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Abstract
The mining industry is one of the industries that present a high degree of risk due to the unique working environment. This 
paper aims to rank risks related to the health and safety of workers in the mining industry by using a multi-criteria decision-
making method. For the risk assessment, the fuzzy analytic hierarchy process (FAHP), which is based on the theory of fuzzy 
logic and can be used to deal with uncertain situations, was applied. An active underground mining project was selected as a 
case study, where, by observing the progress of the production process, the associated risks to health and safety were identi-
fied and recorded. Through the application of the FAHP, the risks identified in the case study and verified in the literature 
were ranked in order of importance based on the opinions of experts. The results of the risk assessment may guide all the 
stakeholders, i.e., project managers, workers, and public authorities, in the implementation of appropriate control measures 
to reduce or eliminate risk in this type of project.

Keywords  Decision-making · Fuzzy analytic hierarchy process · Multi-criteria analysis · Risk analysis · Risk assessment · 
Underground mining project

1  Introduction

The mining industry is one of the industries with a high 
degree of risk, resulting in many fatal accidents and serious 
injuries (Gul et al. 2019). The increased risk that charac-
terizes it is due to its peculiarities regarding the working 
environment, the mechanical equipment used, the temporary 
location of its installation, and its general dynamics. The 
mining industry is constantly developing its underground 
production equipment and working environment but has not 
yet achieved zero fatalities.

Based on the latest reports published in the European 
Union in 2017, over 9800 occupational accidents and 48 

deaths of workers employed in the mining industry were 
recorded (ILO 2018). In Greece, the mining and quarrying 
industry is blamed for 2.1% of all accidents. From the lat-
est activity reports submitted for the year 2017, combined 
with the data of the Safety Auditors of Northern and South-
ern Greece for the same period, it appears that ninety-four 
(94) industrial accidents occurred, two of which were fatal. 
Out of the total of 94 accidents recorded, 80 took place in 
mines, thus demonstrating the higher degree of risk involved 
in underground operations compared to surface operations 
(Greek Ministry of Environment 2018).

The mining industry worldwide is an economic catalyst, 
contributing to economic recovery and social progress of 
local communities (Wang et al. 2016). In Greece, the min-
ing industry is an important economic activity, supplying 
mineral raw materials to vital sectors of the national econ-
omy and contributing positively to employment. To main-
tain high growth rates, companies operating in the industry 
should be committed to systematic risk management, iden-
tifying, and assessing risks, and making continuous efforts 
to reduce them to a tolerable level. Moreover, the damages 
due to accidents also include the development of a negative 
reputation apart from reduced productivity while increas-
ing direct/indirect operating costs that result in firms losing 
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competitiveness, making them economically vulnerable 
(Wang et al. 2016; Koulinas et al. 2019).

It is also well known that occupational accidents, in addi-
tion to the economic and social impacts on the victims and 
firms, also impact society. Most of the financial burden of 
an occupational accident is borne by the state. It includes the 
costs of health care, rehabilitation, and social benefits such 
as compensation for absence from work and early retire-
ment due to disability or death. The impact of occupational 
accidents on society relates to the temporary or permanent 
lack of workers from the production process, the increase in 
mortality beyond the expected level, and the increase in the 
population of vulnerable groups requiring social protection 
and financial support (Targoutsidis 2008).

As stipulated by the current Greek legislation, every 
company that employs more than one worker must have a 
written occupational risk assessment, through which the 
study and assessment of occupational risks are carried out. 
However, it is not always clear in which order the identified 
risks should be addressed. Risk management is about mak-
ing decisions on the mitigation or elimination of risks on 
an ongoing basis by comparing them with each other, thus 
constituting a Multi-Criteria Decision-Making (MCDM) 
problem. Health and safety decision-makers are interested 
in achieving the best possible risk mitigation measures with 
the lowest possible costs, quickly, and with the least pos-
sible human resources. Therefore, ranking risks in order of 
importance is a critical process for better risk management.

The determination of accident-contributing risks, haz-
ards, factors, and/or causes in the construction industry has 
been widely investigated. According to Liang et al. (2020), 
at least 35% of published construction safety management 
research that has been published in the last 30 years aims to 
(a) analyze accident statistics, (b) identify and evaluate their 
causes, and (c) assess the risk of their occurrence. Interest-
ingly, Meng et al. (2020) in their recent bibliographic review 
found that the application of game theory is on the rise in the 
research of safety in both construction and underground min-
ing projects. Nevertheless, in most cases, statistical meth-
ods are applied to prioritize risks, factors, or causes. These 
include frequencies, correlation analysis, factor analysis, 
decision trees, and the relative importance index (RII). For 
example, recently, Winge and Albrechtsen (2018), Betsis 
et al. (2019), and Chen (2020) used actual accident data and 
correlation analysis to prioritize construction site risks in 
Malaysia, Greece, and China. On the other hand, Zhang et al. 
(2020) applied grey relational analysis to accident data from 
571 construction accidents in China. Numerous researchers 
in the past 5 years have based their prioritization of con-
struction site risks on opinions of experts based on question-
naire surveys and used the calculated frequencies or rela-
tive importance indices (RII) (Tayeh et al. 2020; Antoniou 
and Merkouri 2021)as well as, correlation analysis (Tayeh 

et al. 2020; Yap and Lee 2020)and factor analysis (Asilian-
Mahabadi et al. 2020; Tayeh et al. 2020; Mosly 2022) to 
rank them in terms of importance. Very few such studies 
were found employing MCDM, particularly in relation to 
safety risks in construction. One earlier study by Amiri et al. 
(2016) employed decision trees to analyze a database of con-
struction accidents throughout Iran between 2007 and 2011. 
More recently, Soltanzadeh et al. (2022) used FAHP for the 
risk assessment of 37 risk sources in a significant construc-
tion project in Iran based on expert opinion. On the other 
hand, several works have been found that apply MCDMs and 
group decision-making methods to prioritize and/or assess 
construction management decision criteria, delay factors, 
financial risks, and other ranking decision-making problems. 
For example, the Technique for Order Preference by Simi-
larity to Ideal Situation (TOPSIS), the Delphi Method, the 
Preference Ranking Organization METHod for Enrichment 
Evaluations (PROMETHEE), and the Analytic Hierarchy 
Process (AHP) have been consistently used for such prob-
lems (Aretoulis et al. 2020; Antoniou 2021; Kalogeraki and 
Antoniou 2021; Petroutsatou et al. 2021, 2022; Petroutsatou 
and Kantilierakis 2023).

The AHP is a multi-criteria decision-making method 
developed by Saaty in the early 1980s that has been used 
significantly since and is still in wide use today. A simple 
search in Scopus (TITLE-ABS-KEY (ahp OR "analytical 
hierarchy process") returned 43.043 documents from 1980 
to 2022. As seen in the figure, the trend through time is still 
on the rise, with a record of 4.667 documents published in 
2022. The most significant percentage of these documents 
refer to the Engineering subject area (21.0%).

The method was created to contribute to the decision-
making process characterized by many interrelated and 
sometimes conflicting factors (Saaty 1980). Its main inno-
vation was the ability to systematically address many non-
measurable and subjective criteria alongside measurable 
and objective criteria because it allows the integration of 
subjective evaluations by producing a common numerical 
basis for the solution using a specifically defined scale of 
1–9. It is a measurement methodology that derives priority 
scores for a given set of items, i.e., criteria, alternatives, 
risks, etc. It requires the construction of a three or more-
level hierarchy and a decision-maker to make judgments 
on pairs of elements (pairwise comparisons) to derive both 
the criteria weights and priority scores for each alternative 
against each criterion. The resulting scores at each level are 
then synthesized throughout to derive global priority scores 
for each alternative (Shapiro and Koissi 2017).

The process has been widely applied in the construction 
sector. Specifically, after a literature review it was found that 
it has been used to (a) select the optimal alternative based 
on multiple selection criteria, (b) determine selection crite-
ria weights for use in other MCDM methods or (c) to rank 
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classified lists of elements (risks, factors, criteria) according 
to their perceived importance or impact for prioritization 
purposes.

