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Abstract
The significance of using quantile-based entropies lies in their ability to capture different characteristics compared to the 
approach using distribution functions. This article is centered on examining the quantile-based Rényi entropy and its time-
dependent versions for record statistics. The additional parameter � in this entropy enables a broader interpretation, with the 
Shannon entropy being a specific case, enabling the entropy metric to be tailored to the precise properties of the data being 
studied. The study investigates these entropies across various generalized models that lack a probability density function or 
a cumulative distribution function and further introduces an alternative representation for these entropy quantities centered 
on the expected values of other random variables. This, in turn, leads to a finding on the bound of the quantile Rényi residual 
entropy of the nth record in terms of the mode of the truncated Gamma distribution. Additionally, the study presents a unique 
characterization result for Rényi entropy using its residual form and hazard quantile function.
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1 Introduction

A key aspect of statistical research is the evaluation of record 
values, and the groundwork for this was laid by Chandler 
(1952), who was later joined by Nagaraja (1977, 1978, 1982, 
1988) and Arnold et al. (1992). Analyzing a sequence of 
random variables that are independently and identically 
distributed(i.i.d.) with cumulative distribution function(cdf), 
survival function, and probability density function(pdf) 
G(y), G(y) = 1 − G(y) , and g(y), respectively, then Rn , the 
nth upper record value is defined as the nth largest value in 
the sequence that has not been exceeded before. The pdf for 
Rn can be expressed as follows:

with the gamma function denoted by Γ(.) . We have empha-
sized here the upper extremities of record statistics as these 
have traditionally been the focus of most literature. However, 
in practical cases, lower extremes also serve as useful met-
rics, such as in measuring temperature lows or race duration, 
etc. Simple modifications can handle these lower records.

The utility of record statistics extends to several fields, 
including sports events, quality control, finance, and risk 
management, where they can help identify outliers and unu-
sual patterns in order to analyze extreme events. Leading 
researchers, such as Arnold et al. (1992); Ahsanullah (2004); 
David and Nagaraja (2003) have provided valuable insights 
into the behavior of the tails of the distributions.

In addition, entropy, a fundamental concept introduced 
by Shannon (1948) in information theory, provides a quan-
titative measure of the uncertainty and randomness of a 
system. This concept is particularly helpful in the analysis, 
modeling, and optimization of complex systems, see Cover 
(1999); Kumar et al. (2024) and the cited references for addi-
tional insights.

Further enhancing the value of entropy in statistical anal-
ysis, Rényi (1961) proposed an additive generalization of 
order � of Shannon entropy for a non-negative absolutely 
continuous random variable Y with pdf g(y) as given by

(1.1)hn(y) =
{− ln(G(y))}n−1

Γ(n)
g(y); −∞ < y < ∞,
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In order to control the sensitivity of the entropy effectively to 
different parts of the distribution, we rely on the parameter 
� . Shannon entropy, represented by − ∫ ∞

0
g(y) ln(g(y))dy , is 

obtained when � → 1 in ��(Y).
To ensure accuracy in reliability and life testing studies, 

we must also consider the dynamic measures of entropy. 
This is especially important when we are attempting to 
determine the age of a particular component or system. It 
is vital to comprehend entropy’s accuracy to make well-
informed decisions. Abraham and Sankaran (2006) extended 
and put forth Rényi entropy of order � for residual lifetime 
Yt = [Y − t|Y > t] which is defined below, thus making it 
a valuable tool for accurately understanding the dynamic 
measures of entropy.

For more details related to dynamic forms of this generalized 
entropy, refer to Asadi et al. (2005). Rényi entropy for past 
lifetime tY = [t − Y|Y ≤ t] was extensively studied by Gupta 
and Nanda (2002) and is given as

Analogous to (1.2), Rényi entropy for the nth upper record 
is given by

Several authors namely Nanda and Maiti (2007); Zareza-
deh and Asadi (2010) and many more have extensively 
researched dynamic forms of Rényi entropy and their 
properties.

A probability model can be well established by utiliz-
ing either a distribution or a quantile function. However, 
both tools serve different purposes. Quantile functions, for 
example, provide a summary measure of distribution that 
is less susceptible to extreme values than other measures, 
including mean or standard deviation. They are often used to 
construct confidence intervals and conduct hypothesis test-
ing when the null hypothesis does not indicate a particular 
distribution. In several models like power Pareto, Govin-
darajulu and various parameters family of lambda distribu-
tions, etc. where the distribution function is unknown or 
not easily modeled through a specific distribution function, 
traditional approaches may either be insufficient to obtain 

(1.2)𝜙𝜇(Y) =
1

1 − 𝜇
ln

(

�
∞

0

g𝜇(y)dy

)
;𝜇 > 0,𝜇 ≠ 1.

(1.3)𝜙𝜇(Y;t) =
1

1 − 𝜇
ln

(

�
∞

t

g𝜇(y)

G
𝜇
(t)

dy

)
;𝜇, t > 0,𝜇 ≠ 1.

(1.4)𝜙𝜇(Y;t) =
1

1 − 𝜇
ln

(

�
t

0

g𝜇(y)

G𝜇(t)
dy

)
;𝜇, t > 0,𝜇 ≠ 1.

