
Information Geometry (2018) 1:79–115
https://doi.org/10.1007/s41884-018-0004-6

RESEARCH PAPER

Rho–tau embedding and gauge freedom in information
geometry

Jan Naudts1 · Jun Zhang2

Received: 1 November 2017 / Revised: 27 June 2018 / Published online: 20 August 2018
© Springer Nature Singapore Pte Ltd. 2018

Abstract
The standard model of information geometry, expressed as Fisher–Rao metric and
Amari-Chensov tensor, reflects an embedding of probability density by log-transform.
The present paper studies parametrized statistical models and the induced geom-
etry using arbitrary embedding functions, comparing single-function approaches
(Eguchi’s U-embedding and Naudts’ deformed-log or phi-embedding) and a two-
function embedding approach (Zhang’s conjugate rho-tau embedding). In terms of
geometry, the rho-tau embedding of a parametric statistical model defines both a Rie-
mannian metric, called “rho-tau metric”, and an alpha-family of rho-tau connections,
with the former controlled by a single function and the latter by both embedding
functions ρ and τ in general. We identify conditions under which the rho-tau metric
becomes Hessian and hence the±1 rho-tau connections are dually flat. For any choice
of rho and tau there exist models belonging to the phi-deformed exponential family
for which the rho-tau metric is Hessian. In other cases the rho–tau metric may be only
conformally equivalent with a Hessian metric. Finally, we show a formulation of the
maximum entropy framework which yields the phi-exponential family as the solution.
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1 Introduction

In classical information geometry [1,3] the Fisher–Raometric, as a Riemannianmetric
on the manifold of parametric probability models, is accompanied by a family of α-
connections Γ (α) with a dualistic structure such that Γ (α) and Γ (−α) jointly preserve
the metric. This so-called “α-geometry” is induced by the family of α-divergence
functions which include the Kullback-Leibler divergence as a special case (α = ±1).
Furthermore, when the statistical model belongs to the exponential family, then the
connections Γ (±1) are dually flat.

Zhang [20,23] carefully delineated the different roles played by the interpolation
parameter α in information geometry:

1. it parametrizes the divergence function (as in α-divergence);
2. it parametrizes the monotone embedding of probabilities (as in α-embedding);
3. it parametrizes the convex combination of connections (as in α-connection).

A thorough understanding of the subtleties of these various roles of α in α-geometry
leads not only to the class of two-parameter (α, β)-divergence (generalizing α-
divergence in different ways), which nevertheless results in the parametric family
of αβ-connections, with α · β as a single parameter [20], but also to the more pro-
found notion of reference-representation biduality uniquely embodied in information
geometry [20,22].

There has been considerable interest in generalizing the “standard model” and the
corresponding exponential (and its dual, mixture) family of probability functions. By
generalizing, wemean that the dualisticα-geometry is still preservedwhile one relaxes
from the restrictive exponential (or mixture) family. The generalizations are often
achieved in the context of various monotone embedding functions, from α-embedding
(power function) to arbitrary deformed exponential embedding function, such as phi-
embedding [11] and U-embedding [6]. Zhang [20,22,23] uses two arbitrary functions,
referred to as conjugate rho–tau embedding. Our paper surveys these approaches and
their links, with the goal of providing a unifying account in generalizing Amari’s α-
geometry with its characteristic biduality (reference duality and representation duality
[21]). A particular outcome is the demonstration of the dually flat nature of Γ (±1),
despite of considerable relaxation both in terms of deforming the exponential family
and the canonical divergence function.

1.1 The standardmodel

1.1.1 Fisher–Raometric and˛-connections

Let be given a measure space (X , dx). LetM denote the space of probability density
functions defined on the sample space X . A parametric family of density functions,
pθ ≡ p(·|θ), called a parametric statistical model, is the association θ �→ p(·|θ) of a
point θ = [θ1, . . . , θn] in a connected open subsetD of Rn with a probability density
function pθ inM. The elements of the parametric statistical model form aRiemannian
manifoldM. For simplicity we assume that a single chart pθ �→ θ covers all ofM, so
that
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M = {pθ ∈ M : θ ∈ D ⊂ R
n} ⊂ M.

The Fisher–Rao metric and the α-connections are given by

gi j (θ) =
∫

X
dx

{
p(x |θ)

∂ log p(x |θ)

∂θ i

∂ log p(x |θ)

∂θ j

}
; (1)

Γ
(α)

i j,k(θ) =
∫

X
dx

∂ p(x |θ)

∂θk

(
1 − α

2

∂ log p(x |θ)

∂θ i

∂ log p(x |θ)

∂θ j
+ ∂2 log p(x |θ)

∂θ i∂θ j

)
.

(2)

The α-connections satisfy the dualistic relation

Γ
∗(α)

i j,k (θ) = Γ
(−α)

i j,k (θ). (3)

Here, ∗, denotes conjugate (dual) connection. The pair of conjugate connections pre-
serves the dual pairing of vectors in the tangent space with co-vectors in the cotangent
space when the tangent and cotangent spaces are mapped to each other by the Rieman-
nian metric. Any Riemannian manifold with its metric, g, and conjugate connections,
Γ , Γ ∗, given in the formof Eqs. (1)–(3), is called a statistical manifold (in the narrower
sense) and is denoted as {M, g, Γ (±α)}. In the broader sense, a statistical manifold
{M, g, Γ , Γ ∗} is a differentiable manifold equipped with a Riemannian metric g and
a pair of torsion-free conjugate connections Γ ≡ Γ (1), Γ ∗ ≡ Γ (−1) which jointly
preserve the metric g, without necessarily requiring g and Γ , Γ ∗ to take the forms of
Eqs. (1)–(3).

1.1.2 Exponential andmixture families

An exponential family of probability density functions is defined as

p(e)(x |θ) = exp

(
∑

i

θ i Fi (x) − Φ(θ)

)

(4)

where θ is its canonical parameter and Fi (x) (i = 1, · · · , n) is a set of linearly inde-
pendent functions with the same support in X , and the cumulant generating function
(“potential function”) Φ(θ) is:

Φ(θ) = log
∫

X
dx

{

exp

(
∑

i

θ i Fi (x)

)}

. (5)

Substitution of (4) into (1) and (2) results in the Fisher metric

gi j (θ) =
∫

X
p(e)(x |θ)

(
Fi (x) −

∫

X
p(e)Fi (x)dx

) (
Fj (x) −

∫

X
p(e)Fj (x)dx

)
dx,
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which can be written as

gi j (θ) = ∂2Φ(θ)

∂θ i∂θ j
. (6)

The α-connections can be written as

Γ
(α)

i j,k(θ) = 1 − α

2

∂3Φ(θ)

∂θ i∂θ j∂θk
.

The α-connection for the exponential family is dually flat when α = ±1. In partic-
ular, all components of Γ

(1)
i j,k vanish on the manifold of an exponential family.

On the other hand, the mixture family:

p(m)(x |θ) =
∑

i

θ i Fi (x), (7)

when viewed as a manifold charted by its mixture parameter θ , with the constraints∑
i θ i = 1 and

∫
X Fi (x)dμ = 1, turns out to have identically zero Γ

(−1)
i j,k .

The connections, Γ (1) and Γ (−1), are also called the exponential and mixture con-
nections, or the e- and m-connection, respectively.

1.2 ˛-Embedding function

Amari [1,3] considered a one-parameter family of denormalized probability density
functions p(α)(·|θ) defined by p(α)(x |θ) = p(x) with

l(α) (p(x)) = F0 (x) +
∑

i

θ i Fi (x) . (8)

The α-embedding function l(α) : R+ → R, is defined as

l(α)(t) =
{

log t α = 1
2

1−α
t (1−α)/2 α �= 1

}
. (9)

Under α-embedding, the denormalized density functions form the so-called α-
affine manifold, see, [3], p. 46. It is remarkable that the Fisher–Rao metric and the
α-connections, under such α-representation, have the following expressions:

gi j (θ) =
∫

X
dx

{
∂l(α)(p(x |θ))

∂θ i

∂l(−α)(p(x |θ))

∂θ j

}

, (10)

Γ
(α)

i j,k(θ) =
∫

X
dx

{
∂2l(α)(p(x |θ))

∂θ i∂θ j

∂l(−α)(p(x |θ))

∂θk

}

. (11)
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Clearly, for any given α value, the components of Γ (α) are all identically zero on
the (unnormalized) α-affine manifold, by virtue of the definition (8) of the α-family.
Hence, the ±α-connections are dually flat.

1.3 A plethora of probability embeddings

There have been various attempts at generalizing the standard exponential model
of normalized probability density functions. Efforts considered here have been cen-
tered on “deforming” the exponential function to other functional forms, where the
embedding functions of the α-family are treated as deformed logarithm functions,
whose inverse functions are then deformed exponentials. Better known examples are
q-exponential functions [17] and the κ-functions [7]. More general deformations were
introduced in [11]. The corresponding deformed exponential families coincide with
the models of U-statistics [6]. From the point of view of [20,22,23] these models
involve generalized embeddings which fit under a universal framework of conjugate
rho-tau embeddings.