Numerous studies in the construction sector have exam-
ined the use of AHP for optimal alternative selection. Exam-
ples include the use of the AHP for equipment selection 
(Shapira and Goldenberg 2005; Petroutsatou et al. 2021, 
2022), selection of construction contractors and subcontrac-
tors (Mustafa and Ryan 1990; Topcu 2004; Abudayyeh et al. 
2007), project procurement system (Al Khalil 2002; Mahdi 
and Alreshaid 2005), selection of design firms (Cheung et al. 
2002).

Using the first stage of the AHP to determine weights of 
selection criteria and then applying other MCDMs to make 
optimal choices between alternatives is also quite common. 
For example, it has been used with the Multi-Attribute 
Utility Theory (MAUT), the PROMETHEE, or the TOP-
SIS and other MCDMs for project procurement systems, 
contract type, and contractor selection problems (Antoniou 
et al. 2016; Antoniou and Aretoulis 2018; Salman 2022) 
and choice of disagreement resolution methodology (Chan 
et al. 2006). Finally, the research by Taylan et al. (2014) cal-
culated selection criteria weights using fuzzy AHP and then 
applied TOPSIS for project selection based on risk assess-
ment. Recently, it has been used to calculate weights to be 
inputted into an Artificial Neural Network (ANN) designed 
to predict major risks and construction project quality (Lin 
et al. 2022). Finally, El-Tourkey et al. (2022) applied AHP 
to calculate selection criteria weights and used MAUT for 
building construction's mobile crane selection.

The AHP, owing to its procedure that forces the decision-
maker to make pairwise comparisons between elements per 
level, can be utilized successfully for prioritization purposes. 
This has been done by Li and Wen (2022) for prioritization 
of construction risks, by Wakchaure and Jha (2012) to pri-
oritize bridge elements for maintenance, and by Cooksey 
et al. (2011) to rank good practice indicators for asset man-
agement. More recently, it has been used to prioritize the 
challenges of implementing modular integrated construction 
(Wai et al. 2023) and for ranking the importance of sustain-
ability performance indicators (Rajabi et al. 2022). It is this 
method of application of the AHP that will be applied in 
this research that aims to prioritize a classified list of under-
ground mining safety risks.

Although the AHP considers subjective judgment, it 
does not support the inherent uncertainty in human judg-
ment Kutlu and Ekmekçioğlu (2012). To face this dilemma, 
many researchers turned to the fuzzy analytic hierarchy pro-
cess (FAHP). Van Laarhoven and Pedrycz (1983) presented 
the first related work on FAHP in 1983, which compared 
fuzzy ratios described by triangular membership functions. 
In another variant, Buckley (1985) determined fuzzy priori-
ties by applying trapezoidal membership functions. Chang 

(1996)introduces a new approach to the fuzzy analytic pri-
oritization process by proposing the use of triangular fuzzy 
numbers and the application of the extended analysis method 
(Demirel et al. 2008; Kutlu and Ekmekçioğlu 2012).

This research aims to identify the risks related to health 
and safety of workers in the mining industry and to prioritize 
them based on the importance of addressing them according 
to expert opinion. The FAHP will be applied as it aims to 
prioritize underground mining safety risks by considering 
the views of three experts while supporting uncertainty in 
their judgement. The prioritization of risks guides health and 
safety managers to better allocate resources for mitigation or 
examination of the identified risks.

2 � Literature review of risks in underground 
mining projects

In addition to the risks identified during the visit to the 
underground operation under consideration, an extensive 
literature review on the hazards occurring in underground 
operations was carried out to enrich further the list of iden-
tified hazards with sources of risk that were not perceived 
during the visit to the project under consideration. The meth-
odology followed for the review was implemented in two 
phases. In the first phase, searches were carried out in sci-
entific research databases (Scopus, Science Direct, Springer) 
to identify research related to the identification of risks in 
underground mining operations since 2010. The searches 
were performed based on keywords and their combinations, 
such as risk identification, underground mining projects, 
mining equipment, human factors, and human errors. In the 
second phase, a content analysis was carried out to elimi-
nate irrelevant articles. Consequently, the number of selected 
sources for detailed review and identification of risks was 
limited to 17 scientific journal articles (Table 1).

After studying the articles in Table 1 in detail, it was 
found that eight of them identified risks during the construc-
tion processes in mining and quarrying sites. Specifically, 
Utembe et al. (2015), working on the identification of chemi-
cal hazards found in mining, report that the production of 
large amounts of dust during operations, which consists 
mainly of silica in crystalline form, can cause many res-
piratory diseases, such as upper respiratory tract irritation, 
silicosis, pulmonary tuberculosis and occupational asthma. 
They also stress that due to the exposure of workers to high 
levels of diesel particulate matter, in addition to causing 
cardiovascular dysfunction and eye and nose irritation, they 
may experience neuroinflammation and neurodegenerative 
diseases.

Tripathy and Ala (2018), in their effort to establish a 
baseline of identifiable risk sources in an underground 
mining project, collected statistics and audit reports from 
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7000 accidents between 2001 and 2014 in India. They 
identified a series of significant risks associated with the 
misuse of mechanical equipment, the blasting process, the 
ventilation systems and flooding of the galleries. Similarly, 
research by Khanzode et al. (2011) also ranks low light-
ing, the presence of groundwater, and poor maintenance 
of mechanical equipment as possible causes of accidents 
in underground mining projects.

Bahn (2013) documents a list of risks created with the 
input of 77 underground mining workers. The identified 
risks were classified into four risk groups: prominent, 
insignificant, emerging, and non-obvious risks. The risks 
identified by the workers included mechanical failures 
leading to loss of hydraulic fluid pressure, faulty equip-
ment, poor operator education and training, water ingress 
(flooding), human behavior, lack of communication and 
failure to follow safety procedures.

Mahdevari et al. (2014), after collecting information on 
three underground mining operations, identified 86 poten-
tial health and safety hazards for workers. The identified 
hazards included releases of gaseous pollutants such as 
H2S, CO, CO2 and NO, disruption of ventilation systems, 
vibrations caused by mechanical equipment throughout the 
body and missing procedures to deal with non-activation 
of explosives. Other hazards due to organizational fac-
tors include the non-use of personal protective equipment 
(PPE), lack of fire-fighting equipment, unauthorized entry 
into the explosion area, inadequate personnel training, and 
insufficient supervision.

(Liu et al. 2018) collected statistics on 362 serious under-
ground mining accidents in China from 2000 to 2016 that 
are intertwined with human factors. Their results showed 
that supervision deficiencies are the main reason for major 
coal mine accidents, including failure to implement exist-
ing regulations, failure to identify problems related to the 
selection of personnel, lack of machinery maintenance, 
inefficient training procedures and inadequate supervision 
of operations. In addition, they found that the poor mental 
state of workers, including those operating machinery, is a 
precursor to unsafe behavior that manifests itself as mental 
fatigue, low alertness, and lack of concentration. Although 
human error is of great importance, psychosocial factors are 
often overlooked in the risk assessment process. The physi-
cal working environment is also a precursor to unsafe behav-
ior due to the unfavorable conditions prevailing in under-
ground works. Regarding dangerous behaviors of workers, 
the most common reasons are violation of regulations and 
wrong decisions.

Lenné et al. (2012), in their effort to better understand 
the systemic factors involved in mining accidents, examined 
263 major accidental events in Australia during 2007–2008, 
which they analyzed using the Human Factors Analysis 
and Classification System (HFACS). In terms of the haz-
ards arising from the production process, these are mainly 
due to the presence of project machinery working at height 
and the presence of electricity networks. They determined 
that in accidents caused by human error, 90% are related to 
unsafe acts. The most common dangerous actions of workers 

Table 1   Articles related to the identification of risks in underground mining projects

References Year Scope of article

Badri et al. (2013) 2013 Managing safety in underground mining activities and building a knowledge base of risks in 
underground gold mining

Bahn 2013) 2013 Risk identification and risk management in underground mining operations
Smith et al. (2016) 2016 Identification of the risks involved in small-scale gold mining operations
Utembe et al. (2015) 2015 Identification of health risks in mining
Tong et al. (2019) 2019 Study of factors influencing unsafe behaviours associated with causing explosions in coal mines
Mahdevari et al. (2014) 2014 Assessment of health and safety risks associated with coal mining
Khanzode et al. (2011) 2011 Assessment and monitoring of risks in coal mines
Debia et al. (2017) 2017 Assessment of exposure to diesel emissions of workers in gold mines
Tripathy and Ala 2018) 2018 Identification of hazards encountered in underground lignite mining
Domínguez et al. (2019) 2019 Assessment of risks in underground mining and risk mitigation measures
Galvin 2016) 2016 Hazards encountered in underground mining operations
Dhillon 2009) 2009 Hazards arising from the use of mechanical equipment
Patterson and Shappell 2010) 2010 Analysis of unsafe behaviour of workers in the mining sector
Lenné et al. (2012) 2012 Analysis of factors related to human errors and unsafe behaviour
Liu et al. (2018) 2018 Analysis of human factors associated with accidents in coal mines
Yaghini et al. (2018) 2018 Human errors and unsafe behaviours in the mining industry
Saleh and Cummings 2011) 2011 Risks associated with the blasting process
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involved failure to identify the risks involved in completing 
a task, incorrect use of work equipment and failure to use 
PPE. Restricted underground access, low lighting levels, 
adverse weather conditions and an unfavorable mental state 
were found to be precursors of unsafe behaviors. Regarding 
errors due to inadequate supervision, these are mainly due 
to a lack of communication or coordination between crews, 
insufficient preparation, and time pressure.