(1.5)
𝜙𝜇(Rn) =

1

1 − 𝜇
ln

(

�
∞

0

{− ln(G(y))}(n−1)𝜇g𝜇(y)dy

)

−
𝜇

1 − 𝜇
ln(Γ(n));𝜇 > 0,𝜇 ≠ 1.

the required result or too complicated. In such cases, the 
tools based on quantile functions provide a flexible and 
robust way of summarizing a dataset’s distribution without 
relying on certain underlying distribution assumptions, refer 
to Gilchrist (2000) and Nair et al. (2013). This alternative 
approach, known as quantile functions (QFs), is defined by

where G(y) is the continuous cdf of a non-negative random 
variable Y and q(p) = d

dp
(Q(p)) is the quantile density 

function.
The Shannon quantile entropy and its residual form 

were studied by Sunoj and Sankaran (2012). The quantile 
interpretation of Shannon’s past entropy was investigated 
by Sunoj et al. (2013). Nanda et al. (2014) proposed Rényi 
residual entropy in quantile form, defined as

When � → 1 , the measure (1.7) reduces to

which is a quantile-based residual form of Shannon entropy.
The study of records in various domains such as climatology, 

sports, medicine, traffic, and industry is of great significance as 
it offers a natural and comprehensive account of scientific and 
technological progress. It enables us to examine the evolution 
of human achievements in different domains of activity. As a 
result, a significant amount of record data has been collected and 
saved over time and therefore numerous mathematical models 
like the Weibull distribution, the Gumbel distribution, and the 
generalized extreme value distribution, etc. have been developed 
that capture the nature of the underlying record processes and 
project future statistics and probabilities of future events related 
to the records. At the same time, most recently, academics have 
gained interest in researching the information quantities based 
on quantiles, as a more natural alternative to the routine dis-
tribution function approach, since they can resolve issues that 
are unresolvable in the latter approach by focusing on abstract 
quantiles-based characteristics of the underlying distribution, 
which are more precise and less susceptible to the influence of 
outliers. One of the intriguing questions that remain is whether 
it is possible to quantify the volume of information in a spectrum 
of record data numbers via a sequence of i.i.d. random vari-
ables by means of residual or past forms of various information 
measures and their quantiles. The study of Shannon quantile 
entropy for records and its proven statisticians remains under 
research by Kumar and Dangi (2023). However, the quantile-
based Rényi entropy measure seems to be more promising as it 

(1.6)Q(p) = G−1(p) = inf{y | G(y) ≥ p}; 0 ≤ p ≤ 1,

(1.7)

Φ𝜇(Y;p) =
1

1 − 𝜇
ln

(

�
1

p

(q(s))1−𝜇

(1 − p)𝜇
ds

)
;𝜇 > 0,𝜇 ≠ 1.

(1.8)Φ(Y;p) = ln(1 − p) +
1

1 − p

(

∫
1

p

ln(q(s))ds

)
,
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also generalizes Shannon quantile entropy and provides more 
accurate and robust results while characterizing the underly-
ing distribution uniquely. Considering the importance of Rényi 
entropy and its measures, quantile functions, and record statis-
tics, we are greatly motivated to investigate the quantile variant 
of the Rényi entropy measure for record statistics.

This communication analyzes the findings of the record 
statistics using the quantile variant of the Rényi entropy 
measure. We study its application to a variety of models 
with simple or tractable quantile functions or quantile den-
sity functions but no closed-form equation for the pdf or 
cdf. Section 2 introduces the quantile variant of the Rényi 
entropy of the nth higher record and its investigation is car-
ried out for different extended models. The dynamic versions 
(past and residual) of the Rényi quantile entropy of the nth 
higher record are illustrated in Sect. 3, along with an alter-
nate expression for the same in terms of truncated Gamma 
distribution expectations. In addition, an important result 
on the bound of the residual version of this entropy based 
on the mode of the truncated Gamma distribution has been 
derived. In Sect. 4, we provide a characterization result on 
the uniqueness followed by the concluding remarks of the 
paper in the last section.

2  Quantile‑based Rényi entropy of record 
statistics

Using Eq. (1.6), when the function G is continuous, it fol-
lows that G(Q(p)) = p . Taking the derivative with respect to 
p gives q(p)g(Q(p)) = 1 . These results allow us to express 
the pdf of the nth upper record as defined in Eq. (1.1) in 
terms of quantile as below

Similar to Eq. (1.2), the quantile-based Rényi entropy of nth 
upper record value can be defined as

When n = 1 , Eq. (2.3) simplifies to the quantile Rényi 
entropy of the parent distribution and � approaching 1 
reduces Eq. (2.3) to the quantile-based Shannon entropy of 
the nth upper record.

(2.1)ḩn(p) =
{− ln(1 − p)}n−1

Γ(n)q(p)
; 0 ≤ p ≤ 1.

(2.2)

Φ�(Rn) =
1

1 − �
ln

(

∫
1

0

(ḩn(p))
�q(p)dp

)

=
1

1 − �
ln

[

∫
1

0

(
{− ln(1 − p)}n−1

Γ(n)q(p)

)�

q(p)dp

]

(2.3)
=

−� ln(Γ(n))

1 − �

+
1

1 − �
ln

[

∫
1

0

(− ln(1 − p))(n−1)�(q(p))1−�dp

]
.

There may be probability models in real-world situations 
without a closed-form distribution function, but the quantile 
function still remains available. Based on this framework, 
we take into consideration the following model and get the 
quantile-based Rényi entropy Φ�(Rn) of the nth upper record 
value, where q(.) exists.