(i) q-logarithmic embedding Tsallis [17] investigates the equilibrium distribution
of statistical physics which is obtained by maximization of the Boltzmann–
Gibbs–Shannon entropy under constraints. He replaces the entropy function by
a q-dependent entropy, q ∈ R. This results in a deformed version of statistical
physics. The q-logarithmic/exponential functions were introduced in [18]:

logq(u) = 1

1 − q

(
u1−q − 1

)
, expq(u) = [1 + (1 − q)u]1/(1−q) , q �= 1.

Note that q-embedding and α-embedding functions are different: logq(u) =
l(α)(u) − 2/(1− α) with α = 2q − 1. Like α-embedding, q-embedding reduces
to the standard logarithm as q tends to 1.

(ii) κ-logarithmic embedding An alternative to the q-deformed exponential model
for statistical physics is Kaniadakis’ κ-model [7], where

logκ(u) = 1

2κ

(
uκ − u−κ

)
, expκ(u) =

(
κu +

√
1 + κ2u2

) 1
κ

, κ �= 0.

The case of limκ→0 corresponds to the standard exponential/logarithm.
The φ-, U - and (ρ, τ )-embedding are monotone embeddings which rely on one

or two free functions. So instead of using a one-parameter family of functions which
include the logarithm/exponential function for a particular parameter value, arbitrary
functions are used which replace the logarithm/exponential function. They are the
main focus of this paper. The phi-model [11], U-model [6], and rho-tau model [20]
were independently conceived around 2004 under different motivations.
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1.4 Goals, organization, and notations

Our goal is to provide a unified theory of monotone embedding which generalizes
that of logarithmic embedding and the classic α-geometry. Specifically, we revisit
the divergence function, cross-entropy and entropy determined by rho-tau embedding
[20], their induced α-geometry with respect to the phi-deformed exponential families
[11], and show a unification of the “deformed” approach of [11] and conjugate embed-
ding approach of [20]. It is also shown that the independently proposed U-embedding
[6] is identical with phi-embedding in terms of divergence function and entropy func-
tions, both being subsumed by the rho–tau embedding. The duality in rho-tau entropy
is shown to be important in the formulation of the generalized maximum entropy
principle, the solution of which is the phi-exponential family.

In Sect. 2, we first review the deformed logarithm, logφ , and the deformed expo-
nential, expφ . Then we point out that logφ and expφ are nothing but an arbitrary pair
of mutually inverse monotone functions, and can be represented as derivatives of a
pair of conjugate convex functions f , f ∗. The deformed divergence Dφ(p, q) is then
precisely the Bregman divergence D f (p, q) associated with f . The construction of
deformed entropy and cross-entropy is reviewed, as well as their construction start-
ing from the U-embedding. Then, we review the rho-tau embedding, which provides
two independently chosen embedding functions.We explicitly identify its entropy and
cross-entropy. Theorem 1 shows that the divergence function and entropy function of
the rho-tau embedding reduce as a special case to those given by the phi-embedding
and U-embedding, while the rho-tau cross-entropy reduces as another special case to
the U cross-entropy.

In Sect. 3 we explore the freedom of choosing two functions ρ and τ , such that they
lead to the same weighting function associated with the Riemannian metric. We call it
the gauge freedom. Two prominent gauges, plus their duals, are studied. They lead to
the entropy and cross-entropy functions given by phi/U-embedding and to those given
by Tsallis.

In Sect. 4, we study the Riemannian metric induced from the rho-tau divergence
(and equivalently, rho-tau cross-entropy), as well as induced from the entropy and dual
entropy functions. Emphasis is put on the gauge freedom which is left once the metric
is fixed. The metric tensor absorbs only one of the two degrees of freedom offered
by the independent choice of two strictly increasing functions rho and tau. We then
provide a characterization of conditions under which rho–tau metric is Hessian. The
rho–tau connections were also investigated.

In Sect. 5, we study deformed exponential family of probability models, and show
the Riemannian geometry they induce. We show that each phi-exponential family is
associated with two special rho–taumetrics, (i) a Hessian one related to its entropy and
(ii) a non-Hessian one that is conformally equivalent to the Hessian of a normalization
function. We shown how these models are related to the maximum entropy principle.

In the final section we provide a summary and discusssions.
Throughout the paper it is assumed that two strictly increasing differentiable

functions ρ and τ are given. The rho–tau divergence induces a metric tensor g on
finite-dimensional manifolds of probability distributions and turns them into Rieman-
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nian manifolds. Here we assume regularity conditions such that the relevant integrals
all exist, Cf. [10]. A preliminary version of this report appeared in [15,24].

2 Divergence, entropy, and cross-entropy

2.1 “Deforming” exponential and logarithmic functions

Naudts [11,13] defines the phi-deformed logarithm

logφ(u) =
∫ u

1

1

φ(v)
dv.

Here, φ(v) is a strictly positive function such that 1/φ(v) is integrable. In the context
of discrete probabilities it suffices that it is strictly positive on the open interval (0, 1),
possibly vanishing at the end points. In the case of a probability density function it
is assumed to be strictly positive on the interval (0,+∞). Note that by construction
one has logφ(1) = 0. The inverse of the phi-logarithm is denoted expφ(u), and called
phi-exponential function:

expφ

(
logφ(u)

) = u.

The phi-exponential has an integral expression

expφ(u) = 1 +
∫ u

0
dv ψ(v),

where the function ψ(u) is given by

ψ(u) = d

du
expφ(u) = d

du

(
logφ

)−1
(u).

In terms of φ,ψ , we have the following relations:

ψ (u) = φ
(
expφ(u)

)
, u ∈ range

(
logφ

)
,

φ (u) = ψ
(
logφ(u)

)
, u > 0.

We want to stress that all four functions, φ,ψ, logφ, expφ , arise out of choosing one
positive-valued function φ.

As examples, φ(u) = u gives rise to the classic natural logarithm and exponential.
The choice φ(u) = uq , q �= 1 reproduces the q-deformed logarithm and exponential,
as introduced by Tsallis [18] andmentioned in the introduction. Takingφ(u) = u/(1+
u) leads to (see, [10,16]) logφ(u) = u − 1 + log(u). Taking φ(u) = u(1 + εu) leads
to (see, [25])

logφ (u) = log

(
(1 + ε) u

1 + εu

)
, expφ (u) = 1

(1 + ε) e−u − ε
.
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2.2 Deformed entropy and deformed divergence functions

The phi-entropy of the probability distribution p is defined by (see [11,13])

Sφ(p) = −Ep logφ p +
∫

X
dx
∫ p(x)

0
du

u

φ(u)
+ constant. (12)

By partial integration one obtains an equivalent expression

Sφ(p) = −
∫

X
dx
∫ p(x)

1
du logφ(u) + constant. (13)

For the standard logarithm is φ(u) = u. Then the above expression coincides with the
well-known entropy of Boltzmann–Gibbs–Shannon

S(p) = −Ep log p.

The phi-divergence of two probability functions p and q is defined by

Dφ (p, q) =
∫

X
dx
∫ p(x)

q(x)

dv
[
logφ (v) − logφ (q (x))

]
. (14)

An equivalent expression is

Dφ (p, q) = Sφ (q) − Sφ (p) −
∫

X
dx [p (x) − q (x)] logφ (q (x)) . (15)

Now let us express these quantities in terms of a strictly convex function f , satis-
fying f ′(u) = logφ(u). We have:

Sφ (p) = −
∫

X
dx f (p (x)) + constant, (16)

Dφ (p, q) =
∫

X
dx
{

f (p (x)) − f (q (x)) − [p (x) − q (x)] f ′ (q (x))
}
. (17)

One can readily recognize that Dφ(p, q) is nothing but the Bregman divergence,
whereas the function f itself determines the deformed entropy Sφ(p). Note that p �→
Sφ(p) is strictly concave while the map p �→ Dφ(p, q) is strictly convex.

2.3 U-embedding, U entropy, and U cross-entropy

Eguchi [6] introduces the U-divergence, which is essentially the Bregman divergence
under a strictly convex function U coupled with an embedding using ψU ≡ (U ′)−1.
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The U cross-entropy CU (p, q) is defined as:

CU (p, q) =
∫

X
dx {U (ψU (q (x))) − p (x) · ψU (q (x))} , (18)

whereas the U entropy HU is defined as HU (p) = CU (p, p). The U -divergence is

DU (p, q) = CU (p, q) − HU (p, p)

=
∫

X
dx

{
U (ψU(q(x))) − U (ψU(p(x))) − p(x) [(ψU(q(x)) − ψU(p(x))]

}
.

(19)

Note that the U-embedding only has one arbitrarily chosen function, as does the phi-
embedding. In fact, it was noted in [14] that the U-divergence and the phi-divergence
of the previous section map onto each other when the derivative U ′ of U is considered
as a deformed exponential function.

2.4 Conjugate rho-tau embedding

In contrast with the “single function” embedding of the phi-model and the U-model,
Zhang’s [20] rho–tau framework uses two arbitrarily and independently chosen mono-
tone functions (see also [23]). He starts with the observation that a pair of mutually
inverse functions occurs naturally in the context of convex duality. Indeed, if f is
strictly convex and f ∗ is its convex dual then the derivatives f ′ and ( f ∗)′ are inverse
functions of each other:

f ′ ◦ ( f ∗)′(u) = ( f ∗)′ ◦ f ′(u) = u.

Here the definition of the convex dual f ∗ of f is:

f ∗(u) = sup{uv − f (v)}.