3 � Methodology

A three-stage methodology was applied to identify and rank 
the risks encountered in the mining industry. Firstly, the pro-
duction process of an actual underground mining project 
was monitored, and potential health and safety risks were 
identified and recorded in a risk list after on-site visits and 
interviews with the site and safety engineers. This list was 
enriched by hazards found in the literature review (Sect. 2). 
The final list was divided into five categories: physical, envi-
ronmental, chemical, organizational and human risks, form-
ing the risks’ hierarchical structure.

Secondly, by applying a knowledge mining technique 
(Antoniou et al. 2013), three experts employed in the min-
ing project rated the importance of the risk categories and 
risks that make up the hierarchical structure using linguistic 
variables. Finally, by applying the FAHP, the risk catego-
ries and risks were ranked in ascending order according to 
their importance. This approach determines and discusses 
the risks that should be avoided or mitigated to pave the 
strategy plan of companies involved in this industry (ISO 
31000:2018).

3.1 � The AHP

The main feature of the AHP is its inherent capability of 
systematically dealing with many non-quantifiable attrib-
utes, as well as with tangible and objective factors. The AHP 
allows for the incorporation of subjective judgments and 
user intuition into the decision-making process by producing 

a common formal and numeric basis for solutions. The pro-
cess follows the following steps:

Step 1: Hierarchical problem structuring, which includes 
the decomposition of the problem and the creation of a 
hierarchy.
Step 2: Pairwise comparisons and creation of decision 
tables.
Step 3: Calculation of weights or priority values for each 
element in each decision matrix and consistency checks.
Step 4: Aggregation of resulting weights and priority 
values to evaluate rank alternatives.

Essentially, the AHP implements pairwise comparisons 
to enhance objectivity and produces one or more decision 
matrices per level. Each element is compared in terms of 
importance using the scale shown in Table 2.

The eigenvector of each decision matrix is the priority 
vector of the elements compared, which represents their rela-
tive weights regarding the element located one level higher 
in the hierarchy. The average of the normalized column 
method is used to calculate wi, the relative weight of the 
element in row i (which is an element of the eigenvector w), 
for a reciprocal nΧn matrix, is as follows:

where aij = element is in row i and column j of the decision 
matrix.

The consistency of the obtained matrices is evaluated by 
calculating the consistency ratio (CR) as defined by Saaty 
(1980). The CR is a tool for controlling the consistency of 
pairwise comparisons. Since one of the advantages of AHP 
is its ability to allow subjective judgment, and with intuition 
playing an essential role in the selection of the best alterna-
tive, absolute consistency in the pairwise comparison proce-
dure should not be expected. The CR enables one to control 
the extent of inconsistency to a maximum desirable level 
for each decision matrix and the entire hierarchy. Based on 

(1)wi =
1

n
×

n�
j=1

aij∑n

k=1
akj

Table 2   Intensity of importance 
scale

Intensity of importance Definition

1 Equal
3 Moderate
5 Strong
7 Very Strong
9 Extreme
2, 4, 6, 8 Intermediate values between adjacent scale values
Reciprocals of above nonzero values If activity i has one of the above ratings when compared to 

activity j, then j has the reciprocal value when compared 
with i
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numerous empirical studies, Saaty (1980), stated that for 
tolerable inconsistency, the CR must be less than or equal to 
0.10 irrespective of the nature of the problem; if this condi-
tion is not fulfilled, a revision of the comparisons is recom-
mended. As a result, the consistency of each comparison 
matrix is calculated by:

where II = (�max − n)∕(n − 1), with n the number of ele-
ments in the matrix, RI = the Random consistency index of 
a randomly generated reciprocal matrix and λmax = the maxi-
mum eigenvalue of the comparison matrix.

3.2 � The fuzzy analytic hierarchy process

When processing real-world problems, it is assumed that 
uncertain and imprecise data will have to be used. Therefore, 
there are better solutions than conventional approaches. An 
effective method to deal with uncertainty is the theory of 
fuzzy logic. Although humans are comparatively effective 
in qualitative prediction, they do not achieve quantitative 
predictions. Fuzzy linguistic models allow for the translation 
of verbal expressions into numerical values, thus quantita-
tively addressing the imprecision in expressing the meaning 
of each criterion (Kaya et al. 2012). Therefore, in decision-
making problems, using imprecise information with qualita-
tive characteristics, such as language variables, can only be 
exploited through a combination of the MCDM and fuzzy 
logic (Jakiel and Fabianowski 2015).

The FAHP incorporates fuzzy set theory into the AHP 
to select the optimal MCDM problem alternative. It differs 
from the AHP due to the introduction of linguistic vari-
ables in the process. That is, the comparison of elements is 
performed using linguistic variables (for example, signifi-
cant, very significant, negligible, etc.) expressed by fuzzy 
membership functions (Chan and Wang 2013) instead of 
deterministic values. This reduces the ambiguity involved 
in the selection and degree of comparison of elements (risk 
categories and risks, in this case), thus accounting for the 
subjectivity of the judgments.

The primary approach of the FAHP is based on the use 
of triangular fuzzy numbers during pairwise comparisons 
to calculate the weights of the risk categories and the global 
priorities of each risk. The fuzzy weights must be defuzzi-
fied to prioritize the risks. In this method, the qualitative 
criteria (risks) are expressed in terms of weights defined by 
the experts. The local priorities calculated for each criterion 
(risk) are summed up into global priority scores by applying 
the principle of hierarchical composition.

When more than one decision-maker is involved in the 
evaluation process, the different risk matrices are com-
bined to create a synthetic pairwise comparison matrix. 

(2)CR = Consistency Index (II)∕Random index (RI)

The geometric mean method is the most popular approach 
for constructing synthetic matrices. Their values are con-
verted from fuzzy to crisp, and the process continues 
according to the AHP (Chan and Wang 2013). The process 
is performed in four steps:

Step 1: First, pairwise comparison tables are created, 
considering all elements (risk categories and risks) and 
the opinion of each expert involved. In this step, those 
involved in decision-making are asked to compare the 
elements in each level against each other in verbal terms 
based on how important element is compared to another 
in terms of the objective. The verbal preferences are 
then converted into triangular fuzzy numbers. The fol-
lowing decision matrix is then generated:

where: ãij = 1∕�̃ji and

Step 2: Since the evaluation of the elements (risk cate-
gory and risks) by more than one expert will lead to the 
creation of different comparison tables, it is necessary 
to create an aggregated table. The elements that will 
make up the aggregate table are calculated using the 
geometric mean method proposed by Buckley (1985) 
based on the number of E experts involved in the pro-
cess.