2.1  Rényi quantile entropy of nth record 
for a generalized model

Consider an i.i.d. random variable Y with a quantile density 
function given as

where � , � and � are real valued parameters in this model. 
Then using Eq. (2.2), Rényi quantile entropy of nth upper 
record is obtained as

The substitution of different values of parameters in Eq. (2.4) 
leads to diverse lifetime distributions and to offer insight into 
the Rényi quantile entropies of nth record value correspond-
ing to these distributions, Table 1 is included. In practical 
applications, quantiles can be employed to determine the 
values of these parameters. Cook (2010) has developed 
an advanced set of algorithmic rules for determining the 
parameters of commonly used distributions, accompanied 
by a software tool called ParameterSolver. This software tool 
is a valuable resource for researchers and practitioners who 
require reliable and efficient computing of these parameters.

In certain situations, employing the quantile functions 
approach can prove to be more effective than using the 
cumulative distribution functions approach, as it is less 
affected by extreme statistical observations. Even though 
certain models don’t have closed-form equations for the pdf 
or cdf, they do have quantile density or simple quantile func-
tions. For such models, see, Hankin and Lee (2006); van 
Staden and Loots (2009) and Nair et al. (2013). Here, we 
present some distributions for which q(⋅) exists, and obtain 
Φ�(Rn).

Example 2.1 Consider the distribution proposed by 
Govindarajulu which does not have any closed-form for-
mulations for its density or distribution functions. How-
ever, its quantile and quantile density functions are given 

q(p) = �(− ln(1 − p))�(1 − p)� ,

(2.4)

Φ�(Rn) =
1

1 − �
ln
[

∫

1

0

�1−�

(Γ(n))�

(− ln(1 − p))(n−1)�+�(1−�)(1 − p)�(1−�)dp
]

= ln � + 1
1 − �

ln
[

Γ(n� + (� + 1)(1 − �))
(Γ(n))�(�(1 − �) + 1)n�+(�+1)(1−�)

]

.
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respectively by Q(p) = � + �{(� + 1)p� − �p�+1} and 
q(p) = 𝜎𝜆(𝜆 + 1)(1 − p)p𝜆−1;𝜃, 𝜎, 𝜆 > 0. Then Rényi quan-
tile entropy of nth record for this distribution is derived as

which is readily traceable for further approximation.

Example 2.2 Consider the Davis Distribution, a lambda fam-
ily of distributions that was proposed by Hankin and Lee 
(2006) with quantile density function

This family of distributions offers a decent approximation to 
the Weibull, Gamma, Exponential, and Lognormal distribu-
tions and is best fitted to the right-skewed and non-negative 
data. Next, for this distribution, the Rényi quantile entropy 
of nth record is determined as

(2.5)

Φ�(Rn) = ln[��(� + 1)] − �
1 − �

lnΓ(n)

+ 1
1 − �

ln
[

∫

1

0
(− ln(1 − p))(n−1)�p(�−1)(1−�)

(1 − p)1−�dp
]

,

(2.6)
q(p) = Cp�1−1(1 − p)−�2−1{�1(1 − p) + �2p};C, �1, �2 ≥ 0.

(2.7)

Φ�(Rn) = lnC −
�

1 − �
lnΓ(n)

+
1

1 − �
ln

[

∫
1

0

(− ln(1 − p))(n−1)�
{
�1p

�1−1

(1 − p)−�2 + �2p
�1(1 − p)−(1+�2)

}1−�
dp

]
,

which can be easily estimated numerically. When 
𝜆1 = 𝜆2 > 0 , then Eq. (2.7) corresponds to Log Logistic 
distribution. Also as �1 and �2 approach 0, Eq. (2.7) reduces 
to the Pareto I distribution and the Power distribution 
respectively.

Example 2.3 Take into consideration, respectively, the quan-
tile function and quantile density function of the van Staden 
and Loots (2009) distribution as

Then using Eqs. (2.3) and (2.8), the quantile variant of 
Rényi’s entropy of nth record for van Staden-Loots distribu-
tion is calculated as

which can be further estimated numerically. As �1 ⟶ 0, 
Eq. (2.9) reduces to Exponential distribution and as 
�4 ⟶ 1, Eq. (2.9) reduces to ln �2 +

1

1−�
ln
[
Γ((n−1)�+1)

(Γ(n))�

]
, 

corresponding to the Uniform distribution and when 

(2.8)

Q(p) = 𝜆1 + 𝜆2

[(
1 − 𝜆3

𝜆4

)
(p𝜆4 − 1)

−

(
𝜆3

𝜆4

)
{(1 − p)𝜆4 − 1}

]
, where 𝜆i > 0

for i = 1, 2, 3, 4,

and q(p) = 𝜆2[(1 − 𝜆3)p
𝜆4−1 + 𝜆3(1 − p)𝜆4−1].