For u in the range of f ′ it is given by

f ∗(u) = u · ( f ′)−1(u) − f ◦ ( f ′)−1(u).

Take the derivative of this expression to find ( f ∗)′ ◦ f ′(u) = u. By convex duality
then follows that also f ′ ◦ ( f ∗)′(u) = u. Take an additional derivative to obtain

f ′′(( f ∗)′(u)) · ( f ∗)′′(u) = ( f ∗)′′( f ′(u)) · f ′′(u) = 1. (20)

This identity will be used further on.
Consider now a pair (ρ(·), τ (·)) of strictly increasing functions. Then there exists

a strictly convex function f (·) satisfying f ′(u) = τ ◦ ρ−1(u). This is because the
family of strictly increasing functions form a group, with function composition as the
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group operation, an observation made in [20,23]. In terms of the conjugate function
f ∗, the relation is ( f ∗)′(u) = ρ ◦τ−1(u). The derivatives of f (u) and of its conjugate
f ∗(u) have the property that

f ′(ρ(u)) = τ(u) and ( f ∗)′(τ (u)) = ρ(u). (21)

Among the triple ( f , ρ, τ ), given any two functions, the third is specified. When we
arbitrarily choose two strictly increasing functions ρ and τ as embedding functions,
then they are automatically linked by a pair of conjugated convex functions f , f ∗. On
the other hand, we may also independently choose to specify (ρ, f ), (ρ, f ∗), (τ, f ),

or (τ, f ∗), with the others being fixed. Therefore, rho-tau embedding is a mechanism
with two independently chosen functions. This differs from both the phi-embedding
and the U-embedding. The following identities will be useful:

f ′′(ρ(u)) ρ′(u) = τ ′(u), ( f ∗)′′(τ (u)) τ ′(u) = ρ′(u),

f ′′(ρ(u)) (ρ′(u))2 = ( f ∗)′′(τ (u)) (τ ′(u))2,

f ′′(ρ(u)) ( f ∗)′′(τ (u)) = 1. (22)

The (ρ, τ )-embedding mechanism can have another equivalent representation.
Denote f ◦ ρ = F, f ∗ ◦ τ = G. We seek to use F, G as independently chosen
functions from which ρ and τ are derived. From

τ · ρ′ = F ′, ρ · τ ′ = G ′,

and

F(u) + G(u) = ρ(u)τ (u),

we obtain

ρ′

ρ
· (F + G) = F ′,

or

d log ρ

du
= F ′

F + G
.

Thus, we obtain that

log ρ(u) =
∫ u F ′(s)ds

F(s) + G(s)
=
∫ u dF(s)

F(s) + G(s)
.

and similarly

log τ(u) =
∫ u G ′(s)ds

F(s) + G(s)
=
∫ u dG(s)

F(s) + G(s)
.
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So this gives ρ, τ in terms of F, G.

2.5 Divergence of the rho-tau embedding

Zhang [20] introduces1 the rho-tau divergence (see Proposition 6 of [20])

Dρ,τ (p, q) =
∫

X
dx
{

f (ρ(p(x))) + f ∗(τ (q(x))) − ρ(p(x))τ (q(x))
}
, (23)

where f is a strictly convex function satisfying f ′(ρ(u)) = τ(u).

Proposition 1 Expression (23) can be written as

Dρ,τ (p, q) =
∫

X
dx

{
f (ρ(p(x))) − f (ρ(q(x))) − [ρ(p(x)) − ρ(q(x))]τ(q(x))

}

=
∫

X
dx
∫ p(x)

q(x)

[τ(v) − τ(q(x))] dρ(v)

=
∫

X
dx
∫ ρ(p(x))

ρ(q(x))

du
[

f ′(u) − f ′(ρ(q(x)))
]
. (24)

In particular this implies that Dρ,τ (p, q) ≥ 0, with equality if and only if p = q,
reflecting the following identity:

f (ρ(p(x))) − ρ(p(x))τ (p(x)) + f ∗(τ (p(x))) = 0.

The “reference-representation biduality” [20,22,23] reveals as

Dρ,τ (p, q) = Dτ,ρ(q, p).

It can be easily verified that the rho-tau divergence satisfies the following general-
ized Pythagorean equality for any three probability functions p, q, r

Dρ,τ (p, q) + Dρ,τ (q, r) − Dρ,τ (p, r)

=
∫

X
dx {[ρ(p(x)) − ρ(q(x))][τ(r(x)) − τ(q(x))]} . (25)

2.6 Entropy and cross-entropy of the rho–tau embedding

It is now obvious to give the following definition of the rho-tau entropy

Sρ,τ (p) = −
∫

X
dx f (ρ(p(x))) + constant, (26)

1 The original definition as found in [20,23] uses the notation D f ,ρ (p, q) and treats f and ρ as independent.
Under the present notation Dρ,τ (p, q) the function f is taken to depend on ρ, τ . The difference is only
notational and inconsequential.
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where f (u) is a strictly convex function satisfying f ′(u) = τ ◦ ρ−1(u). This can be
written as

Sρ,τ (p) = −
∫

X
dx
∫ ρ(p(x))

f ′(v)dv + constant

= −
∫

X
dx
∫ p(x)

τ (u)dρ(u) + constant. (27)

Note that the rho–tau entropy Sρ,τ (p) is concave in ρ(p), but not necessarily in p.
This has consequences further on. We likewise define rho–tau cross-entropy

Cρ,τ (p, q) = −
∫

X
dx ρ(p(x))τ (q(x)). (28)

It satisfies Cρ,τ (p, q) = Cτ,ρ(q, p).
The rho–tau divergence can then be given by

Dρ,τ (p, q) = Sρ,τ (q) − Sρ,τ (p) −
∫

X
dx [ρ (p (x)) − ρ (q (x))] τ (q (x))

= [Sρ,τ (q) − Cρ,τ (q, q)
]− [Sρ,τ (p) − Cρ,τ (p, q)

]
. (29)

Note that, unlike the standard case, in general Sρ,τ (q) �= Cρ,τ (q, q). This is
because

Sρ,τ (p) − Cρ,τ (p, p) =
∫

X
dx f ∗(τ (p(x))).

So unless f (u) = cu for constant c, f ∗ would not vanish. In fact, denote

S∗
ρ,τ (p) = −

∫

X
dx f ∗(τ (p(x))). (30)

Then S∗
ρ,τ (p) = Sτ,ρ(p), and

Sρ,τ (p) − Cρ,τ (p, p) + S∗
ρ,τ (p) = 0 (31)

which is, after integrating
∫
X dx , a re-write of (25). Therefore,

Dρ,τ (p, q) = Cρ,τ (p, q) − Sρ,τ (p) − S∗
ρ,τ (q). (32)

Because rho-tau cross-entropy does not degenerate to rho-tau entropy in general:

Cρ,τ (p, p) �= Sρ,τ (p),

we can also define the modified cross-entropy:

Cρ,τ (p, q) = Cρ,τ (p, q) − S∗
ρ,τ (q). (33)
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The main properties of this modified version of cross-entropy Cρ,τ (p, q) are

1. Cρ,τ (p, p) = Sρ,τ (p). Indeed, (32) implies that

Cρ,τ (p, p) = Cρ,τ (p, p) − S∗
ρ,τ (p)

= Sρ,τ (p) − Dρ,τ (p, p)

= Sρ,τ (p).

2. From (32), the previous result and the definition (33) follows that

Dρ,τ (p, q) = Cρ,τ (p, q) − Cρ,τ (p, p). (34)

2.7 Rho–tau divergence from convex D(˛)
f,�(p, q)-divergence

Refs. [20–23] studied the following general divergence function D(α)
f ,ρ(p, q) from the

perspective of convex analysis (with α ∈ R)

D(α)
f ,ρ(p, q) = 4

1 − α2 ×
∫

X
dx

{
1 − α

2
f (ρ(p)) + 1 + α

2
f (ρ(q))

− f

(
1 − α

2
ρ(p) + 1 + α

2
ρ(q)

)}
. (35)

Clearly, the role of α is to effect an exchange of the position of p, q

D(−α)
f ,ρ (p, q) = D(α)

f ,ρ(q, p).

Rho–tau divergence Dρ,τ (p, q) arises as a special form of the above convex D(α)
f ,ρ-

divergence function:

lim
α→1

D(α)
f ,ρ(p, q) = Dρ,τ (p, q) = Dτ,ρ(q, p);

lim
α→−1

D(α)
f ,ρ(p, q) = Dρ,τ (q, p) = Dτ,ρ(p, q);

with f ′ ◦ ρ = τ (and equivalent ( f ∗)′ ◦ τ = ρ, with f ∗ denoting convex conjugate
of f ).

