compute the exponential geodesic triangle between the same

distributions q1, q2, q3. This is shown in Fig. 2. In this case, there is no distinction
between the states 1, 2, 3 and the three paths are symmetric. The exponential geodesic
between two distributions p0 and p1 is given by (p0)1−t (p1)t/

∑
x (p

0)1−t (p1)t ,
t ∈ [0, 1].

Example 2 (Wasserstein gradient flow on an independence model) We next illustrate
the Wasserstein gradient flow over the independence model of two binary variables.
The sample space is I = {−1,+1}2. For simplicity, we denote the states by a =
(−1,−1), b = (−1,+1), c = (+1,−1), d = (+1,+1). We consider the square
graph

b − d
| |
a − c

with vertices I , edges E = {{a, b}, {b, d}, {a, c}, {c, d}}, and weights ω =
(ωab, ωbd , ωac, ωcd) ∈ R

E attached to the edges. The edge weights correspond to
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the inverse squared ground metric that we assign to the sample space I . The probabil-
ity simplex for this sample space is the tetrahedron

P(I ) =
{
(p(x))x∈I ∈ R

4 :
∑
x∈I

p(x) = 1, p(x) ≥ 0
}
.

Following Definition 4, theWasserstein metric tensor is given by gWp = L(p)†, which
is the inverse of the linear weighted Laplacian metric L from Definition 3. In this
example the latter is

L(p) =

⎛
⎜⎜⎝

ωab
pa+pb

2 + ωac
pa+pc

2 −ωab
pa+pb

2 −ωac
pa+pc

2 0
−ωab

pa+pb
2 ωab

pa+pb
2 + ωbd

pb+pd
2 0 −ωbd

pb+pd
2

−ωac
pa+pc

2 0 ωac
pa+pc

2 + ωcd
pc+pd

2 −ωcd
pc+pd

2
0 ωbd

pb+pd
2 −ωcd

pc+pd
2 ωbd

pb+pd
2 + ωcd

pc+pd
2

⎞
⎟⎟⎠.

The independence model consist of the joint distributions that satisfy p(x1, x2) =
p(x1)p(x2). This can be parametrized in terms of � = {ξ = (ξ1, ξ2) ∈ [0, 1]2},
where ξ1 = p1(x1 = +1), ξ2 = p2(x2 = +1) describe the marginal probability
distributions. The parametrization p : � → P(I ) is then

p(ξ)(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − ξ1)(1 − ξ2) if (x1, x2) = (−1,−1)

(1 − ξ1)ξ2 if (x1, x2) = (−1,+1)

ξ1(1 − ξ2) if (x1, x2) = (+1,−1)

ξ1ξ2 if (x1, x2) = (+1,+1)

.

The model p(�) ⊂ P(I ) is a two dimensional manifold. The parameter space �

inherits theRiemannian structure gW fromP(I ),which is computed as follows.Denote
the Jacobi matrix of the parametrization by

Jξ p(ξ) =

⎛
⎜⎜⎝

−(1 − ξ2) −(1 − ξ1)

−ξ2 1 − ξ1
1 − ξ2 −ξ1

ξ2 ξ1

⎞
⎟⎟⎠ ∈ R

4×2.

Then gW induces a metric tensor on � given by

G(ξ) = Jξ p(ξ)TL(p(ξ))† Jξ (p(ξ)) ∈ R
2×2.

Wenowconsider a discrete optimization problemvia stochastic relaxation and illus-
trate the gradient flow. Consider following potential function on I , taken from [28]:

f (x1, x2) = x1 + 2x2 + 3x1x2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (x1, x2) = (−1,−1)

−2 if (x1, x2) = (−1,+1)

−4 if (x1, x2) = (+1,−1)

6 if (x1, x2) = (+1,+1)

.
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We are to minimize F(p) = Ep[ f ], i.e.,

F(p(ξ)) =
∑

(x1,x2)∈I
f (x1, x2)p1(x1)p2(x2) = −4ξ1 − 2ξ2 + 12ξ1ξ2.

By Theorem 11, the Wasserstein gradient flow is

ξ̇ = −G(ξ)−1∇ξ F(p(ξ)).

For our function, the standard Euclidean gradient is ∇ξ F(p(ξ)) = (−4+ 12ξ2,−2+
12ξ1)T. The matrix G is computed numerically from J and L .