(2.9)

Φ�(Rn) = ln �2 −
�

1 − �
lnΓ(n)

+ 1
1 − �

ln
[

∫

1

0
(− ln(1 − p))(n−1)�

{

(1 − �3)p�4−1

+�3(1 − p)�4−1
}1−�dp

]

,

Table 1  Rényi quantile entropy of nth record for different lifetime distributions

Parameters Distributions Q(p) Φ�(Rn
)

𝜂 = b − a, 𝛿 = 𝜈 = 0;b > a Uniform a + (b − a)p ln(b − a) +
1

1−�
ln
[
Γ((n−1)�+1)

(Γ(n))�

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −1;𝜃 > 0 Exponential −

1

�
ln(1 − p) − ln � +

1

1−�
ln
[

Γ((n−1)�+1)

(Γ(n))��(n−1)�+1

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −(𝜂 + 1);𝜃 > 0 Classical Pareto (1 − p)−

1

�
1

1−�
ln
[

Γ((n−1)�+1)�n�

(Γ(n))� ((1+�)�−1)(n−1)�+1

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 = −

(
1

c
+ 1

)
;a, c > 0 Pareto-I a(1 − p)−

1

c ln a +
1

1−�
ln
[

Γ((n−1)�+1)cn�

(Γ(n))� ((1+c)�−1)(n−1)�+1

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 = −

(
1

c
+ 1

)
;a, c > 0 Pareto-II a[(1 − p)−

1

c − 1] ln a +
1

1−�
ln
[

Γ((n−1)�+1)cn�

(Γ(n))� ((1+c)�−1)(n−1)�+1

]

𝜂 =
b

a+1
, 𝛿 = 0, 𝜈 = −

(
2a+1

a+1

)
;a > −1, b > 0 Generalized Pareto b

a

[
(1 − p)

−
a

a+1 − 1
]

ln b +
1

1−�
ln
[

Γ((n−1)�+1)(a+1)n�

(Γ(n))� ((2a+1)�−a)(n−1)�+1

]

𝜂 =
1

𝛽𝜆
1
𝛽

, 𝛿 =
1

𝛽
− 1, 𝜈 = −1;𝜆, 𝛽 > 0 Weibull (

− ln(1−p)

�

) 1

�

− ln(��
1

� ) +
1

1−�
ln

[
Γ
(
n�+

1−�

�

)

(Γ(n))��
n�+

1−�
�

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 =

1

c
− 1;a, c > 0 Rescaled Beta a[1 − (1 − p)

1

c ] ln a +
1

1−�
ln
[

Γ((n−1)�+1)cn�

(Γ(n))� ((c−1)�+1)(n−1)�+1

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −2;𝜃 > 0 Folder Crammer p

�(1−p) − ln � +
1

1−�
ln
[

Γ((n−1)�+1)

(Γ(n))� (2�−1)(n−1)�+1

]
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�2 = 2, �3 = 1∕2, �4 = 0,  E q .  ( 2 . 9 )  r e d u c e s  t o 
1

1−�
ln
[∫ 1

0

(− ln(1−p))(n−1)�

(p(1−p))1−�(Γ(n))�
dp

]
, coinciding with the Logistic 

distribution having parameter as 1.

Example 2.4 Consider the quantile density function of the 
Generalized Lambda distribution as defined by

Then using equations (2.3) and (2.10), we calculate Rényi 
quantile entropy of nth record as

which can be further estimated numerically. When 
�2 = �3 = �4 = � , Eq. (2.11) reduces to − �

1−�
lnΓ(n)+

1

1−�
ln
[∫ 1

0
(− ln(1 − p))(n−1)�

{
p
�−1 + (1 − p)�−1

}1−�
dp

]
, 

equivalent to the Lambda distribution. As � ⟶ 1 and 
� ⟶ 0 , it further reduces to ln 2 + 1

1−�
ln
[
Γ((n−1)�+1)

(Γ(n))�

]
, 

equivalent to Uniform distribution in [-1,1] and 
−

�

1−�
lnΓ(n) +

1

1−�
ln
[∫ 1

0

(− ln(1−p))(n−1)�

(p(1−p))1−�
dp

]
, equivalent to the 

logistic distribution with parameter as 1 respectively.

Example 2.5 Consider the Lambda family of distribution 
with five parameters as developed by Gilchrist (2000) with 
quantile density function given as

Tarsitano (2005) offered very close approximations to a 
range of symmetric and asymmetric distributions using this 
model. Furthermore, he advocated for using this model in 
cases where a specific distributional form cannot be inferred 
from the prevailing physical context. Then Rényi quantile 
entropy of nth record for this family can be derived as

(2.10)q(p) =
1

�2
[�3p

�3−1 + �4(1 − p)�4−1].

(2.11)

Φ�(Rn) = − ln �2 −
�

1 − �
lnΓ(n)

+ 1
1 − �

ln
[

∫

1

0
(− ln(1 − p))(n−1)�

{

�3p�3−1

+�4(1 − p)�4−1
}1−�dp

]

,

(2.12)q(p) = �2

[
1 − �3

2
p�4−1 +

1 + �3

2
(1 − p)�5−1

]
.

(2.13)

Φ�(Rn) = ln �2 −
�

1 − �
lnΓ(n)

+
1

1 − �
ln

[

∫
1

0

(− ln(1 − p))(n−1)�
{

1 − �3

2
p�4−1

+
1 + �3

2
(1 − p)�5−1

}1−�

dp

]
,

which can be further estimated numerically. As �3 ⟶ 0 , 
this family corresponds to the Generalized Tuckey Lambda 
family of distribution with Eq. (2.13) reduced to ln �

2

2
−

�

1−�
lnΓ(n) +

1

1−�
ln
[∫ 1

0
(− ln(1 − p))(n−1)�{p�4−1 + (1 − p)�5−1}1−�dp

]
 . 

This family also includes the exponential distribution when 
�4 ⟶ ∞, �5 ⟶ 0 , the generalized Pareto distribution 
when �4 ⟶ ∞ and |𝜆5| < ∞ , and power distribution when 
�5 ⟶ ∞ and |𝜆4| < ∞.