Though in D(α)
f ,ρ(p, q) the two free functions are f (a strictly convex function)

and ρ (a strictly monotone increasing function), as reflected in its subscripts, there is
only notational difference from the ρ, τ specification of two function’s choice. This
is because for f , f ∗, ρ, τ , a choice of any two functions (one of which would have to
be either ρ or τ ) would specify the remaining two; see footnote 1 and Sect. 2.4.
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3 Fixing the gauge

Zhang’s conjugate rho–tau embedding involves two freely chosen functions. However,
the induced Riemannian metric, called rho-tau metric tensor (to be introduced in the
next section) depends on a single function ψ which is the following combination of
the functions ρ and τ

ψ(u) = 1

ρ′(u)τ ′(u)
. (36)

Many choices of ρ and τ give rise to the same function ψ . We call this the “gauge
freedom”. In the physics literature gauge theories cope with redundant degrees of
freedom, either by fixing the gauge or by introduction of equivalence classes. In
the present theory, the symmetry between the functions ρ and τ implies that their
exchange leads to equivalent theories. The simplest way to deal with gauge freedom
is by breaking the symmetry, in the present context by assigning a different role to ρ,
respectively τ . For instance, ρ can be used for embedding the probability distribution
while τ is then used to fix the entropy or score variables of the corresponding statistical
theory. Two specific types of gauges are now considered in more detail: Type I gauge
where either ρ or τ is identity, and Type II gauge where ρ and τ are linked through
the deformed logarithm/exponential transformation.

3.1 Rho-id gauge (� = id, � = logÃ)

This gauge is characterized by ρ = id, the identity function, and τ = logψ . In this
case, ρ′ = 1 and τ ′ = 1/ψ , satisfying (36).

Compare expression (27) of the rho–tau entropy with that of the phi-deformed
entropy as given by (13). They coincide up to an additive constant when the choice
ρ = id and τ(u) = logφ(u) are made. This means that the function ψ , defined by
(36), can be identified with the function φ of the phi-deformation formalism. With
these choices one has

ρ = id, f ′ = τ = logφ, ( f ∗)′ = expφ .

In the notations of Eguchi this becomes

ρ = id, f ′ = τ = ψU, f ∗ = U , ( f ∗)′ = U ′,

where ψU is the inverse function of U ′, see Sect. 2.3.
Divergence Expression (24) of Dρ,τ (p, q) reduces to the phi-divergence Dφ(p, q), as
given by (14), and to theU-divergence (19). Phi-divergence andU-divergence coincide
with U ′ = expφ , as noted in [14].
Entropy As mentioned earlier, in the present gauge the rho–tau entropy coincides
with the phi-deformed entropy (12). This suggests that the rho–tau entropy is more
general than the phi-deformed entropy. However, although the rho-tau entropy (26) has
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two free functions in appearance, it is the result of their function composition which
matters. So any rho–tau entropy is also a phi-entropy for a well-chosen function φ.

The situation with the U-embedding is the same, because U entropy is identical
with phi-entropy:

HU (p) =
∫

X
dx
[
U ((U ′)−1(p(x))) − p(x) · (U ′)−1(p(x))

]

=
∫

X
dx
[

f ∗( f ′(p(x))) − p(x) f ′(p(x))
] = −

∫

X
dx f (p(x)) = Sφ(p).

Cross-entropy In the present gauge the rho–tau cross-entropy (28) becomes

Cρ,τ (p, q) = −
∫

X
dx p(x) logφ(q(x)).

The cross-entropy CU (p, q) introduced by Eguchi (see (18)) contains an additional
term

CU (p, q) = Cρ,τ (p, q) +
∫

X
dx U (ψ(q(x))). (37)

Since in the present gauge f ∗ = U with ( f ∗)′ = U ′, this additional term is nothing
but the negative of dual entropy S∗

ρ,τ

S∗
ρ,τ (q) = −

∫

X
dx U (ψ(q(x))) .

Therefore,

CU (p, q) = Cρ,τ (p, q),

which satisfies CU (p, p) = HU (p).

3.2 Tau-id gauge (� = id,� = logÃ)

This gauge is characterized by τ = id and ρ = logψ . This gauge is checked to satisfy
(36). It is needed a number of times in what follows. Because of the rho–tau duality
much of the previous section can be repeated with obvious modifications.

The rho-id and tau-id gauges are collectively called Type I gauges.

3.3 Constant entropy gauge (� = log�, log � = logÃ)

This gauge is characterized by f ◦ ρ = id, or f = ρ−1.
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From (26) then follows that the rho–tau entropy Sρ,τ (p) is a constant independent
of the probability distribution p:

Sρ,τ (p) = −
∫

X
f (ρ(p(x))) dx + constant

= −
∫

X
p(x) dx + constant = −1 + constant.

In this case, ρ′τ = 1, so ρ′ = 1/τ = (logτ )
′, so

ρ = logτ , τ = expρ .

From ρ′τ ′ = 1/ψ , we obtain (log τ)′ = 1/ψ = (logψ)′. Therefore

log τ = logψ .

Cross-entropy Integration of ρ′ = (logτ )
′ gives ρ = logτ + constant. This constant

may be omitted. Using ρ = logτ one can write

Cρ,τ (p, q) = −
∫

X
dx τ(q(x)) logτ (p(x)).

Divergence and dual entropyThe rho–tau divergence (23) takes on the simplified form

Dρ,τ (p, q) = −
∫

X
dx τ(q(x)) [ρ(p(x)) − ρ(q(x))]

= Cρ,τ (p, q) − Cρ,τ (q, q),

which reminds of (34).

3.4 Constant-S∗ gauge (� = log�, log� = logÃ)

Dual to the constant-S gauge, this gauge is characterized by f ∗ ◦τ = id, or f ∗ = τ−1.
This implies ρτ ′ = 1, so τ ′ = 1/ρ. Therefore, this gauge is same as taking τ = logρ .

Because of the rho–tau duality the conclusions of the previous gauge can be adapted.
In particular, (log ρ)′ = 1/ψ .
Entropy and cross-entropy In the present gauge the rho-tau cross-entropy (28) becomes

Cρ,τ (p, q) = −
∫

X
dx ρ(p(x)) logρ(q(x)) + constant.

Because in this gauge S∗(p) is a constant independent of p, the same expression
holds for the modified cross-entropy Cρ,τ (p, q). Therefore the rho–tau entropy can
be written as

Sρ,τ (p) = Cρ,τ (p, p) = −
∫

X
dx ρ(p(x)) logρ(p(x)) + constant. (38)
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Divergence In this case,

Dρ,τ (p, q) = Cρ,τ (p, q) − Cρ,τ (p, p). (39)

Because S∗ = constant, this also gives

Dρ,τ (p, q) = Cρ,τ (p, q) − Cρ,τ (p, p),

in agreement with (34). Now write (39) as

Dρ,τ (p, q) =
∫

X
dx ρ(p(x))

[
logρ(p(x)) − logρ(q(x))

]
. (40)

Expressions (38) and (40) look very similar to the standard expressions for the
Boltzmann–Gibbs–Shannon entropy and the Kullback–Leibler divergence, respec-
tively.

The constant-S or constant-S∗ gauge is called a Type II gauge.

4 Riemannian geometry under rho–tau embedding

We now investigate the Riemannian geometry related to the rho-tau embedding, and
expect a full generalization to Amari’s α-geometry as reviewed in Sect. 1. Throughout
this section we consider a parametrized statistical model θ �→ pθ .

4.1 Themetric tensor

The rho–tau divergence Dρ,τ (p, q) can be used (see [20,22,23]) to define a metric
tensor g(θ) by

gi j (θ) = −∂i∂
′
j Dρ,τ (pθ , pθ ′

)

∣∣∣∣
θ ′=θ

, (41)

with ∂i = ∂/∂θ i and ∂ ′
j = ∂/∂θ ′ j . One has

gi j (θ) = −∂i∂
′
j Cρ,τ (pθ , pθ ′

)

∣∣∣∣
θ ′=θ

,

and also

gi j (θ) = ∂i∂ j Dρ,τ (p, pθ )

∣∣∣∣
p=pθ

.

A short calculation gives

gi j (θ) =
∫

X
dx
[
∂iρ(pθ (x))

] [
∂ jτ(pθ (x))

]
. (42)
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Because τ = f ′ ◦ ρ, the rho–tau metric g(θ) also takes the form

gi j (θ) =
∫

X
dx
[
∂iρ(pθ (x))

] [
∂ j f ′(ρ(pθ (x)))

]

=
∫

X
dx f ′′(ρ(pθ (x)))

[
∂iρ(pθ (x))

] [
∂ jρ(pθ (x))

]
. (43)

This shows that the matrix gi j (θ) is symmetric. Moreover, it is positive-definite,
because the derivatives ρ′ and f ′′ are strictly positive and the matrix with entries[
∂ jρ(pθ (x))

] [
∂iρ(pθ (x))

]
, when pre- and post-multiplied with any vector, gives

rise to a positive real number. Finally, g(θ) is covariant, so g is indeed a metric ten-
sor on the Riemannian manifold pθ . From (42) follows that it is invariant under the
exchange of ρ and τ .

4.2 Freedom of choice of the rho–taumetric

Remarkably, (22) can be used to write (43) as

gi j (θ) =
∫

X
dx ( f ∗)′′(τ (pθ (x)))

[
∂iτ(pθ (x))

] [
∂ jτ(pθ (x))

]
.

Hence, the gauge freedom of choosing the metric gi j under the rho embedding, by
choosing an arbitrary function f , also exists when under the tau embedding.

Write the rho–tau metric gi j as

gi j (θ) =
∫

X
dx

1

ψ(pθ )

[
∂i pθ (x)

] [
∂ j pθ (x)

]
, (44)

where ψ = 1/(ρ′τ ′) is the function as in (36). So despite of the two independent
choices of embedding functions ρ and τ , the metric tensor gi j is determined by one
function ψ only.