In Fig. 3 we plot the negative Wasserstein gradient vector field in the parameter
space � = [0, 1]2. As can be seen, the Wasserstein gradient direction depends on the
ground metric on sample space (encoded in the edge weights). If b and d are far away,
there is higher tendency to go c, rather than b. This reflects the intuition that, the more
ground distance between b and d, the harder for the probability distribution to move
from its concentration place b to d. We observe that the the attraction region of the two
local minimizers changes dramatically as the ground metric between b and d changes,
i.e., as ωbd varies from 0.1, 1, 10. This is different in the Fisher–Rao gradient flow,
plotted in Fig. 4, which is independent of the ground metric on sample space.

The above result illustrates the displacement convexity shown in Theorem 16.
Different ground metric exhibits different displacement convexity of f on parameter
space (�, g). These properties lead to different convergence regions of Wasserstein
gradient flows.

Example 3 (Wasserstein gradient for maximum likelihood estimation) In maximum
likelihood estimation, we seek to minimize the Kullback-Leibler divergence

KL(q‖p(θ)) =
∑
x∈I

qx log
qx

px (θ)
,

where q is the empirical distribution of some given data. The Wasserstein gradient
flow of KL(q‖p(θ)) satisfies

dθ

dt
=

(
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)†
Jθ p(θ)T

(
q

p(θ)

)
.

In this example we consider hierarchical log-linear models as our parametrized
probability models, which are an important type of exponential families describing
interactions among groups of random variables. Concretely, for an inclusion closed
set S of subsets of {1, . . . , n}, the hierarchical model ES for n binary variables is the
set of distributions of the form

px (θ) = 1

Z(θ)
exp

( ∑
λ∈S

θλφλ(x)
)
, x ∈ {0, 1}n,
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Fig. 3 Negative Wasserstein gradient on the parameter space [0, 1]2 of the two-bit independence model
from Example 2. We fix the state graph shown on the top left, and a function f with values shown in gray
next to the state nodes. We evaluate the gradient flow for three different choices of the graph weight ωbd .
When the weight ωbd is small, the flow from d towards b (a local minimum) is suppressed. A large weight
has the opposite effect. The contours are for the objective function F(p(ξ)) = Ep(ξ)[ f ]

for all possible choices of parameters θλ ∈ R, λ ∈ S. Here the φλ are real valued
functions with φλ(x) = φλ(y) whenever xi = yi for all i ∈ λ. We consider two
different choices of φλ, λ ∈ S, corresponding to two different parametrizations of the
model.

• Our first choice are the orthogonal characters

σλ(x) =
∏
i∈λ

(−1)xi = eiπ〈1λ,x〉, x ∈ {0, 1}n,
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Fig. 4 Fisher–Rao gradient
vector field for the same
objective function of Fig. 3

Fisher-Rao
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which can be interpreted as a Fourier basis for the space of real valued functions
over binary vectors.

• As an alternative choice we consider the basis of monomials

πλ(x) =
∏
i∈λ

xi , x ∈ {0, 1}n,

which is not orthogonal, but is frequently used in practice.

When S = {λ ⊆ {1, . . . , n} : |λ| ≤ k}, the model is called k-interaction model. We
consider k-interaction models with k = 1, . . . , n (independence model, pair inter-
action model, three way interaction model, etc.), with the two parametrizations, σ

(orthogonal sufficient statistics) and π (non-orthogonal sufficient statistics).
We compare the Euclidean, Fisher, andWasserstein gradients. For binary variables,

the Hamming distance is a natural ground metric notion. Accordingly, we define the
Wasserstein metric with the uniformly weighted graph of the binary cube.We sampled
a few target distributions on {0, 1}n uniformly at random (uniformDirichlet). For each
target distribution, we initialize the model at the uniform distribution, θ0 = 0. The
gradient descent parameter iteration is

θt+1 = θt − γtG(θt )
−1∇ KL(q‖pθt ),

where G is the corresponding metric (Euclidean, Fisher, or Wasserstein), ∇ is the
standard gradient operator with respect to the model parameter θ , and γt ∈ R+ is
the learning rate (step size). The choice of the learning rate γt is important and the
optimal value may vary for different methods and problems. We implemented an
adaptive method to handle this as follows. We set an initial learning rate γ0 = 0.001,
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and at each iteration t , if the divergence does not decrease, we scale down the learning
rate by a factor of 3/4. We also tried a few other methods, including backtracking
line search and Adam [19], which is a method based on adaptive estimates of lower-
order moments of the gradient. The stopping criterion was that the infinity norm
of the expectation parameter matched the data expectation parameter to within 1
percent.