The expression for the Rényi’s quantile entropy of the 
nth upper record value that we have been looking at in 
this section is obtained in terms of the random variable’s 
quantile density function. In our further analysis, we are 
aiming to present an alternative expression for the same 
based on the expectation of another random variable. This 
approach will provide a different perspective on quantile 
entropy calculation and could offer valuable insights into 
the behavior of the distribution.

Theorem 2.1 Assume a sequence {Yi ∶ i ≥ 1} of i.i.d. con-
tinuous random variables with Q(p) and q(p) as quantile 
function and quantile density function respectively with 
Rényi entropy Φ𝜇(⋅) < ∞ . Then for all i ≥ 1 , an alternate 
formulation for Rényi’s quantile entropy of nth upper record, 
Rn , can be derived as

where E indicates a random variable’s expectation; R∗
n
 fol-

lows the gamma distribution with parameters (n − 1)� + 1 
and 1.

Proof The gamma distribution’s quantile version of the pdf, 
with parameters (n − 1)� + 1 and 1 is (1−p)(− ln(1−p))(n−1)�

Γ((n−1)�+1)
 and 

hence

Switching these values in Eq. (2.2), we obtain the needed 
outcome.   ◻

3  Quantile‑based dynamic Rényi entropy 
of record statistics

The concept of dynamic quantile entropy bridges the gap 
between traditional entropy measures and the dynamic 
behavior of time-varying data. By considering quantiles 

Φ�(Rn) =
1

1 − �
ln

[
Γ((n − 1)� + 1)E{q(R∗

n
)}1−�

(Γ(n))�

]
,

E[{q(R∗
n
)}1−�] = ∫

1

0

(q(p))1−�
(− ln(1 − p))(n−1)�

Γ((n − 1)� + 1)
dp.
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and their evolution, it offers a nuanced and contextually 
relevant understanding of how data distributions change 
over time, leading to improved modeling, prediction, and 
decision-making.

Time plays a pivotal role in studying quantile entropies, 
as it introduces the temporal dimension into the analysis of 
information complexity and uncertainty. The role of time 
in studying quantile entropies is to capture the changing 
distributional characteristics of data over different quan-
tiles and time intervals. This provides insights into evolving 
uncertainty, risks and patterns, making quantile entropies an 
essential tool across various fields involving time-varying 
data. Consequently, the exploration of dynamic variants of 
these statistical quantities holds increasing importance and 
relevance. Numerous researchers have conducted studies on 
the significance of residual entropy as an uncertainty meas-
ure in order and record statistics; see, for example, Zareza-
deh and Asadi (2010); Baratpour et al. (2007a, 2007a); 
Sunoj et al. (2013), and Kumar (2015, 2016). Quantile-based 
Rényi residual entropy of nth record is expressed as

where Ḩn(p) =
Γ(n;−ln(1−p))

Γ(n)
 is the survival function of nth 

upper record in terms of quantile and Γ(n; − ln(1 − p)) 

(3.1)Φ�(Rn;p) =
1

1 − �
ln

[

∫
1

p

(
ḩn(s)

Ḩn(p)

)�

q(s)ds

]
,

denotes the truncated upper gamma function. It can also be 
written as

Table 2 presents a summary of the quantile-based Rényi 
residual entropy of the nth record for various lifetime distri-
butions, utilizing the generalized model detailed in Sect. 2.1 
with Eq. (3.2) and incorporating a range of parameter values.

It is noteworthy that in certain practical scenarios, 
uncertainty may be associated with past lifetime rather 
than future events. As a response, we have examined the 
nth record’s Rényi quantile entropy for previous time or 
inactivity. Below is the quantile-based Rényi entropy of 
the nth record value for the previous lifetime,

(3.2)

Φ�(Rn;p) =
−�

1 − �
ln(Ḩn(p))

+
1

1 − �
ln

[

∫
1

p

(ḩn(s))
�q(s)ds

]

=
−�

1 − �
ln

(
Γ(n; − ln(1 − p)

Γ(n)

)

+
1

1 − �
ln

[

∫
1

p

(
(− ln(1 − s))n−1

Γ(n)q(s)

)�

q(s)ds

]

=
−�

1 − �
ln[Γ(n; − ln(1 − p))]

+
1

1 − �
ln

[

∫
1

p

(− ln(1 − s))(n−1)�(q(s))1−�ds

]
.

Table 2  Rényi residual quantile entropy of nth record for different lifetime distributions

Parameters Distributions Q(p) Φ�(Rn
;p)

𝜂 = b − a, 𝛿 = 𝜈 = 0;b > a Uniform a + (b − a)p ln(b − a) +
1

1−�
ln
[
Γ((n−1)�+1;−ln(1−p))

(Γ(n;−ln(1−p)))�

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −1;𝜃 > 0 Exponential −

1

�
ln(1 − p) − ln � +

1

1−�
ln
[

Γ((n−1)�+1;−� ln(1−p))

(Γ(n;−ln(1−p)))��(n−1)�+1

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −(𝜂 + 1);𝜃 > 0 Classical Pareto (1 − p)−

1

� 1

1−�
ln

[
Γ
(
(n−1)�+1;−

(
�−

1−�

�

)
ln(1−p)

)
�n�

(Γ(n;−ln(1−p)))� ((1+�)�−1)(n−1)�+1

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 = −

(
1

c
+ 1

)
;a, c > 0 Pareto-I a(1 − p)−

1

c

ln a +
1

1−�
ln

[
Γ
(
(n−1)�+1;−

(
�−

1−�

c

)
ln(1−p)