There is another way of looking at the functional freedom in the gi j metric tensor.
Taking a look at (43) reveals that we can choose to specify the function f given any
embedding function ρ. So specifying ψ or specifying f achieves the same purpose.

Although the metric tensor gi j is invariant under changes of rho and tau which
leaveψ unchanged, other quantities such as the entropy, cross- entropy and divergence
function are not. This gauge freedom, which is left once the function ψ and hence the
metric tensor is fixed, explains why specific choices of ρ and τ simplify the relation
between rho–tau expressions and expressions found in the literature.

4.3 Tangent vectors

Let us now introduce the plane tangent to the rho embedding of the statistical model
pθ . A similar construction can be done for the tau embedding.
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From the form of rho–tau metric

gi j (θ) =
∫

X
dx

ρ′(pθ (x))

τ ′(pθ (x))

[
∂iτ(pθ (x))

] [
∂ jτ(pθ (x))

]
,

we introduce a bilinear form 〈·, ·〉 defined on pairs of random variables u(x), v(x)

〈u, v〉θ =
∫

X
dx

ρ′(pθ (x))

τ ′(pθ (x))
u(x) v(x). (45)

Introduce the notation X θ (x) = τ(pθ (x)), so

gi j (θ) = 〈∂i X θ , ∂ j X θ 〉θ .

For any random variable u, it holds that

∂ j

∫

X
dx ρ(pθ (x))u(x) =

∫

X
dx

ρ′(pθ (x))

τ ′(pθ (x))
∂ jτ(pθ (x))u(x) = 〈∂ j X θ , u〉θ .

Because of this relation one says that, by definition, ∂ j X θ is tangent to the rho repre-
sentation ρ(pθ ) of the model pθ .

Next decompose X θ into a component Y θ in the tangent plane

Y θ =
∑

i

yi (θ)∂i X θ

plus a component X θ − Y θ orthogonal to the tangent plane, i.e., satisfying

〈
X θ − Y θ , ∂i X θ

〉
θ

= 0 for all i .

A short calculation gives

yi (θ) =
∑

j

gi j (θ)〈X θ , ∂ j X θ 〉,

where gi j (θ) is the matrix inverse of gi j (θ). On the other hand, from

−∂i Sρ,τ (pθ ) =
∫

X
dx τ(pθ )∂iρ(pθ ),

we have

− ∂i Sρ,τ (pθ ) = 〈X θ , ∂i X θ 〉θ . (46)
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Hence, the orthogonal projection of X(θ) onto the tangent plane equals

Y θ =
∑

i, j

[−∂i Sρ,τ (pθ )]gi j (θ)∂ j X θ .

A special case, of interest later on, occurs when yi (θ) = θ i so that

〈

X θ −
∑

j

θ j∂ j X θ , ∂i X θ

〉

θ

= 0 (47)

and

− ∂i Sρ,τ (pθ ) =
∑

j

gi j (θ)θ j . (48)

Written out explicitly in terms of ρ and τ , condition (47) is

∫

X
dx

∂ρ(pθ (x))

∂θ i

⎛

⎝τ(pθ (x)) −
∑

j

θ j ∂τ(pθ (x))

∂θ j

⎞

⎠ = 0.

Its importance follows from the possibility to use the entropy Sρ,τ as a potential
function generating coordinates θi =∑ j gi j (θ)θ j .

We point out that the above analysis yields identical conclusions if we adopt
X θ (x) = ρ(pθ (x)) and

〈u, v〉θ =
∫

X
dx

τ ′(pθ (x))

ρ′(pθ (x))
u(x) v(x). (49)

4.4 Difference between rho–taumetric and entropic metric

Starting from the rho–tau entropy Sρ,τ of the parametric family pθ

Sρ,τ (pθ ) = −
∫

X
dx f (ρ(pθ (x))),

we take the second derivative to obtain

hi j (θ) = −∂i∂ j Sρ,τ (pθ ). (50)

Likewise, define

h∗
i j (θ) = −∂i∂ j S∗

ρ,τ (pθ )
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using the dual entropy function S∗
ρ,τ (pθ ). So hi j (and its dual h∗

i j ) is symmetric in i, j .
When positive-definite, h(θ) can also serve as a metric tensor, as is found sometimes
in the physics literature. We may call it the “entropic metric”.

Recall that the rho–tau metric (44) is induced by the rho–tau divergence (14) by
differentiating twice, see, (41). Though the entropic metric h(θ) (induced from rho–
tau entropy) differs in general from the rho–tau metric g(θ) (induced from rho–tau
divergence or equivalently rho–tau cross-entropy), the first-order derivatives of Cρ,τ ,
when evaluated at p = pθ , is equal to that of Sρ,τ (pθ ) or of S∗

ρ,τ (pθ )

∂i Sρ,τ (pθ ) = ∂i Cρ,τ (pθ , pθ ′
)

∣∣∣∣
θ ′=θ

= −
∫

X
dx τ(pθ )∂iρ(pθ ), (51)

∂i S∗
ρ,τ (pθ ) = ∂ ′

i Cρ,τ (pθ , pθ ′
)

∣∣∣∣
θ=θ ′

= −
∫

X
dx ρ(pθ )∂iτ(pθ ). (52)

They reflect, respectively, the vanishing of ∂i Dρ,τ (pθ , pθ ′
) and of ∂ ′

i Dρ,τ (pθ , pθ ′
) at

pθ = pθ ′
.

Making use of (42), one obtains, respectively

hi j (θ) = gi j (θ) + Ai j (θ), (53)

h∗
i j (θ) = gi j (θ) + Bi j (θ), (54)

where Ai j (θ) and Bi j (θ) are functions symmetric in i, j , given by

Ai j (θ) =
∫

X
dx τ(pθ (x))∂i∂ jρ(pθ (x)),

Bi j (θ) =
∫

X
dx ρ(pθ (x))∂i∂ jτ(pθ (x)).

When they are non-zero, they reflect the difference of the rho–tau metric g(θ) induced
from cross-entropy C , from h(θ) or h∗(θ) induced from entropy S or dual entropy S∗.
From (53) or (54), it can be seen that if either Ai j or Bi j can be written as the Hessian
of a function, then so can gi j—the rho–tau metric becomes Hessian.

4.5 Hessian geometry

We now consider the conditions under which the rho-tau metric g becomes Hessian.

Theorem 1 (Conditions for the rho–tau metric to be Hessian) Let be given a C∞-
manifold of probability distributions pθ . For fixed strictly increasing functions ρ and
τ , let the metric tensor g(θ) be given by (42). Then the following statements are
equivalent:
1. g is Hessian, i.e., there exists Φ(θ) such that

gi j (θ) = ∂i∂ jΦ(θ).
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2. There exists a function U (θ) such that

∂i∂ jU (θ) = −
∫

X
dx τ(pθ (x))∂i∂ jρ(pθ (x)). (55)

3. There exists a function V (θ) such that

∂i∂ j V (θ) = −
∫

X
dx ρ(pθ (x))∂i∂ jτ(pθ (x)). (56)

Proof (i) ←→ (ii) From the identity (53), the existence of Φ(θ) to represent gi j as
its second derivatives allows us to choose the function U as U = Φ + S. So from (i)
we obtain (ii). Conversely when the integral term can be represented by the second
derivative of U (θ), we can choose Φ = U − S, which satisfies (53). This yields (i)
from (ii).
(i) ←→ (iii) The proof is similar to the previous paragraph, except that we invoke
(54). ��

The case when g is Hessian is very special, because of the existence of various
bi-orthogonal coordinates. From

U = Φ + S,

V = Φ + S∗,

there are three “potential functions”: Φ which generates g, S which generates h, and
U which measures the discrepancy between g and h. Because of the ρ ←→ τ duality
there are two additional potentials S∗ and V . Each of these potential functions can
define conjugate coordinates with respect to θ . In particular, one defines

ηi = ∂iΦ, ξi = ∂iU , ζi = ∂i V .

They are linked via

ξi (θ) = −
∫

X
dx τ(pθ (x))∂iρ(pθ (x)) + ηi = ∂i Sρ,τ (pθ ) + ηi

ζi (θ) = −
∫

X
dx ρ(pθ (x))∂iτ(pθ (x)) + ηi = ∂i S∗

ρ,τ (pθ ) + ηi . (57)

We call ηi the dual coordinates of the θ i . The meaning of ξi and ζi will be explained
in Sect. 5.1.

This multitude of potentials is well-known in thermodynamics, where they are
interpreted in the context of the theory of ensembles. See for instance [4].

4.6 Rho–tau connections and dually flat geometry

Under Hessian geometry, there exists a pair of dually-flat connections. In the case
of conjugate rho-tau embedding of a parametric model pθ , Zhang introduced the
following connections [20]
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Γ
(α)

i j,k = 1 + α

2

∫

X
dx
[
∂i∂ jρ(pθ (x))

] [
∂kτ(pθ (x))

]

+1 − α

2

∫

X
dx
[
∂i∂ jτ(pθ (x))

] [
∂kρ(pθ (x))

]
, (58)

where Γ
(α)

i j,k ≡ (Γ (α))l
i j glk . One readily verifies

Γ
(α)

i j,k + Γ
(−α)
jk,i = ∂i g jk(θ). (59)

This shows that, by definition, Γ (−α) is the dual connection of Γ (α). In particular,
Γ (0) is self-dual and therefore coincides with the Levi-Civita connection. The family
of α-connections (58) is induced by the divergence function D(α)

f ,ρ(p, q) given by (35),
with correspondingα-values. Furthermore, upon switchingρ ←→ τ in the divergence
function, the designation of 1-connection versus (-1)-connection also switches.