Step 3: The fuzzy geometrical means ( ̃rj ) και the fuzzy 
criteria (risk) weights ( w̃j ) are calculated using the fol-
lowing equations:

Step 4: Since the weights are expressed in verbal vari-
ables, the next step is to defuzzify them to form the 
ranking. Assuming that the fuzzy weights of each ele-
ment can be expressed as:

(3)Ã =

⎡⎢⎢⎣

1 ⋯ �𝛼1,n
⋮ ⋱ ⋮

�𝛼n,1 ⋯ 1

⎤⎥⎥⎦

(4)

�𝛼ij =

⎧⎪⎨⎪⎩

1̌ 3̌ 5̌ 7̌ 9̌ when i is relativelymore important than j

1 if they are of equal importance i = j
1

1̃

1

3̃

1

5̃

1

7̃

1

9̃
when i is relatively less important than j

(5)�aij =
(
�a1
ij
⊗�a2

ij
⊗⋯⊗�aE

ij

)1∕E

(6)�ri = (�ai1 ⊗ �ai2 ⊗…�ain)
1∕n

(7)�wi = �ri ⊗ (�r1 ⊕… �rn)
−1

(8)w̃i =
(
Lwi,Mwi,Uwi

)
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where Lwi, Mwi, Uwi are the lowest, mean, and highest 
fuzzy weight values for element i. The values of the 
defuzzified weights are given by:

Many approaches to FAHP are found in the literature. 
Buckley (1985) proposed fuzzy priorities of comparison 
ratios whose membership functions were trapezoidal. 
Chang (1996) proposed a new approach to the FAHP 
by introducing the use of triangular fuzzy numbers 
for pairwise comparisons and the use of the Extended 
Analysis (EA) method for the synthetic extent values 
of pairwise comparisons. His approach is one of the 
most popular FAHP approaches with wide use in risk 
assessment in the mining industry.

The successful application of the FAHP depends on the 
consistency with which the decision-maker's judgments 
are expressed. This problem is exacerbated when a group 
of experts carries out the decision-making. Therefore, the 
decisions of experts should be checked to avoid accepting 
judgments if they show a high degree of inconsistency. 
The consistency check must be carried out, as a pairwise 
comparison table showing a high degree of inconsistency 
may lead to incorrect results. To check the consistency of 
fuzzy comparison matrices, Gogus and Boucher (1998) 
suggest splitting them into two matrices and calculat-
ing the consistency ratio of each matrix according to the 
method proposed by Saaty (1980). The calculation of the 
consistency ratio is performed as follows:

Step 1: Since the judgments are expressed in fuzzy 
triangular numbers of the form Αi = (li, mi, ui), each 
fuzzy comparison table is divided into two independent 
tables. The first table consists of the mean numbers of 
the linguistic variable against which each element has 
been assessed (Αm = [aijm]), while the second is gen-
erated by the geometric mean of the upper and lower 
bounds of the linguistic variable, i.e.:

Step 2: The weight vectors for each comparison matrix 
are calculated using Saaty’s (1980) method from the 
equations:

(9)wi =

[(
Uwi − Lwi

)
+
(
Mwi − Lwi

)]
3

+ Lwi

(10)Ag =
�√

aijmaijl

�

(11)wm
i
=

1

n

n�
j=1

aijm∑n

i=1

√
aijm

Step 3: The largest eigenvalue λmax of each matrix is cal-
culated from the equations:

Step 4: The Consistency Index (CI) is calculated for each 
table according to the equations:

Step 5: The Consistency Ratio (CR) of each table is cal-
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working environment and the recording of the production 
process, including the technological, the material and the 
chemical means, should be conducted. Expert assessments, 
results and reports from on-site inspections and audits can 
additionally be used.

The risk identification process aims to establish a com-
prehensive Risk Registry with all the potential risks that 
may have an impact on the achievement of the workplace 
objectives and, consequently, on the health and safety of the 
organization's workers. This phase also aims to identify the 
nature and extent of all possible consequences and to under-
stand the likelihood and the impact of their occurrence. The 
use of accident statistics, occupational diseases and the study 
of accidents that have occurred in the past in related activi-
ties provide helpful information at this phase. The process of 
identifying sources of risk can be carried out with the help of 
tools such as checklists, risk indices, a Hazard and Operabil-
ity study (HAZOP), Job Safety Analysis (JSA) and Failure 
Mode and Effects Analysis (FMEA) (Aven 2008) (Fig. 2).

The sources of risks occurring in underground mining 
projects were investigated and identified. Three information-
gathering techniques were followed in conjunction with the 
job safety analysis (JSA) technique (Aven 2008). Data col-
lection methods applied were on-site observation of the pro-
gress of the operations of the project under study, review of 

literature and collection of questionnaires from project per-
sonnel. Through the literature review, the Risk Registry was 
enriched, and risk prevention and response procedures and 
statistical reports of accidents related to the mining industry 
were recorded. Furthermore, to obtain factual data on the 
root causes of the hazards, a visit to an active underground 
mining project was carried out for a month, and several on-
site interviews were conducted to consolidate the risk list 
based on the JSA approach.

A JSA is a method of systematic prevention of risks aris-
ing from a job, which aims to identify the risks or potential 
accidents associated with each stage of the job and, conse-
quently, to identify measures to be taken to eliminate, or if 
this is not possible, to control the risks identified (Albre-
chtsen et al. 2019). The implementation of the method was 
carried out in two stages:

•	 The underground mining process was decomposed and 
separated into individual work stages according to their 
order of execution—the monitoring of the production 
process of the considered project assisted in the effec-
tive separation of the tasks.

•	 The possible accidental events and hazardous conditions 
that may endanger the health and physical integrity of 
workers are identified.

Applying the process of risk identification mentioned 
above, the risk registry presented in Table 3 was developed, 
recording the identified hazards based on the production 
stage where they might occur. Based on the risk registry, 
the risk analysis regarding the qualitative prioritization of 
risks will be performed.

As expected, the primary sources of risks are:

•	 Risks arising from the presence of electricity.
•	 Risks related to the use of mining machinery.
•	 Risks regarding the separation of rocks from the roof of 

the excavation face.
•	 Risks from slipping and falling from height.
•	 Risks arising from the placement and use of explosives.
•	 Risks arising from poor air quality.

4.2 � Application of the FAHP methodology

After the risk identification phase, for risk qualitative risk 
analysis, the FAHP is applied, using expert comparative 
judgments of risks. This prioritization of risks includes 
the likelihood and consequence of the risk if it happens 
(ISO31000/2018). The approach adopted is that proposed 
by Buckley (1985) in his paper due to the weaknesses of 
other researchers' approaches. Understanding that different 
groups involved in the project have different objectives and 
expectations regarding risk management, they are expected 

Fig. 1   AHP documents published yearly in Scopus

Fig. 2   Risk identification and classification process
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Table 3   Risk registry

Production stage Potential risks to health and safety Who is affected

Marking of position of blast holes Slip hazard Blasthole marker
Risk of falling from a height Blasthole marker
Risk of overturning a basket vehicle All bystanders
Extreme exposure to noise All bystanders
Extreme exposure to dust All bystanders
Extreme exposure to vibration Basket carrier operator
Extreme exposure to exhaust fumes All bystanders

Drilling of blast holes Risk of electric shock All bystanders
Risk of a nearby worker's body part becoming entangled with the 

moving parts of the drilling machine
Auxiliary staff

Slip hazard Auxiliary staff
Risk of ejection of machine moving parts-foreign bodies Auxiliary staff
Risk of overturning of the drilling machinery All bystanders
Risk of mechanical failure of the drilling system All bystanders
Risk of unstable rock falls All bystanders
Risk of unintentional explosions All bystanders
Risk of burns Auxiliary staff
Extreme exposure to noise All bystanders
Extreme exposure to dust All bystanders
Extreme exposure to vibration Blasthole drill rig operator
Extreme exposure to exhaust fumes All bystanders

Priming of explosives Risk of ejection of debris Primers
Slip hazard Primers
Risk of explosion during transport of explosives All bystanders
Risk of falling from a height Primers
Risk of overturning of a basket vehicle All bystanders
Risk of premature explosion All bystanders
Danger due to lack of communication All bystanders
Risk of mechanical failure All in the danger zone
Extreme exposure to noise All bystanders
Extreme exposure to vibration Basket carrier operator
Extreme exposure to exhaust fumes All bystanders

Blasting Risk of ejection of rock debris All in the danger zone
Risk of entrapment by detached rock masses All in the danger zone
Risk due to poor communication All in the danger zone
Extreme exposure to noise All in the danger zone
Extreme exposure to dust All in the danger zone
Extreme exposure to air pollutants All in the danger zone

Loading and transport of geomaterials Risk of mechanical failure All in the danger zone
Risk of entrapment by rockmasses Auxiliary personnel
Risk of crushing a worker Auxiliary personnel
Risk of collision during movement of vehicles All bystanders
Risk of unstable rock falls All bystanders
Risk of electric shock Loader operator
The danger of loader tipping over All bystanders
Extreme exposure to noise All bystanders
Extreme exposure to dust All bystanders
Extreme exposure to vibration Loader and truck operators
Extreme exposure to exhaust fumes All bystanders
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to approach the risk assessment process providing different 
perspectives.