)
cn�

(Γ(n;−ln(1−p)))� ((1+c)�−1)(n−1)�+1

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 = −

(
1

c
+ 1

)
;a, c > 0 Pareto-II a[(1 − p)−

1

c − 1]
ln a +

1

1−�
ln

[
Γ
(
(n−1)�+1;−

(
�−

1−�

c

)
ln(1−p)

)
cn�

(Γ(n;−ln(1−p)))� ((1+c)�−1)(n−1)�+1

]

𝜂 =
b

a+1
, 𝛿 = 0, 𝜈 = −

(
2a+1

a+1

)
;a > −1, b > 0 Generalized Pareto b

a

[
(1 − p)

−
a

a+1 − 1
]

ln b +
1

1−�
ln

[
Γ
(
(n−1)�+1;−

(
�−

a(1−�)

a+1

)
ln(1−p)

)
(a+1)n�

(Γ(n;−ln(1−p)))� ((2a+1)�−a)(n−1)�+1

]

𝜂 =
1

𝛽𝜆
1
𝛽

, 𝛿 =
1

𝛽
− 1, 𝜈 = −1;𝜆, 𝛽 > 0 Weibull (

− ln(1−p)

�

) 1

�

− ln(��
1

� ) +
1

1−�
ln

[
Γ
(
n�+

1−�

�
;−� ln(1−p)

)

(Γ(n;−ln(1−p)))��
n�+

1−�
�

]

𝜂 =
a

c
, 𝛿 = 0, 𝜈 =

1

c
− 1;a, c > 0 Rescaled Beta a[1 − (1 − p)

1

c ]
ln a +

1

1−�
ln

[
Γ
(
(n−1)�+1;−

(
�+

1−�

c

)
ln(1−p)

)
cn�

(Γ(n;−ln(1−p)))� ((c−1)�+1)(n−1)�+1

]

𝜂 =
1

𝜃
, 𝛿 = 0, 𝜈 = −2;𝜃 > 0 Folder Crammer p

�(1−p) − ln � +
1

1−�
ln
[

Γ((n−1)�+1;−(2�−1) ln(1−p))

(Γ(n;−ln(1−p)))� (2�−1)(n−1)�+1

]
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where Ḩn(p) =
�(n;−ln(1−p))

Γ(n)
 is the reliability function of nth 

upper record in terms of quantile and �(n; − ln(1 − p)) 
denotes the truncated lower gamma function. Similar to 
Rényi residual quantile entropy of nth upper record, it can be 
simplified to yield

Remark 3.1 When n = 1 , Eqs. (3.2) and (3.4) correspond to 
the Rényi quantile entropy for residual and inactive lifetimes 
of underlying distribution, respectively. Moreover, as p → 0 
and p → 1 in Eqs. (3.2) and (3.4) respectively, they both 
correspond to the Rényi quantile entropy of nth record of the 
underlying distribution.

In our upcoming analysis, we will delve into the dynamic 
forms of quantile-based Rényi entropy of the nth upper record 
values, expressed in relation to the expectation of the trun-
cated Gamma distribution. This investigation is poised to yield 
essential insights regarding the boundaries of these entropies 
with respect to the mode of the truncated Gamma distribution. 
This could further lead to a better understanding of the behav-
ior of these entropies under certain conditions and potentially 
inform decision-making processes in relevant industries and 
fields.

Theorem 3.1 Assume a sequence Yi, i ≥ 1 of i.i.d. continuous 
random variables with Q(p) and q(p) as quantile distribution 
and quantile density functions respectively. Then quantile-
based Rényi residual entropy of the nth upper record value, 
Rn , can be derived as

where z = − ln(1 − p) and Sz ∼ Γ(�(n − 1) + 1; − ln(1 − p)).

Proof Rewriting Eq. (3.2) as

(3.3)Φ�(Rn;p) =
1

1 − �
ln

[

∫
p

0

(
ḩn(s)

Ḩn(p)

)�

q(s)ds

]
,

(3.4)

Φ�(Rn;p) =
−�

1 − �
ln[�(n; − ln(1 − p))]

+
1

1 − �
ln

[

∫
p

0

(− ln(1 − s))(n−1)�(q(s))1−�ds

]
.

(3.5)
Φ�(Rn;p) =

1

1 − �
ln

[
Γ(�(n − 1) + 1; − ln(1 − p))

{Γ(n; − ln(1 − p))}�

]

+
1

1 − �
ln[E{q1−�(Sz)}],

(3.6)

Φ�(Rn;p) =
1

1 − �
ln

[
Γ(�(n − 1) + 1; − ln(1 − p))

{Γ(n; − ln(1 − p))}�

]

+
1

1 − �
ln

[

∫
1

p

(− ln(1 − s))(n−1)�q1−�(s)

Γ(�(n − 1) + 1; − ln(1 − p))
ds

]
.

The pdf of truncated upper gamma distribution with param-
eter (n − 1)� + 1 in quantile form is (1−p)(− ln(1−p))(n−1)�

Γ(�(n−1)+1;−ln(1−p))
 and 

hence

Substituting this value in Eq. (3.6), we get the desired 
result.   ◻

Theorem 3.2 Under the presumptions of theorem 3.1, the 
quantile-based Rényi past entropy of the nth upper record 
value, Rn , can be derived as

where z = − ln(1 − p) and Sz ∼ �(�(n − 1) + 1; − ln(1 − p)).