The coefficients of the connection Γ (−1) vanish identically if

∫

X
dx
[
∂i∂ jτ(pθ (x))

] [
∂kρ(pθ (x))

] = 0. (60)

This condition can be written as

〈∂i∂ j X θ , ∂k X θ 〉θ = 0. (61)

It expresses that the second derivatives ∂i∂ j X θ are orthogonal to the tangent plane of
the statistical manifold. If satisfied, then the dual of Γ (−1) satisfies

Γ
(1)

i j,k = ∂i g jk(θ). (62)

Likewise, the coefficients of the connection Γ (1) vanish identically if

∫

X
dx
[
∂i∂ jρ(pθ (x))

] [
∂kτ(pθ (x))

] = 0. (63)

In the case of a φ-deformed exponential family (see the next section) condition (60)
is satisfied in the ρ = id gauge while (63) is satisfied in the τ = id gauge.

Proposition 2 With respect to conditions (60) and (63),

1. When (60) holds, the coordinates θ i are affine coordinates for Γ (−1); the dual
coordinates ηi are affine coordinates for Γ (1);

2. When (63) holds, the coordinates θ i are affine coordinates for Γ (1); the dual
coordinates ηi are affine coordinates for Γ (−1);

3. In either case above, g(θ) is Hessian.
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Proof Recall that when Γ = 0 under a coordinate system θ , then θ i ’s are affine
coordinates—the geodesics are straight lines:

θ(t) = (1 − t) θ(0) + t θ(1).

The geodesics of the dual connection Γ ∗ satisfy the Euler-Lagrange equations

d2

dt2
θ i + Γ ∗i

km

(
d

dt
θk
)(

d

dt
θm
)

= 0. (64)

Its solution is such that the dual coordinates η are affine coordinates:

η(t) = (1 − t) η(0) + t η(1).

For Statement 1, apply the above knowledge, taking Γ = Γ (−1) and Γ ∗ = Γ (1). For
Statement 2, take Γ = Γ (1) and Γ ∗ = Γ (−1).

To prove Statement 3 observe that

∂k gi j (θ) =
∫

X
dx
[
∂iτ(pθ (x))

]
∂ j∂kρ(pθ (x)) +

∫

X
dx
[
∂ jρ(pθ (x))

]
∂i∂kτ(pθ (x)).

So the vanishing of either term, i.e., either (60) or (63) holding, will yield ∂k gi j (θ)

to be symmetric in j, k or in i, k, respectively. This, in conjunction with the fact that
gi j is symmetric in i, j , leads to the conclusion that ∂k gi j (θ) is totally symmetric in
an exchange of any two of the three indices i, j, k. This implies that ηi exist for which
gi j (θ) = ∂ jηi = ∂iη j . The symmetry of g implies now that it equals the Hessian of a
potential Φ. ��

5 Deformed exponential models

In the previous Section, we show how the rho–tau geometry fully generalizes the α-
geometry of Amari’s. The approach considered was largely based on generalization
of entropy, cross-entropy, divergence functions, and the geometry induced by those
quantities. Here we consider the generalization of exponential family to deformed
exponential (phi-exponential) family, and show how they give rise to Hessian geome-
try. In this way, the α-geometry is fully generalized with conjugate rho-tau embedding
in terms of (i) entropy, cross-entropy, divergence function; (ii) Riemannian metric and
affine connections; and (iii) parametric probability families.

5.1 Phi-exponential model

Fix an arbitrarymonotone functionφ alongwith real randomvariables F1, F2, · · · , Fn .
These functions determine a model θ → pθ belonging to the phi-exponential family
by the relation (see, [11–13])
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pθ (x) = expφ

[
∑

k

θk Fk(x) − α(θ)

]

, (65)

provided that one can prove that the normalization function α(θ) exists. Normalization
of pθ leads to

∂iα(θ) = Ẽθ Fi ,

where the so-called escort expectation, denoted Ẽθ ,

Ẽθ {·} =
∫

X
dx p̃θ {·}

is with respect to the the escort family of probability distributions p̃θ as defined by

p̃θ (x) = 1

z(θ)
φ(pθ (x)).

Here the integral

z(θ) =
∫

X
dx φ(pθ (x)) (66)

is assumed to converge. Using the properties of the deformed exponential function
one obtains

∂i pθ (x) = z(θ) p̃θ (x) [Fi − ∂iα(θ)] = φ(pθ (x)) [Fi (x) − ∂iα(θ)] . (67)

For later convenience, we also derive the first derivative of the z(θ) function

∂ j z(θ) =
∫

X
dx φ′(pθ (x))∂ j pθ (x)

=
∫

X
dx φ′(pθ (x))φ(pθ (x))

[
Fj (x) − ∂ jα(θ)

]

and the second derivatives of the α function

123



104 Information Geometry (2018) 1:79–115

∂i∂ jα(θ) = ∂ j

(
1

z(θ)

∫

X
dx φ(pθ (x))Fi (x)

)

= 1

z(θ)

∫

X
dx ∂ jφ(pθ (x))Fi (x) − [∂iα(θ)]

1

z(θ)
∂ j z(θ)

= 1

z(θ)

∫

X
dx φ′(pθ (x))φ(pθ (x))(Fj (x) − ∂ jα(θ))Fi (x)

− [∂iα(θ)]
1

z(θ)

∫

X
dx φ′(pθ (x))φ(pθ (x))

[
Fj (x) − ∂ jα(θ)

]

= 1

z(θ)

∫

X
dx φ′(pθ (x))φ(pθ (x))[Fj (x) − ∂ jα(θ)] [Fi (x) − ∂iα(θ)]. (68)

Proposition 3 Denote

ηi = Eθ Fi =
∫

X
dx pθ (x)Fi (x).

Then, there exists a function Φ such that

ηi = ∂iΦ(θ).

Proof We compute

∂ jηi =
∫

X
dx ∂ j pθ Fi (x)

=
∫

X
dx φ(pθ (x))

[
Fj (x) − ∂ jα(θ)

]
Fi (x)

=
∫

X
dx φ(pθ (x)) [Fi (x) − ∂iα(θ)]

[
Fj (x) − ∂ jα(θ)

]
(69)

which is symmetric in i, j . Therefore, there exists a function Φ such that ηi = ∂iΦ,
and that

∂i∂ jΦ(θ) =
∫

X
dx φ(pθ (x)) [Fi (x) − ∂iα(θ)]

[
Fj (x) − ∂ jα(θ)

]
. (70)

��
We remark that with respect to any deformed-exponential model pθ (x), we have

two sets of coordinates dual with respect to θ :

1. ηi = Eθ Fi , which is given by ηi = ∂iΦ for some function Φ(θ);
2. ζi = Ẽθ Fi , which is given by ζi = ∂iα for the α function associated with the

deformed-exponential logφ .

In the literature, η is called the expectation coordinates while ζ is called the escort
(expectation) coordinates.
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Simple calculations show that the first and second derivatives of the η coordinates
with respect to θ can be expressed as the second and third derivative of Φ:

∂iη j =
∫

X
dx ∂i pθ (x)Fj (x) = ∂i∂ jΦ;

∂i∂ jηk =
∫

X
dx ∂i∂ j pθ (x)Fk(x) = ∂i∂ j∂kΦ.

Now, let us consider the rho–tau metric (42) or (44) applied to the φ-exponential
model (65),

gi j (θ) =
∫

X
dx

1

ψ(pθ (x))

[
∂i pθ (x)

] [
∂ j pθ (x)

]

=
∫

X
dx

(φ(pθ (x)))2

ψ(pθ (x))
[Fi (x) − ∂iα(θ)]

[
Fj (x) − ∂ jα(θ)

]
. (71)

Below, we will consider two subcases, with ψ = φ or ψ = φ/φ′, both resulting
in interesting geometries for the φ-exponential family. Since ψ is controlled by two
embedding functions ρ and τ , for simplicity we choose τ = logφ , which leaves only
the ρ function to be specified.

5.2 The case ofÃ = �

Upon choosing ψ = φ, the expression of the rho-tau metric g in (71) takes the form
of the right-hand side of (70). Therefore,

Theorem 2 With the choice of the weighting funcion ψ = φ, the rho-tau metric tensor
(71) of the phi-exponential family obeying (65) is Hessian.

In this case, the rho–tau metric coincides with the Hessian metric gΦ defined as
second derivative of the potential Φ given by (70)

gΦ
i j (θ) = ∂i∂ jΦ.

In the meanwhile, the rho–tau metric tensor (71) also takes the form

gi j (θ) = z(θ)
[
Ẽθ Fi Fj − Ẽθ Fi Ẽθ Fj

]
, (72)

as originally derived in [11]. This expression implies that the rho–tau metric tensor
in this case is conformally equivalent to the metric tensor g̃ derived from the escort
expectation of the random variables Fi :

g̃i j (θ) = Ẽθ Fi Fj − Ẽθ Fi Ẽθ Fj = Ẽθ

[
(Fi − Ẽθ Fi )(Fj − Ẽθ Fj )

]
. (73)

For later convenience, we refer to g̃ as given by (73) as the “escort metric”.
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Note that when ψ = φ and τ = logφ , then ρ = id. That is, we have adopted the
rho-id gauge. that is, Type I gauge. In such case, Sρ,τ reduces to the phi-entropy Sφ .