The results are shown in Fig. 5. The convergence to the final value can bemonitored
in terms of the normalized area under the optimization curve,

∑T
t=1(Dt −DT )/(D0−

DT ), where Dt is the divergence value at iteration t , and T is the final time. All
methods achieved similar values of the divergence, except for the Euclidean gradient
with non-orthogonal parametrization, which did not always reach the minimum. For
the Fisher and Wasserstein gradients, the learning paths were virtually identical under
the two different model parametrizations, as we already expected from the fact that
these are covariant gradients. On the other hand, for the Euclidean gradient, the paths
(and the number of iterations) were heavily dependent on the model parametrization,
with the orthogonal basis usually being a much better choice than the non-orthogonal
basis. In terms of the number of iterations until the convergence criterion was satis-
fied, the comparison is difficult because different methods work best with different
step sizes. With the simple adaptive method and a suitable initial step size, theWasser-
stein gradient was faster than the Euclidean and Fisher gradients. On the other hand,
using Adam to adapt the step size, orthogonal Euclidean, Fisher, andWasserstein were
comparable.

6 Discussion

We introduced the Wasserstein statistical manifolds, which are submanifolds of the
probability simplex with the L2-Wasserstein Riemannian metric tensor. With this, we
defined an optimal transport natural gradient flow on parameter space.

The Wasserstein distance has already been discussed with divergences in infor-
mation geometry and also shown to be useful in machine learning, for instance in
training restricted Boltzmann machines and generative adversarial networks. In this
work, we used the Wasserstein distance to define a geometry on the parameter space
of a statistical model. Following this geometry, we establish a corresponding natural
gradient and displacement convexity on parameter space.

We presented an application of the Wasserstein natural gradient method to maxi-
mum likelihood estimation in hierarchical probability models. The experiments show
that, in combinationwith a suitable step size, theWasserstein gradient can be a compet-
itive optimizationmethod and even reduce the required number of parameter iterations
compared both to Euclidean and Fisher gradient methods. It will be essential to con-
duct further experimental studies to better understand the effects of the learning rate,
as well as the interplay of groundmetric, model, and optimization problem. In our cur-
rent implementation, the Wasserstein gradient involved heavier computational costs
compared to the Euclidean and Fisher gradients. For applications, it will be important
to explore efficient computation and approximation approaches.
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Fig. 5 Divergenceminimization for random target distributions on {0, 1}n , n = 7, over k-interactionmodels
with k = 1, . . . , n. Shown is the average value of the divergence after optimization by Euclidean, Fisher,
and Wasserstein gradient descent, and the corresponding number of gradient iterations. Orthogonal and
non-orthogonal parametrization are indicated by σ and π . The right hand side shows histograms of the
normalized area under the optimization curves. The top figures are using a simple adaptive method for
selecting the step size, and the bottom figures are using Adam

Regarding the theory, we suggest that many studies from information geometry
will have a natural analog or extension in the Wasserstein statistical manifold. Some
questions to consider include the following. Is it possible to characterize the Wasser-
stein metric on probability manifolds through an invariance requirement of Chentsov
type? For instance, the work [32] formulates extensions of Markov embeddings for
polytopes and weighted point configurations. Is there a weighted graph structure for
which the corresponding Wasserstein metric recovers the Fisher metric?

The critical innovation coming from the Wasserstein gradient in comparison to the
Fisher gradient is that it incorporates a ground metric in sample space. We suggest
that this could have a positive effect not only concerning optimization, as discussed
above, but also regarding generalization performance, in interplay with the opti-
mization. The reason is that the ground metric on sample space provides means to
introduce preferences in the hypothesis space. The specific form of such a regular-
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ization still needs to be developed and investigated. In this regard, a natural question
is how to define natural ground metric notions. These could be fixed in advance or
trained.

We hope that this paper contributes to strengthening the emerging interactions
between information geometry andoptimal transport, in particular, tomachine learning
problems, and to develop better natural gradient methods.
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Appendix

In this appendix we review the equivalence of static and dynamical formulations of
the L2-Wasserstein metric formally. For more details see [38].

Consider the duality of linear programming.

1

2
W (ρ0, ρ1)2

= inf
π≥0

{ ∫
�

∫
�

1

2
d�(x, y)2π(x, y)dxdy :

∫
�

πdy = ρ0(x),
∫
�

πdx = ρ1(y)
}

= sup
�1,�0

{ ∫
�

�1(y)ρ1(y)dy −
∫
�

�0(x)ρ0(x)dx : �1(y) − �1(x) ≤ 1

2
d�(x, y)2

}
.