Proof Using Eq. (3.4), where z = − ln(1 − p) , it can be 
proved similarly to theorem 3.1.   ◻

Theorem 3.3 An Important Result on Bounds: Let Yi, i ≥ 1 
be a sequence of i.i.d. continuous random variables with 
quantile Rényi residual entropy of nth upper record, Rn as 
Φ𝜇(Rn;p) < ∞ , then this quantile Rényi residual entropy of 
nth upper record is bounded as follows: for 𝜇 > 1(0 < 𝜇 < 1);

where A(p) = 1

1−�
ln
(∫ 1

p

(q(s))1−�

1−s
ds
)
.

Proof If Φ𝜇(Rn;p) < ∞ and mn = max{�(n − 1),− ln(1 − p)}, 
where mn is the mode of truncated Gamma distribution with 
parameter (n − 1)� + 1 and quantile version of density func-
tion is (1−mn)(− ln(1−mn))

(n−1)�

Γ((n−1)�+1;−ln(1−p))
= Mn(say). Now, we write, for 

𝜇 > 1(0 < 𝜇 < 1)

Using these values, Eq. (3.5) reduces to

E{q1−�(Sz)} = ∫
1

p

(− ln(1 − s))(n−1)�q1−�(s)

Γ(�(n − 1) + 1; − ln(1 − p))
ds.

(3.7)
Φ�(Rn;p) =

1

1 − �
ln

[
�(�(n − 1) + 1; − ln(1 − p))

{�(n; − ln(1 − p))}�

]

+
1

1 − �
ln[E{q1−�(Sz)}],

(3.8)

Φ𝜇(Rn;p) >(<)
−𝜇

1 − 𝜇
ln[Γ(n; − ln(1 − p))]

+
1

1 − 𝜇
ln[(1 − mn)(− ln(1 − mn))

(n−1)𝜇]

+ A(p),

1

1 − 𝜇
ln[E(q1−𝜇(Sz))]

=
1

1 − 𝜇
ln

(

∫
1

p

(− ln(1 − s))(n−1)𝜇(q(s))1−𝜇

Γ(𝜇(n − 1) + 1; − ln(1 − p))
ds

)

> (<)
1

1 − 𝜇
ln(Mn) +

1

1 − 𝜇
ln

(

∫
1

p

(q(s))1−𝜇

1 − s
ds

)
.
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Hence the proof.   ◻

4  The problem of unique characterization

This section emphasizes how our problem becomes an initial 
value problem (IVP) and then uniquely specifies the parent 
distribution using the hazard quantile function in quantile-
based Rényi residual entropy of nth upper record.

Our first task is to determine the sufficient criteria for 
the unique solution of an IVP: Given a function f(x, y) 
with two variables defined in a region D ⊂ R2, (x0, y0) is a 
particular point in D, y is the unknown function such that 
y� = f (x, y) , y(x0) = y0 . Then a function �(x) is the solution 
of this IVP on an interval I ⊂ R only if (i) the graph of � falls 
into D, (ii) � is differentiable on I, (iii) ��

= f (x,�(x)) for all 
x ∈ I , and (iv) �(x0) = y0.

We may prove our characterization result using the fol-
lowing theorem and the lemma.

Theorem  4.1 Suppose that the function f is defined 
and continuous in a domain D ⊂ R2 , and f satisfies a 
Lipschitz condition (with respect to y) in D, namely 
|f (x, y1) − f (x, y2)| ≤ K|y1 − y2|,K > 0, for every point (x, y1) 
and (x, y2) in D, then the function y = �(x) satisfies the initial 
value problem y� = f (x, y) and �(x0) = y0, x ∈ I is unique.

We now provide a sufficient condition under which any 
function f(x, y) of two variables defined in D ⊂ R2 will sat-
isfy the Lipschitz condition.

Lemma 4.1 The function f satisfies the Lipschitz condition 
in D if it is continuous in a convex region D ⊂ R2 and that �f

�y
 

exists and is continuous in D.

For the proof and other findings concerning the aforemen-
tioned theorem and lemma, see, Gupta and Kirmani (2008). 
The hazard quantile function is another significant quantile 
measure that is comparable to the widely recognized meas-
ure of hazard rate and is expressed as

Φ𝜇(Rn;p) > (<)
1

1 − 𝜇
ln

[
Γ(𝜇(n − 1) + 1; − ln(1 − p))

Γ𝜇(n; − ln(1 − p))

]

+
1

1 − 𝜇
ln(Mn) +

1

1 − 𝜇
ln

(

∫
1

p

(q(s))1−𝜇

1 − s
ds

)

= −
𝜇

1 − 𝜇
ln[Γ(n; − ln(1 − p))]

+
1

1 − 𝜇
ln[(1 − mn)(− ln(1 − mn))

(n−1)𝜇]

+ A(p).

where �(t) = g(t)

G(t)
 is the hazard rate of a random variable Y. 

Then the hazard quantile function of the nth upper record can 
be expressed as follows:

where prime ′ denotes the differentiation with respect to p 
and �(n; − ln(1 − p)) =

Γ�(n;−ln(1−p))

Γ(n;−ln(1−p))
 is the truncated upper 

digamma function. We will now proceed to establish the 
proof for our characterization result.