Proposition 4 Under the rho-id gauge, the Hessian potential Φ of the φ-exponential
model

1. is given by

Φ(θ) = Sφ(pθ ) +
∑

k

θk
Eθ Fk; (74)

2. equals the convex dual Scd
φ (θ) of the φ-entropy Sφ;

where Sφ(pθ ) = − ∫X f (pθ )dx, f ′ = logφ .

Proof To prove Statement 1, note that from the definitions (12) and (65) follows

−∂i Sφ(pθ ) =
∫

X
dx logφ(pθ (x)) ∂i (pθ (x))

=
∫

X
dx

[
∑

k

θk Fk(x) − α(θ)

]

∂i (pθ (x))

=
∑

k

θk∂iEθ Fk .

Therefore,

∂iΦ(θ) = ∂i Sφ(pθ ) + Eθ Fi +
∑

k

θk∂iEθ Fk

= Eθ Fi = ηi .

The convex function Φ defined by (74) is hence the potential function generating the
Hessian metric gi j .

To prove Statement 2, that is, the potential Φ can be seen as the convex dual Scd of
the phi-entropy Sφ , recall the definition of convex duality

Scd
φ (θ) = sup

p
{Sφ(p) +

∑

k

θk
Ep Fk}.

From (15) follows that for any probability distribution p is

Dφ(p, pθ ) = Sφ(pθ ) − Sφ(p) −
∑

k

θk
Ep Fk +

∑

k

θk
Eθ Fk, (75)

with equality if and only if p = pθ . This implies

Sφ(p) +
∑

k

θk
Ep Fk ≤ Sφ(pθ ) +

∑

k

θk
Eθ Fk,
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with equality if and only if p = pθ . One concludes that

Scd
φ (θ) = Sφ(pθ ) +

∑

k

θk
Eθ Fk .

From Statement 1 then follows Φ = Scd. ��

It is important to note that the duality between S and S∗ is not convex duality,
Scd �= S∗, but rather a duality arising from ρ ←→ τ .

Under the rho-id gauge, we have Sρ,τ = Sφ so that

∂i Sφ(pθ ) = −
∑

k

θk∂i∂kΦ,

∂i∂ j Sφ(pθ ) = −∂i∂ jΦ −
∑

k

θk∂i∂ j∂kΦ.

In this case (i.e., rho-id gauge for phi-exponential family)

S∗
φ(pθ ) = − f ∗

(
∑

k

θk Fk(x) − α(θ)

)

,

so that

∂i S∗
φ(pθ ) = −∂iα + Eθ Fi = ηi − ζi ,

∂i∂ j S∗(pθ ) = −∂i∂ jα + ∂i∂ jΦ.

That selecting the rho-id gauge causes the rho–tau metric of the φ-exponential
family to become a Hessian metric can also be seen via (see Theorem 1)

∂i∂ j V (θ) = −
∫

X
dx pθ (x)∂i∂ j logφ(pθ (x)) = −

∫

X
dx pθ (x)(−∂i∂ jα(θ))

= ∂i∂ jα(θ).

So we can take V (θ) = α(θ). The convex potential Φ function can have an equivalent
expression

Φ(θ) = α(θ) +
∫

X
dx f ∗

(
∑

k

θk Fk(x) − α(θ)

)

,
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where ( f ∗)′ = expφ . In this case,

U (θ) = α(θ) + Sφ(pθ ) − S∗
φ(pθ )

= α(θ) −
∫

X
dx f

(

expφ

(
∑

k

θk Fk(x) − α(θ)

))

+
∫

X
dx f ∗

(
∑

k

θk Fk(x) − α(θ)

)

,

with

∂iU = ηi −
∑

k

θk∂kηi .

The cross-entropies for deformed-exponential model (under rho-id gauge) are:

Cρ,τ (pθ , qθ ) = −
∑

k

(θp)
k
(∫

dx pθ (x)Fi (x)

)
+ α(θq),

Cρ,τ (pθ , qθ ) = Cρ,τ (pθ , qθ ) − S∗(qθ ) = −
∑

k

(θp)
k
(∫

dx pθ (x)Fi (x)

)
+ Φ(θq).

Finally, the Pythagorean Theorem 3.8 of [3] can be easily generalized to the
φ-exponential models. Let t ∈ R �→ pt be a differentiable map, defined on a neigh-
borhood of t = 0, taking values in the manifold of the pθ . A random variable P is
said to be tangent to pt at t = 0 in the rho-embedding if

d

dt

∣∣∣∣
t=0

∫
dx ρ(pt (x))u(x) = 〈P, u〉θ

for any random variable u, with the inner product 〈·, ·〉θ defined by (45) with pθ =
pt=0.

Theorem 3 Let pθ obey (65). Let t ∈ R �→ pt and s ∈ R �→ rs be two differentiable
maps with values in the manifold of the pθ . Let P and R be the corresponding tangent
vectors at s = t = 0 and assume they are orthogonal in the sense that 〈P, R〉θ = 0.
Assume t ∈ R �→ pt is a geodesic for Γ (−1) and s ∈ R �→ rs is a geodesic for Γ (1).
Assume the two geodesics intersect at s = t = 0 in a common point p0 = r0 ≡ q. If
ψ = φ then the following Pythagorean relation holds

Dρ,τ (pt , q) + Dρ,τ (q, rs) = Dρ,τ (pt , rs).
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Proof Let the θ -coordinates of pt be denoted θt = (1−t)θ0+tθ1 and the η-coordinates
of rs be denoted ηs = (1 − s)η0 + sη1. A short calculation gives

P =
∑

k

[θ1 − θ0]k∂k X θ ,

R =
∑

i, j

[η1 − η0]i g
i j (θ)∂ j X θ . (76)

Orthogonality of P and R yields

0 = 〈P, R〉θ
=
∑

i, j,k

[θ1 − θ0]k[η1 − η0]i g
i j (θ)〈∂k X θ , ∂ j X θ 〉θ

=
∑

i, j,k

[θ1 − θ0]k[η1 − η0]i g
i j (θ)gkj (θ)

=
∑

k

[θ1 − θ0]k[η1 − η0]k . (77)

This is used in the following calculation. From (75) follows

Dρ,τ (pt , q) + Dρ,τ (q, rs) − Dρ,τ (pt , rs)

=
∑

k

[θt − θ0]
k [ηt − η0]k

= (1 − t)(1 − s)
∑

k

[θ1 − θ0]
k [η1 − η0]k . (78)

As shown above the summation term of the r.h.s. of this expression vanishes. Hence
the desired result follows. ��

5.3 The case ofÃ = �/�′

The phi-deformed exponential family, considered in the previous section, is the gen-
eralization of the q-exponential model historically introduced by Tsallis [17]. The
second [5] and third [19] version of the Tsallis formalism can be characterized by the
observation that the role of expectations Eθ and escort Ẽθ is exchanged.

For convenience the model discussed below is called the Tsallis model. Consider a
phi-deformed exponential family pθ defined by (65). Assume now that the α function
is strictly convex. Then its Hessian can be used to define a metric gα(θ)

gα
i j (θ) = ∂i∂ jα(θ).

For convenience, let us call this the Tsallis metric. Below, we show that this metric is
conformally equivalent to the rho-tau metric (44), the latter being non-Hessian upon
choosing ψ = φ/φ′.
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Theorem 4 For a phi-deformed exponential family pθ of the form (65), when the
weighting function ψ of the rho–tau metric in the form of (71) satisfies

1

ψ
= (logφ)′ = φ′

φ
, (79)

then the rho–tau metric g, while itself non-Hessian, is conformally equivalent to a
Hessian metric gα (Tsallis metric).

Proof From the expression of ∂i∂ jα given by (68), we see that if we set

φ′(u) = φ(u)/ψ(u)

in the rho–tau metric as given by (71), then we have

gi j (θ) = z(θ) gα
i j (θ).

This says that the rho–tau metric g in this case is conformally related to the Tsallis
metric gα , which is the Hessian of α(θ) function. ��

Note that with this choice of weighting functionψ = φ/φ′ and embedding function
τ = logφ , then ρ = f −1 so f (ρ(p)) = p. This corresponds to the constant-S gauge.
Therefore in the Tsallis model, we can either choose ρ = φ, τ = logφ (which is what
we assumed in the above calculations) or dually ρ = logφ, τ = φ. Under these Type
II gauges, the rho-tau metric gi j is non-Hessian while the Tsallis metric gα

i j (θ), if it
exists, is (always) Hessian by construction.