For this reason, three decision-makers (DMs) from differ-
ent positions in the project under consideration were selected 
to take part in the evaluation of the risk categories (criteria) 
and risks (sub-criteria). Table 4 shows the DMs 1–3 and 
their area of employment in the project under study. Apply-
ing the methodology of the FAHP, it is attempted to con-
sider the subjectivity of the DMs’ judgments and to reduce 
the uncertainty and ambiguity of the process. DMs from 
different backgrounds may express different opinions on 
the importance of the risks under consideration, leading to 

Table 3   (continued)

Production stage Potential risks to health and safety Who is affected

Debris removal operations Risk of mechanical failure All in the danger zone

Risk of unstable rock falls All in the danger zone

Extreme exposure to noise All bystanders

Extreme exposure to dust All bystanders

Extreme exposure to vibration Basket and bogger operator

Extreme exposure to exhaust fumes All bystanders

Slip hazard Mine workers

Risk of falling from a height Mine workers

Risk of entanglement of adjacent workers with the moving parts of 
the excavator

Mine workers, excavator operator

Risk of the excavator overturning All bystanders

Risk of overturning a basket vehicle All bystanders
Gallery support works Risk of electric shock All in the danger zone

Risk of an adjacent worker's body part becoming entangled with the 
moving parts of the drilling machinery

Auxiliary staff

Risk of slipping Auxiliary staff
Risk of ejection of moving parts-foreign bodies Auxiliary staff
Risk of overturning of drilling machinery All bystanders
Risk of mechanical failure All in the danger zone
Risk of falling unstable rocks All bystanders
Risk of burns Auxiliary personnel
Extreme exposure to noise All bystanders
Extreme exposure to dust All bystanders
Extreme exposure to vibration Blasthole drill rig operator
Extreme exposure to exhaust fumes All bystanders

Extension works of air, water, ventila-
tion, and electricity networks

Risk of electric shock Maintenance staff
Risk of falling from a height Maintenance staff
Risk of entanglement of adjacent workers with the moving parts of 

the basket vehicle
All bystanders

Risk of tipping of the basket carrier All bystanders
Extreme exposure to noise All bystanders
Extreme exposure to dust All bystanders
Extreme exposure to vibration Maintenance staff
Extreme exposure to exhaust gases All bystanders

Table 4   The employment position and years of experience of the par-
ticipants

ID Position Years of 
experi-
ence

DM-1 Safety engineer 8
DM-2 Production engineer 17
DM-3 Foreman 20
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inaccurate results in the decision-making process. To avoid 
this, pairwise comparisons between experts will be consoli-
dated to include the subjective judgment of all participants 
in the process.

4.2.1 � Defining the hierarchical structure

Considering the findings of the risk identification process 
and the extant literature review on the risks encountered in 
underground mining projects (Table 1), 24 risks (sub-crite-
ria) were obtained (Table 5). Then, the hierarchical structure 
of the problem was developed, consisting of three levels, 
as shown in Fig. 3. Due to the nature of the problem under 
consideration, the hierarchical structure does not include a 
4th level, which concerns alternative solutions, because the 
FAHP is being applied for prioritization or risks, not for the 
choice of an optimal alternative. At the left of the diagram, 

the main objective is placed, i.e., the risk prioritization, as 
part of the quantitative risk analysis of the risk assessment 
process. To the right, level 2 includes the risk categories, 
followed by level 3 of the hierarchy, which lists the risks 
per category. The five categories encompass physical risks, 
environmental risks, chemical risks, organizational risks, 
and human risks.

4.2.2 � Pairwise comparison

The experts selected as DMs made pairwise comparisons 
between risk categories and then between risks within 
each category. Their judgments reflect the contribution of 
each risk category (criterion) and risk (sub-criterion) (how 
important ai is relative to aj) to the occurrence of risk. The 
comparison tables generated by the subjective judgment of 

Table 5   The risks per category and their coding

Physical risks C1

Slip hazard SC1.1
Risk of falling from a height SC1.2
Risk of entanglement of a worker's body part with the moving parts of machinery/moving project machinery SC1.3
Risk of mechanical failure during execution of work SC1.4
Risk of overturning of project machinery SC1.5
Extreme exposure to vibrations SC1.6
Risk of unstable rock falls-ejection of debris SC1.7
Risk of unintentional explosions SC1.8

Environmental risks C2

Extreme exposure to noise SC2.1
Risk of electric shock SC2.2
Adverse environmental conditions (high temperature-humidity, low light) SC2.3
Flooding SC2.4

Chemical risks C3

Extreme exposure to dust SC3.1
Extreme exposure to exhaust fumes and blasting by-products SC3.2
Inadequate ventilation system (insufficient capacity-malfunction) SC3.3

Organizational risks C4

Unskilled-Untrained Workers SC4.1
Insufficient machinery and equipment maintenance SC4.2
Lack of communication-coordination of work SC4.3
Inadequate fire protection system SC4.4
Non-use of PPE SC4.5

Human risks C5

Non-compliance with safety regulations SC5.1
Mental fatigue, high stress and lack of concentration SC5.2
Traffic violations (non-compliance with speed limits and unsafe parking of machinery) SC5.3
Wrong decisions during the execution of tasks SC5.4
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the three experts are then consolidated to create a synthetic 
comparison table.

The experts were asked to rate the risk categories (crite-
ria) and risks (sub-criteria) using six linguistic variables to 
facilitate the process as they express human reasoning to a 
greater extent than numbers. Using the linguistic scale, they 
ranked the risks from “equally important” to “absolutely 
more important” based on their weight in the occurrence 
of the risk. The linguistic scale proposed by Liu and Tsai 

(2012) was adopted, which is presented in Table 6, showing 
the linguistic variables in correspondence with the fuzzy 
triangular numbers that express them. Liu and Tsai (2012) 
approach was preferred over others because, in addition to 
the linguistic variables of superiority, it also includes vari-
ables expressing the degree of non-significance, thus making 
it easier for experts during the comparison process.

For example, if "Risk of unstable rock falls (SC1.7)" is 
considered by the DM as absolutely more critical compared 
to "Extreme exposure to vibration (SC1.6)" (because when 
unstable rock fall in underground mines, the number of peo-
ple affected is large, and the risk is judged to be severe com-
pared to those exposed to vibration) then "Risk of unstable 
rock fall (SC1.7)" will be assigned a fuzzy number (5, 7, 9) 
and "Extreme exposure to vibration (SC1.6)" will be given 
the corresponding inverse fuzzy number (1/9, 1/7, 1/5). If 
the two being compared are considered by the DM to be of 
equal importance, then they are given a fuzzy number (1, 
1, 1).

Participants in the process compared all risk categories 
(criteria) in pairs and rated them in terms of importance on 

Fig. 3   Illustration of the risk 
hierarchical structure

Table 6   Correspondence of linguistic variables to fuzzy numbers

Linguistic variable Code Fuzzy numbers

Absolutely unimportant AU (1/9, 1/7, 1/5)
Significantly unimportant SU (1/7, 1/5, 1/3)
Weakly unimportant WU (1/5, 1/3, 1)
Equally important EI (1, 1, 1)
Weakly more important WI (1, 3, 5)
Significantly more Important SI (3, 5, 7)
Absolutely more Important AI (5, 7, 9)
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the linguistic scale, as shown in Table 6. Thus, from each 
DM, a 5X5 comparison table was obtained. Having com-
pleted the process of comparing the risk categories (criteria), 
the participants proceeded to compare the risks (sub-crite-
ria). The risks (sub-criteria) comprising each criterion (risk 
category) are compared pairwise with each other and are 
scored according to their importance with the corresponding 
linguistic variable. As a result, six comparison tables were 
obtained from each DM, i.e. an 8X8 comparison table for the 
risks in category C1, a 4X4 comparison table for the risks 
in category C2, a 3X3 comparison table for the risks in cat-
egory C3, a 5X5 comparison table for the risks in category 
C4 and a 4X4 comparison table for the risks in category C5 
(Please see Appendix).