(21)
By standard considerations, the supremum in the last formula is attained when

�1(y) = sup
x∈�

�0(x) + 1

2
d�(x, y)2. (22)

This means that �1, �0 are related to the viscosity solution of the Hamilton-Jacobi
equation on �:

∂�(t, x)

∂t
+ 1

2
g�
x (∇�(t, x),∇�(t, x)) = 0, (23)

with �0(x) = �(0, x), �1(x) = �(1, x). Hence (21) becomes

1

2
W (ρ0, ρ1)2

= sup
�

{ ∫
�

�1(x)ρ1(x) − �0(x)ρ0(x)dx : ∂�(t, x)

∂t
+ 1

2
g�
x (∇�(t, x),∇�(t, x)) = 0

}
.

By the duality of above formulas, we can obtain variational problem (1). In other
words, consider the dual variable of �t = �(t, x) by the density path ρt = ρ(t, x),
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then
1

2
W (ρ0, ρ1)2

= sup
�t

inf
ρt

∫
�

�1ρ1 − �0ρ0dx −
∫ 1

0

∫
�

ρt
[
∂t�t + 1

2
g�
x (∇�t ,∇�t )dx

]
dt

= sup
�t

inf
ρt

∫
�

�1ρ1 − �0ρ0dx −
∫ 1

0

∫
�

ρt∂t�t dxdt

−
∫ 1

0

∫
�

1

2
g�
x (∇�t ,∇�t )ρt dxdt

= sup
�t

inf
ρt

∫ 1

0

∫
�

∂tρt�t − g�
x (∇�t ,∇�t )ρt dxdt +

∫ 1

0

∫
�

1

2
g�
x (∇�t ,∇�t )ρt dxdt

= inf
ρt

sup
�t

∫ 1

0

∫
�

�t (∂tρt + div(ρ∇�t ))dt +
∫ 1

0

∫
�

1

2
g�
x (∇�t ,∇�t )ρt dxdt

= inf
ρt

{ ∫ 1

0

∫
�

1

2
g�
x (∇�t ,∇�t )ρt dxdt : ∂tρt

+ div(ρ∇�t ) = 0, ρ0 = ρ0, ρ1 = ρ1
}
.

The third equality is derived by integration by parts w.r.t. t and the fourth equality
is by switching infimum and supremum relations and integration by parts w.r.t. x .

In the above derivations, the relation of Hopf–Lax formula (22) and Hamilton–
Jacobi equation (23) plays a key role for the equivalence of static and dynamic
formulations of the Wasserstein metric. This is also a consequence of the fact that
the sample space � is a length space, i.e.,

d�(x, y)2 = inf
γ (t)

{ ∫ 1

0
g�
γ (t)(γ̇ , γ̇ )dt : γ (0) = x, γ (1) = y

}
.

However, in a discrete sample space I , there is no path γ (t) ∈ I connecting two
discrete points. Thus the relation between (22) and (23) does not hold on I . This
indicates that in discrete sample spaces, the Wasserstein metric in Definition 1 can be
different from the one defined by linear programming (5). Seemany related discussions
in [12,26].

Notations

We use the following notations.
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Continuous/discrete sample space � I

Inner product g� gI

Gradient ∇ ∇G
divergence div divG
Hessian in � Hess
Potential function set F(�) F(I )
Weighted Laplacian operator −∇ · (ρ∇) L(p)

Continuous/discrete probability space P+(�) P+(I )

Probability distribution ρ p
Tangent space TρP+(�) TpP+(I )
Wasserstein metric tensor gW gW

Dual coordinates �(x) (�i )
n
i=1

Primal coordinates σ(x) (σi )
n
i=1

First differential operator δρ ∇p
Second differential operator δ2ρρ

Gradient operator ∇W
Hessian operator HessW
Levi–Civita connection ∇W· ·

Parameter space/Probability model � p(�)

Inner product gθ gp(θ)

Tangent space Tθ� Tp(θ) p(�)

L2-Wasserstein matrix G(θ)

L2-Wasserstein distance Dist Dist
Second fundamental form B(·, ·)
Projection operator H
Levi–Civita connection (∇W· ·)||
Jacobi operator Jθ
First differential operator ∇θ

Gradient operator ∇g
Hessian operator Hessg
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