It is known that the Tsallis metric gα
i j induces a dually flat structure associated with

escort expectations Ẽθ , see, [2,8]. The dual coodinates with respect to the α function
are ζi = Ẽθ Fi . The dual potential of α(θ) is Ẽθ logφ(pθ ), as shown below:

∑

k

θk∂kα(θ) − α(θ) =
∑

k

θk 1

z(θ)

(∫

X
dx φ(pθ (x))Fk(x)

)
− α(θ)

= 1

z(θ)

(∫

X
dx φ(pθ (x))

∑

k

θk Fk(x)

)

− α(θ)

= 1

z(θ)

(∫

X
dx φ(pθ (x))[logφ(pθ (x)) + α(θ)]

)
− α(θ)

= 1

z(θ)

∫

X
dx φ(pθ (x)) logφ(pθ (x))

= Ẽθ logφ(pθ ).

This expression is nothing but S∗(pθ ), apart from the conformal factor of z(θ). This
shows the duality (modulo a conformal factor) between α and S∗ under Type II gauge,
just as Φ and Sφ are convex dual under Type I gauge.
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5.4 Maximum entropymodels

The derivation of the phi-exponential family by means of the maximum entropy
method is found in [11]. The treatment here is further generalized so as to cover
the approach of [5] as well.

Consider the problem of maximizing the rho–tau entropy Sρ,τ (p) under the con-
straint that for a finite number of random variables F1, · · · , Fn the functions

εk(p) =
∫

X
dx σ(p(x))Fk(x), k = 1, 2, · · · , n,

have some given values. Here, σ is a given strictly increasing twice differentiable
function. We are interested in two specific cases. In the rho-id gauge (ρ = id) the
given values are the expectation values of the variables Fk . Then σ = id. In the case
of the Tsallis model the given values are the unnormalized escort expectations of the
variables Fk . This requires σ = φ.

Introduce now Lagrange multipliers θk . Because of the requirement that the max-
imizing probability distribution is normalized, an extra multiplier α is needed. The
function of Lagrange can then be chosen equal to

L(p) = Sρ,τ (p) + θkεk(p) − α

∫

X
dx p(x).

Stationarity implies that the optimizing probability distribution p = pθ must satisfy
an expression of the form

τ(pθ (x))ρ′(pθ (x)) = θk Fk(x)σ ′(pθ (x)) − α(θ). (80)

Two cases exist in which the resulting model belongs to a deformed exponential
family. First take σ = id. Then (80) becomes

τ(pθ (x))ρ′(pθ (x)) = θk Fk(x) − α(θ).

This can be written as (65) with φ such that τρ′ = logφ . In the rho-id gauge this
condition is satisfied with ρ = id and τ = logφ .

The other case occurs when τρ′ is proportional to σ ′, say τρ′ = σ ′. Then (80)
becomes

σ ′(pθ (x)) = α(θ)

θk Fk(x) − 1
.

This is of the form (65) provided φ is such that

logφ(u) = B

(
1

σ ′(u)
− 1

σ ′(1)

)
(81)
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for some constant B. The result is

pθ (x) = expφ

[
∑

k

θ̃k Fk(x) − α̃(θ)

]

with

θ̃k = B
θk

α(θ)
and α̃(θ) = B

(
1

σ ′(1)
+ 1

α(θ)

)
.

In the Tsallis context σ(u) = φ(u) = uq for some q �= 1. The condition (81) is then
satisfied with B = q/(1 − q). The choice σ = φ works because if σ is a power law
then σσ ′′/(σ ′)2 is a constant.

6 Summary and discussions

The classic information geometry (Amari’s α-geometry) contains three inter-related
parts: (i) the Fisher–Rao metric g with the family of α-connections; (ii) the divergence
functions inducing g and α-connections; (iii) the exponential family corresponding to
the dually flat α = 1 connection. Over the years, various aspects of classic information
geometry were generalized by relaxing from the logarithm/exponential embedding
functions, predominantly in the deformed exponential approach of Naudts [11], the
U model of Eguchi [6], and conjugate rho-tau embedding of Zhang [20]. In this
paper, these approaches are all synthesized to give a full generalization of classical
information geometry with arbitrary monotone embedding.

The main thesis of our paper is that the divergence function Dρ,τ constructed
from (ρ, τ )-embedding subsumes both the phi-divergence Dφ constructed from the
deformed-log embedding and the U -divergence constructed from the U-embedding.
This is through adopting the rho-id gauge (or dually, tau-id gauge). A highlight of
our analysis is that the rho–tau divergence Dρ,τ provides a clear distinction between
entropy and cross-entropy as two distinct quantities without requiring the latter to
degenerate to the former.

On the other hand, fixing the gauge f ∗ = τ−1 (constant S∗ gauge) renders the
rho-tau cross-entropy to be the U cross-entropy, where the dual-entropy is constant. In
this case, τ ←→ ρ is akin to the logφ ←→ φ transformation encountered in studying
the phi-exponential family.

With respect to the induced geometry, we first show that the rho-tau metric tensor
g(θ) depends on a single function ψ which is defined by ψ(u) = 1/(ρ′(u)τ ′(u)).
Theorem 1 gives equivalent conditions for the rho-tau metric to be Hessian. If the
probability model is phi-exponential with the same function φ = ψ , then the rho–tau
metric isHessian. The potential function is the convex conjugate of the rho–tau entropy.
However, in general the rho–taumetric is not Hessian. A non-Hessian special case is to
choose ψ = φ/φ′ for the phi-exponential family; the resulting metric is conformally
equivalent to the metric given by the second-derivative of the normalizing function
α(θ).
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In our generalization of Amari’s α-geometry, there is a variety of (semi-) Rieman-
nian metrics:

(i) rho–taumetric, induced from (ρ, τ )-divergence or (ρ, τ ) cross-entropy; it contains
one free function ψ given by ψρ′τ ′ = 1;

(ii) entropic metric, induced from the (ρ, τ )-entropy—it is a Hessian metric.

When the probability pθ is the φ-exponential family, with α(θ) representing the nor-
malization function, then it is shown that there always exists another potential function
Φ, which is usually different from α (unless φ = id, the case of vanilla exponential
family). Assuming convexity, both α and Φ can be used to induce dual or expectation
coordinates, respectively ζ and η, with respect to the θ parameter (natural coordinate)
indexing the φ-exponential family. The rho–tau metric g of the φ-exponential family,
being dependent on the weighting functionψ , may or may not be Hessian. After fixing
one embedding function τ to be logφ , it turns out that

(i) g = gΦ upon choosingψ = φ (which forces ρ = id, and hence adopting the Type
I gauge). That is, the rho–tau metric g coincides with the Hessian metric gΦ as
induced from Φ; it is conformally equivalent to the (non-Hessian) escort metric
(associated with the escort expectation);

(ii) g = z(θ)gα upon choosingψ = φ/φ′ (which forces ρ = logτ , and hence adopting
Type II or constant-S gauge). That is, the rho–tau metric g, though not Hessian,
becomes conformally equivalent to the Tsallis metric gα , a Hessianmetric induced
from the normalization function α.

Therefore, one should carefully distinguish the various metrics: rho-tau metric (which
may become Hessian) and entropic metric, which is always Hessian, and in the case
of phi-exponential family, Tsallis metric (which is always Hessian), and the escort
metric (which is generally non-Hessian).

Note that conformal equivalence for the case of ψ = φ were previously studied
e.g., [2,8]. For the case of ψ = φ/φ′, we were brought to the awareness (by an
anonymous reviewer) that a recent report [9] derived identical conclusions using a
different approach—there the weighting function is viewed as arising as the second
derivative of expφ :

(expφ)′ = φ ◦ expφ ,

(expφ)′′ = (φ′ ◦ expφ) · (φ ◦ expφ) = (φ′ · φ) ◦ expφ .

Interestingly, the first derivative of expφ corresponds to the ψ = φ selection. Future
research will elucidate whether the result obtained by this “sequential derivative”
approach of [9] and by our current rho–tau embedding approach to specify the weight-
ing function of the Riemannian metric is merely a coincidence or reflects a deep cause.

Our current analysis clarifies various phenomena that emerge as a result of adopting
general embedding functions—these phenomena have been largely obscured in the
“standard model” due to its use of the standard logarithm/exponential function:

1. In general, the divergence function (as a two-variable function) is the difference
of cross-entropy (as a two-variable function) and a pair of dual entropies (as one-
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variable functions); one can always define a “modified” cross-entropy to absorb
one of the entropies (as in the U cross-entropy case);

2. In general, the deformed-exponential family always has two potentials, Φ and α,
which are not equal unless there is no deformation. Therefore, there are always
two expectation coordinates (standard expectation and escort expectation) with
respect to the same natural parameter of the deformed-exponential family. This
is regardless of the rho-tau metric of the Riemannian manifold (which is induced
from the divergence function);

3. When the rho–tau metric is Hessian (i.e., under Type I gauge), there are actually
multiple potentials, including Φ and phi-entropy, as well as α and dual entropy;

4. When the rho–tau metric is conformally equivalent to a Hessian metric (i.e., under
Type II gauge), the α and S∗ form convex dual (after a conformal scaling factor);

5. The U model and the phi-model are identical models under different notations.

The conjugate rho–tau embedding mechanism and phi-exponential model together
provide the necessary ingredients for generalizing the α-geometry while preserving its
elegant geometric structure. This greatly expands the reach of information geometric
analysis to a much larger applied setting. In particular, the principle of Maximum
Entropy inference can be generalized to the case of a generalized linear model. Future
researchwill showhow this generalized formulation ofmaxent duality and calculations
may lead to practical impact in statistics, information science, and machine learning.
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