4.2.3 � Consistency check

A consistency check is performed for all comparison tables 
by calculating the consistency ratio of each judgment 
according to the method proposed by Gogus and Boucher 
(1998) and applying Eqs. (13)–(18).

Table 7 gives the maximum eigenvalues (λmmax and 
λgmax), consistency indices (CIm and CIg) and consist-
ency ratios (CRm and CRg) for each comparison table 
completed by the participants. Most comparison tables 

show consistency ratios of less than 0.1. Since the com-
parisons are expressed in triangular fuzzy numbers, it is 
challenging to avoid inconsistency in some of the compari-
son tables (Wang et al. 2016). Because most of the tables 
show consistency, it is assumed that the results obtained 
are valid.

4.2.4 � Determination of fuzzy weights and defuzzification

Since more than one DM is involved in the process, risk 
category (criteria) comparison tables are consolidated 
into an aggregate table containing the judgments of all 
participants. Similarly, the same approach is followed 
for the risk (sub-criteria) comparison tables for each risk 
category. At this point, the linguistic variables are con-
verted into triangular fuzzy numbers. The geometric mean 
method is used to generate the synthetic decision tables 
by applying Eq. (11) for each fuzzy membership function 
(L, M, U). Using the fuzzy membership functions of the 
aggregate matrices, the fuzzy geometric means ( ̃ri ) and 
fuzzy weights ( w̃i ) of the criteria (risk category) and risks 
(sub-criteria) are calculated. Applying Eq. (6) to the risk 
categories (criteria), we obtain

Table 7   Maximum eigenvalues, consistency indices and consistency ratios for each comparison table (See also Appendix)

CRM and CRg are important for the consisency and the validation of the method (in bold)

DM-1 λmmax CIm RIm CRM λgmax CIg RIg CRg

C 5.2009 0.0502 1.0720 0.0468 5.0999 0.0250 0.3597 0.0695
SC1 13.0068 0.7153 1.3410 0.5334 11.9612 0.5659 0.4164 1.3590
SC2 4.0739 0.0246 0.7937 0.0310 4.0226 0.0075 0.2627 0.0286
SC3 3.0655 0.0328 0.4890 0.0670 3.0200 0.0100 0.1796 0.0558
SC4 5.1978 0.0495 1.0720 0.0461 5.1430 0.0357 0.3597 0.0994
SC5 4.0328 0.0109 0.7937 0.0138 4.0150 0.0050 0.2627 0.0190

DM-2 λmmax CIm RIm CRM λgmax CIg RIg CRg

C 6.3513 0.3378 1.0720 0.3151 5.9247 0.2312 0.3597 0.6427
SC1 15.0416 1.0059 1.3410 0.7501 13.5891 0.7984 0.4164 1.9175
SC2 4.1222 0.0407 0.7937 0.0513 4.0617 0.0206 0.2627 0.0783
SC3 3.0655 0.0328 0.4890 0.0670 3.0200 0.0100 0.1796 0.0558
SC4 5.1487 0.0372 1.0720 0.0347 5.1095 0.0274 0.3597 0.0761
SC5 4.1159 0.0386 0.7937 0.0487 4.0742 0.0247 0.2627 0.0941

DM-3 λmmax CIm RIm CRM λgmax CIg RIg CRg

C 7.2235 0.5559 1.0720 0.5186 6.9106 0.4776 0.3597 1.3279
SC1 11.4368 0.4910 1.3410 0.3661 10.1633 0.3090 0.4164 0.7422
SC2 4.1247 0.0416 0.7937 0.0524 4.0621 0.0207 0.2627 0.0788
SC3 3.0000 0.0000 0.4890 0.0000 3.0000 0.0000 0.1796 0.0000
SC4 5.0419 0.0105 1.0720 0.0098 5.0830 0.0208 0.3597 0.0577
SC5 4.1222 0.0407 0.7937 0.0513 4.0616 0.0205 0.2627 0.0782
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Subsequently, the fuzzy weights ( w̃i ) of each criterion 
(risk category) C1 to C5 and all risks (sub-criteria) can be 
calculated by applying Eq. (7):

By applying the center of gravity method, the non-fuzzy 
values of the fuzzy weights can be determined so that it is 
then possible to rank the risk categories (criteria) and risks 
(sub-criteria) according to their perceived severity. Since 
the fuzzy weights of the risk categories (criteria)/risks 
(sub-criteria) are expressed in the form (L, M, U), Eq. (9) 
will be used to decompose the fuzzy weights resulting in 
the defuzzified weights.

Subsequently, the local defuzzified weights (normal-
ized) are calculated from the relation:

The normalized weights of the five criteria (risk catego-
ries) are calculated as follows:

Next, the defuzzified weights of the risks (sub-criteria) 
and their corresponding normalized local weights are also 
calculated in the same manner. Finally, the global priori-
ties of the risks (sub-criteria) are determined, which will 
ultimately lead to the prioritization of the identified risks. 
The global priority of each risk (sub-criterion) is calcu-
lated by multiplying its local weight by the local weight 
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n1 = 0.354

n2 = 0.084

n3 = 0.094

n4 = 0.213
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of the risk category (criteria) it belongs to. The global 
priorities are presented in Table 8.

Finally, the ranking of the criteria (categories) and risks 
(sub-criteria) according to their perceived experts’ signifi-
cance (Table 9, Fig. 4) is done by ranking the calculated 
aggregate global priorities in descending order.

5 � Discussion of results

The pairwise comparison of the risk categories (criteria) 
and risks (sub-criteria) that make up the hierarchical struc-
ture was carried out by three employees of the project under 
review. The selected participants are employed in different 
jobs and have other cognitive backgrounds. Therefore, they 
express different perspectives in assessing the importance 
of the identified risks.

Table 8   Priorities of the Risk Categories and Risks

Criteria/sub-criteria Normalized local priori-
ties

Global priorities

ni ngi

C1 0.354
SC1.1 0.035 0.012
SC1.2 0.126 0.045
SC1.3 0.111 0.039
SC1.4 0.046 0.016
SC1.5 0.132 0.047
SC1.6 0.032 0.011
SC1.7 0.215 0.076
SC1.8 0.304 0.107
C2 0.084
SC2.1 0.071 0.006
SC2.2 0.576 0.048
SC2.3 0.136 0.011
SC2.4 0.217 0.018
C3 0.094
SC3.1 0.102 0.010
SC3.2 0.346 0.032
SC3.3 0.551 0.052
C4 0.213
SC4.1 0.209 0.045
SC4.2 0.259 0.055
SC4.3 0.084 0.018
SC4.4 0.248 0.053
SC4.5 0.199 0.042
C5 0.256
SC5.1 0.590 0.151
SC5.2 0.127 0.033
SC5.3 0.159 0.041
SC5.4 0.124 0.032
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DM-1, when comparing the risk categories (criteria), 
ranked the “Organizational risks (C4)” category as the 
most important of all, followed by “Physical risks (C1)”, 
“Human risks (C5)” and “Chemical risks (C3)” and ranked 
the “Environmental risks (C2)” category last. In contrast, 

DM-2 ranked the “Physical risks (C1)” category as the 
most important of all. The ranking order was completed 
by the “Organizational (C4), Human (C5), Chemical (C3) 
and Environmental (C2) risks” categories respectively. 
DM-3 rated “Human risks (C5) as the most important of 
all followed by the “Physical (C1), Environmental (C2), 
Organizational (C4) and Chemical (C3) risks categories 
in rank order.

In terms of their judgments on the risks per category, 
DM-1 considered the “risk of electric shock” (SC2.2) 
as the most critical hazard and ranked the following in 
descending order of importance:

•	 SC3.3 Inadequate ventilation system
•	 SC4.4 Inadequate fire protection system
•	 SC4.2 Insufficient machinery and equipment mainte-

nance.
•	 SC3.2 Extreme exposure to exhaust fumes and blasting 

by-products,
•	 SC1.8 Risk of unintentional explosions.