Rewriting Eq. (3.2) as

Using hazard quantile function of nth upper record,

Differentiating it with respect to p, we obtain

Differentiating it again with respect to p, we get

where Γ(⋅) = Γ(n; − ln(1 − p)),Γ�(⋅) = Γ�(n; − ln(1 − p)),

�(⋅) = �(n; − ln(1 − p)),

∧(p) = �(Q(p)) =
g(Q(p))

G(Q(p))
=

1

(1 − p)q(p)
,

∧n(p) =
ḩn(p)

Ḩn(p)
=

(− ln(1 − p))n−1

q(p)Γ(n; − ln(1 − p))

=
−Γ�(n; − ln(1 − p))

q(p)Γ(n; − ln(1 − p))
= −

�(n; − ln(1 − p))

q(p)
,

(1 − �)Φ�(Rn;p) = − � ln[Γ(n; − ln(1 − p))]

+ ln

[

∫
1

p

{− ln(1 − s)}(n−1)�(q(s))1−�ds

]
.

(1 − �)Φ�(Rn;p) = − � ln[Γ(n; − ln(1 − p))]

+ ln

[

∫
1

p

{∧n(s)Γ(n; − ln(1 − s))}�q(s)ds

]
.

(1 − �)Φ�
�
(Rn;p) = − �

Γ�(n; − ln(1 − p))

Γ(n; − ln(1 − p))

−
{∧n(p)Γ(n; − ln(1 − p))}�q(p)

∫ 1

p
(∧n(s)Γ(n; − ln(1 − s)))�q(s)ds

(1 − �)Φ�
�
(Rn;p) = − ��(n; − ln(1 − p))

−
{∧n(p)Γ(n; − ln(1 − p))}�q(p)

e[(1−�)Φ� (Rn;p)+� lnΓ(n;−ln(1−p))]
,

e[(1−�)Φ� (Rn;p)+� lnΓ(n;−ln(1−p))]

[(1 − �)Φ�
�
(Rn;p) + ��(n; − ln(1 − p))]

=[∧n(p)Γ(n; − ln(1 − p))]�−1Γ�(n; − ln(1 − p)).

e[(1−�)Φ�(Rn;p)+� lnΓ(⋅)]
[
{(1 − �)Φ�

�
(Rn;p) + ��(⋅)}2

+(1 − �)Φ��
�
(Rn;p) +��1(⋅)

]

= (∧n(p))
�−1(Γ(⋅))�[�1(⋅)

+ (�(⋅))2 + (� − 1)Γ�(⋅)(�(⋅) ∧n (p) + ∧�
n
(p))],
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and �1(⋅) = �1(n; − ln(1 − p)) = � �(n; − ln(1 − p)) , is the 
truncated upper trigamma function.

Taking ∧n(p) = y and Φ�(Rn;p) = f (p) , we get

where,

Theorem 4.1 and Lemma 4.1 collectively demonstrate that 
the initial value problem (IVP) (4.1) possesses a unique 
solution y = ∧n(p) and serves as the unique characteriza-
tion of the parent distribution.

5  Concluding remarks

Quantile variations of Rényi entropy and its dynamic forms 
in record statistics analyze the quantiles of the distribution 
instead of the original data, offering insights into the dynam-
ics of extreme events and their underlying distributions. 
These dynamic variations could be valuable in fields such 
as environmental science, finance, and reliability engineer-
ing, where understanding extreme events is critical.

In this research, we have formulated expressions for quan-
tile-based Rényi entropy and its dynamic versions (residual 
and past) for the nth upper record value and examined them 
for various generalized and lifetime distributions commonly 
used in life testing. Additionally, we have derived an alterna-
tive expression for Rényi entropy in relation to the expecta-
tion of the Gamma distribution and for dynamic forms in 
relation to the expectation of the truncated upper and lower 
Gamma distributions, demonstrating their connection with 
other distributions. These equations have been utilized to 
establish an extreme boundary for quantile Rényi residual 
entropy for the nth highest record in terms of the mode of 
the truncated Gamma distribution. We have also presented 
a unique characterization outcome for the distributions using 

∧�
n
(p)

=
e[(1−�)Φ�(Rn;p)+� lnΓ(⋅)]

[
{(1 − �)Φ�

�
(Rn;p) + ��(⋅)}2 + (1 − �)Φ��

�
(Rn;p) + ��1(⋅)

]

(� − 1)(∧n(p))
�−1(Γ(⋅))�+1�(⋅)

−
�1(⋅) + (�(⋅)2

(� − 1)Γ�(⋅)
− �(⋅) ∧n (p).

(4.1)y� = F(p, y),

F(p, y)

=
e[(1−�)f (p)+� lnΓ(⋅)]

[
{(1 − �)f �(p) + ��(⋅)}2 + (1 − �)f ��(p) + ��1(⋅)

]

(� − 1)y�−1(Γ(⋅))�+1�(⋅)

−
�1(⋅) + (�(⋅))2

(� − 1)Γ�(⋅)
− �(⋅)y.

the residual form of Rényi entropy for the nth upper record 
and the quantile hazard function.

The potential applications of quantile analysis of Rényi 
entropy for records are extensive and interdisciplinary, with 

implications across various fields where analyzing extreme 
events and quantifying uncertainty are crucial for decision-
making and risk management. Ongoing research in this area 
is likely to yield valuable insights and innovations with sig-
nificant practical implications. If one is open to using a more 
intricate model with greater flexibility, the current work can 
be expanded to encompass more generalized models and 
entropies.
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