Table 9   Ranking of risks in 
order of importance

Risks (sub-criteria) Code ngi Rank

Non-compliance with safety regulations SC5.1 0.151 1
Risk of unintentional explosions SC1.8 0.107 2
Risk of unstable rock falls-ejection of debris SC1.7 0.076 3
Insufficient machinery and equipment maintenance SC4.2 0.055 4
Inadequate fire protection system SC4.4 0.053 5
Inadequate ventilation SC3.3 0.052 6
Risk of electric shock SC2.2 0.048 7
Risk of overturning of project machinery SC1.5 0.047 8
Risk of falling from height SC1.2 0.045 9
Unskilled-Untrained Workers SC4.1 0.045 9
Non-use of PPE SC4.5 0.042 11
Traffic violations SC5.3 0.041 12
Risk of entanglement SC1.3 0.039 13
Mental fatigue, high stress and lack of concentration SC5.2 0.033 14
Exposure to exhaust fumes and blasting by-products SC3.2 0.032 15
Wrong decisions SC5.4 0.032 15
Flooding SC2.4 0.018 17
Lack of communication-coordination of work SC4.3 0.018 17
Risk of mechanical failure SC1.4 0.016 19
Slip hazard SC1.1 0.012 20
Adverse environmental conditions SC2.3 0.011 21
Body exposure to vibrations SC1.6 0.011 21
Exposure to dust SC3.1 0.010 23
Exposure to noise SC2.1 0.006 24
Non-compliance with safety regulations SC5.1 0.151 1
Risk of unintentional explosions SC1.8 0.107 2
Risk of unstable rock falls-ejection of debris SC1.7 0.076 3
Insufficient machinery and equipment maintenance SC4.2 0.055 4

Fig. 4   Pareto Diagram of health and safety risk priorities for under-
ground mining according to global priorities
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According to DM-2, the “risk of electric shock (SC2.2)” 
is the most serious and followed by:

•	 SC3.3 Inadequate ventilation system
•	 SC5.1 Non-compliance with safety regulations
•	 SC4.2 Insufficient machinery and equipment mainte-

nance
•	 SC1.8 Risk of unintentional explosions
•	 SC4.4 Inadequate fire protection system.

DM-3, unlike the other two, judged “non-compliance 
with safety regulations (SC5.1)” to be the most critical risk, 
with the other five most important risks being:

•	 SC2.4 Flooding
•	 SC2.2 Risk of electric shock
•	 SC3.2 Extreme exposure to exhaust fumes and blasting 

by-products
•	 SC3.3 Inadequate ventilation system
•	 SC4.5 Non-use of PPE.

However, according to the final ranking presented in 
Table 8 and obtained from the aggregate of the judgments 
of all participants, the aggregate order of importance of the 
risk categories (criteria) consists of “Physical risks (C1)” in 
first place, followed by Human (C5), Organizational (C4), 
Chemical (C3) and Environmental (C2) risks. The position 
occupied by the chemical and environmental risks is likely 
since their effects are primarily not immediately apparent. 
In contrast, participants, in addition to physical risks, con-
sidered the contribution of human risks and work organiza-
tion to the increase in risk to be significant. This judgment 
is in line with the evidence from studies on the influence of 
organization and human behavior on accident events that 
have shown that the minimization of human error can lead 
to a significant reduction of accident events (Patterson and 
Shappell 2010; Kumar et al. 2020; Antoniou and Merkouri 
2021; Antoniou and Agrafioti 2023).

In terms of the risks, the highest-ranking risk was “non-
compliance with safety regulations (SC5.1),” followed by 
the “risk of unintentional explosions (SC1.8)”, the “risk of 
unstable rock falls—ejection of debris (SC1.7)” and “insuf-
ficient machinery and equipment maintenance (SC4.2)”. 
Accidents associated with placing and activating explosives 
are considered particularly serious because of the conse-
quences they may cause and the large number of workers 
they may affect. Bearing in mind the Pareto principle (Ayyub 
2014), the diagram in Fig. 4 depicts the 10 risks that produce 
a significant overall effect for which prevention measures 
should be focused on to minimize the risk of worksite acci-
dents, these are:

•	 SC5.1 Non-compliance with safety regulations,
•	 SC1.8 Risk of unintentional explosions,
•	 SC1.7 Risk of unstable rock falls—ejection of debris,
•	 SC4.2 Insufficient machinery and equipment mainte-

nance,
•	 SC4.4 Inadequate fire protection system,
•	 SC3.3 Inadequate ventilation,
•	 SC2.2 Risk of electric shock,
•	 SC1.5 Risk of overturning of project machinery,
•	 SC1.2 Risk of falling from a height,
•	 SC4.1 Unskilled—Untrained Workers.

According to the statistical reports of the National Social 
Security Agency (NSSA 2019) on the nature of accidents 
recorded in 2017 in the mining industry, the highest percent-
age of accidents involved falls from height and collapses, 
followed by being struck by moving objects, followed by 
being crushed between objects, falls from height or the same 
level and exposure to high temperatures. Comparing the 
above with the proposed risk response list, we observe that 
the results of processing the participants' judgments using 
the FAHP are consistent with those recorded by the NSSA 
for 2017.

6 � Conclusions

The prioritization of risks according to the order in which 
they are addressed provides a roadmap for reducing or elimi-
nating significant risks and for the optimal management of 
available resources. While the AHP has been widely used in 
risk assessment it fails to control the subjective judgments’ 
ambiguity. Therefore this research employs the FAHP meth-
odology, which is based on the theory of fuzzy logic, to deal 
with the uncertain situations in mining works and to manage 
the imprecision, ambiguity and subjectivity with which par-
ticipants' preferences are expressed allowing the extraction 
valid results (Emrouznejad and Ho 2017; Tyagi et al. 2018).

An active underground mining project was selected as a 
case study, where the associated health and safety risks were 
identified and recorded by monitoring the progress of the pro-
duction process. Aiming at a complete inventory of the risks 
encountered in underground mining projects and the need for 
additional research on specific risk groups, an extensive lit-
erature review was carried out, the results of which further 
enriched the risk list and constituted the input data for the pro-
cess. Three experts from different employment backgrounds 
compared risks with each other in pairs, rating their impor-
tance using triangular fuzzy language variables. Applying the 
FAHP approach (Buckley 1985), the global weights of the 
priorities were calculated, and the risks and their categories 
were ranked according to their importance.
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The results of the FAHP indicate the priority in which the 
risks considered should be addressed and, by extension, the 
order in which control actions and/or mitigation measures 
should be taken. Ideally, the risks with the highest prob-
ability of occurrence and with the potential to cause harm 
should be addressed first, followed by those with the lowest 
probability of occurrence and potential to cause harm.

The risk assessment results provide guidance for imple-
menting appropriate control measures to reduce or eliminate 
risk. A limitation of the approach taken may be that the risk 
investigation was carried out exclusively for mining front 
extension and ore removal operations. Maintenance work 
on the mechanical equipment was not considered in the risk 
identification process. The risks arising from heavy machin-
ery (e.g. drill rigs) maintenance operations in conjunction 
with making the decision to replace risky equipment by 
considering the balance between cost of repair and cost of 
replacement, as examined using regression analysis by Al-
Chalabi (2022) could be considered in a future investigation.

The approach adopted was intended to address the sub-
jectivity and ambiguity that characterizes the judgments of 
decision-makers. The experts who took part in prioritizing 
the identified risks ranked them in terms of their importance 
relative to the others. They expressed their subjective judg-
ment by giving a linguistic variable for both risk param-
eters, the probability of occurrence and the severity of the 
consequences of each risk. The application of the FAHP to 
rank the risks and combining it with quantitative analysis 
techniques (such as, for example, the FMEA technique) for 
the final determination of risk would be a fascinating case 
for future research in the context of risk assessment. Finally, 
it is envisaged that the FAHP methodology proposed for 
ranking site-specific risks in combination with MetaMining 
(Liu et al. 2023) that uses digital twinning concepts to simu-
late underground mining accident risks and the Internet of 
Things to set off alarms in time (Tan et al. 2020) can become 
a significant accident mitigation tool.

Appendix

Risk comparison tables and geometric means and fuzzy 
weights of criteria and sub criteria

(1) Risk category comparison tables for each DM

DM-1

C1 C2 C3 C4 C5

C1 EI SI WI EI EI
C2 SU EI WU SU SU
C3 WU WI EI SU WU

DM-1

C1 C2 C3 C4 C5

C4 EI SI SI EI WI
C5 EI SI WI WU EI

DM-2

C1 C2 C3 C4 C5

C1 EI AI SI WI SI
C2 AU EI WU SU SU
C3 SU WI EI WI SU
C4 WU SI WU EI WI
C5 SU SI SI WU EI

DM-3

C1 C2 C3 C4 C5

C1 EI SI SI SI SU
C2 SU EI SI EI WI
C3 SU SU EI AU SU
C4 SU EI AI EI SU
C5 SI WU SI SI EI

(2) Risk comparison tables per category by DM-1

SC1.1 SC1.2 SC1.3 SC1.4 SC1.5 SC1.6 SC1.7 SC1.8

SC1.1 EI AU AU WU AU SI AU AU
SC1.2 AI EI WI SI WI SI SU SU
SC1.3 AI WU EI AI WU AI EI WU
SC1.4 WI SU AU EI SU SI SU SU
SC1.5 AI WU WI SI EI AU WU SU
SC1.6 SU SU AU SU AI EI AU AU
SC1.7 AI SI EI SI WI AI EI EI
SC1.8 AI SI WI SI SI AI EI EI

SC2.1 SC2.2 SC2.3 SC2.4

SC2.1 EI AU WU WU
SC2.2 AI EI SI SI
SC2.3 WI SU EI EI
SC2.4 WI SU EI EI

SC3.1 SC3.2 SC3.3

SC3.1 EI SU AU
SC3.2 SI EI WU
SC3.3 AI WI EI

SC4.1 SC4.2 SC4.3 SC4.4 SC4.5

SC4.1 EI WU WI SU WI
SC4.2 WI EI SI EI WI
SC4.3 WU SU EI SU EI
SC4.4 SI EI SI EI SI
SC4.5 WU WU EI SU EI

SC5.1 SC5.2 SC5.3 SC5.4

SC5.1 EI SI WI AI
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SC5.1 SC5.2 SC5.3 SC5.4

SC5.2 SU EI WU EI
SC5.3 WU WI EI WI
SC5.4 AU EI WU EI

(3) Risk comparison tables per category by DM-2

SC1.1 SC1.2 SC1.3 SC1.4 SC1.5 SC1.6 SC1.7 SC1.8

SC1.1 EI SU SU WI AU SI AU AU
SC1.2 SI EI WU SI SU AI SU SU
SC1.3 SI WI EI SI WU AI WU SU
SC1.4 WU SU SU EI SU SI SU SU
SC1.5 AI SI WI SI EI AU WI WU
SC1.6 SU AU AU SU AI EI AU AU
SC1.7 AI SI WI SI WU AI EI WU
SC1.8 AI SI SI SI WI AI WI EI

SC2.1 SC2.2 SC2.3 SC2.4

SC2.1 EI AU WU WU
SC2.2 AI EI SI SI
SC2.3 WI SU EI EI
SC2.4 WI SU EI EI

SC3.1 SC3.2 SC3.3

SC3.1 EI SU AU
SC3.2 SI EI SU
SC3.3 AI SI EI

SC4.1 SC4.2 SC4.3 SC4.4 SC4.5

SC4.1 EI SU WI WU EI
SC4.2 SI EI AI EI WI
SC4.3 WU AU EI SU SU
SC4.4 WI EI SI EI WI
SC4.5 EI WU SI WU EI

SC5.1 SC5.2 SC5.3 SC5.4

SC5.1 EI SI SI WI
SC5.2 SU EI WU WU
SC5.3 SU WI EI EI
SC5.4 WU WI EI EI

(4) Risk comparison tables per category by DM-3

SC1.1 SC1.2 SC1.3 SC1.4 SC1.5 SC1.6 SC1.7 SC1.8

SC1.1 EI EI AU WU SU SU WU SU
SC1.2 EI EI SI SI WI SI EI SU
SC1.3 AI SU EI EI EI WI SU SU
SC1.4 WI SU EI EI SU SI AU AU
SC1.5 SI WU EI SI EI AI WU WI
SC1.6 SI SU WI SU AU EI SU AU
SC1.7 WI EI SI AI WI SI EI WU
SC1.8 SI SI SI AI WU AI WI EI

SC2.1 SC2.2 SC2.3 SC2.4

SC2.1 EI AU WU AU
SC2.2 AI EI SI EI
SC2.3 WI SU EI AU
SC2.4 AI EI AI EI

SC3.1 SC3.2 SC3.3

SC3.1 EI WU WU
SC3.2 SI EI EI
SC3.3 SI EI EI

SC4.1 SC4.2 SC4.3 SC4.4 SC4.5

SC4.1 EI WI WI SI EI
SC4.2 WU EI EI EI SU
SC4.3 WU EI EI EI SU
SC4.4 SU EI EI EI SU
SC4.5 EI SI SI SI EI

SC5.1 SC5.2 SC5.3 SC5.4

SC5.1 EI SI AI SI
SC5.2 SU EI WI WI
SC5.3 AU WU EI EI
SC5.4 SU WU EI EI

(5) Geometric mean and relative fuzzy weights

Criteria Geometric mean of fuzzy 
comparison value

Relative Fuzzy weight of 
each Criteria

ri wi

L M U L M U

C1 1,517 2,254 2,904 0,177 0,376 0,719
C2 0,344 0,477 0,734 0,040 0,080 0,182
C3 0,327 0,514 0,859 0,038 0,086 0,213
C4 0,863 1,267 1,829 0,101 0,212 0,453
C5 0,988 1,477 2,253 0,115 0,247 0,558

(6) Geometric mean and relative fuzzy weights

Subcriteria Geometric mean of 
fuzzy comparison 
value

Relative Fuzzy 
weight of each 
Criteria

ri wi

L M U L M U

SC1.1 0,262 0,360 0,547 0,017 0,033 0,078
SC1.2 0,906 1,378 1,968 0,058 0,127 0,281
SC1.3 0,792 1,143 1,770 0,050 0,106 0,252
SC1.4 0,334 0,480 0,721 0,021 0,044 0,103
SC1.5 0,844 1,355 2,156 0,054 0,125 0,308
SC1.6 0,257 0,339 0,494 0,016 0,031 0,070
SC1.7 1,505 2,348 3,362 0,096 0,217 0,479
SC1.8 2,111 3,412 4,699 0,134 0,316 0,670

(7) Geometric mean and relative fuzzy weights



Life Cycle Reliability and Safety Engineering	

Subcriteria Geometric mean of 
fuzzy comparison 
value

Relative Fuzzy 
weight of each 
Criteria

ri wi

L M U L M U

SC2.1 0,246 0,331 0,585 0,035 0,059 0,141
SC2.2 2,466 3,271 3,979 0,349 0,586 0,959
SC2.3 0,512 0,748 0,994 0,072 0,134 0,239
SC2.4 0,926 1,235 1,505 0,131 0,221 0,363

(8) Geometric mean and relative fuzzy weights

Subcriteria Geometric mean of 
fuzzy comparison 
value

Relative Fuzzy 
weight of each 
Criteria

ri wi

L M U L M U

SC3.1 0,278 0,356 0,548 0,054 0,092 0,211
SC3.2 0,893 1,266 1,843 0,172 0,329 0,708
SC3.3 1,430 2,222 2,786 0,276 0,578 1,071

(9) Geometric mean and relative fuzzy weights

Subcriteria Geometric mean of 
fuzzy comparison 
value

Relative Fuzzy 
weight of each 
Criteria

ri wi

L M U L M U

SC4.1 0,670 1,119 1,682 0,088 0,205 0,441
SC4.2 1,017 1,467 1,924 0,133 0,269 0,504
SC4.3 0,327 0,412 0,670 0,043 0,075 0,176
SC4.4 1,034 1,435 1,799 0,135 0,263 0,472
SC4.5 0,766 1,029 1,562 0,100 0,188 0,409

(10) Geometric mean and relative fuzzy weights

Subcriteria Geometric mean of fuzzy 
comparison value

Relative Fuzzy weight 
of each Criteria

ri wi

L M U L M U

SC5.1 2,067 3,248 4,243 0,281 0,614 1,215
SC5.2 0,411 0,610 0,994 0,056 0,115 0,284
SC5.3 0,541 0,815 1,193 0,074 0,154 0,342
SC5.4 0,473 0,619 0,913 0,064 0,117 0,261
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