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Abstract
This paper explores the Bayesian reliability estimation of the Weighted Exponential-Lindley distribution (WXLD) using 
intuitionistic fuzzy lifetime data. The study begins by extending the definitions of probability, conditional probability, and 
likelihood functions to accommodate intuitionistic fuzzy observations. The focus lies on Bayesian estimation approaches 
for the one-parameter WXLD, along with reliability analysis based on intuitionistic fuzzy lifetime data. For this, a gamma 
prior is adopted, and parameter and reliability estimations are carried out under the square error loss function (SELF). 
Given the complexity of integrals, the Lindley approximation and Tierney and Kadane (T-K) approximation is employed 
to approximate Bayesian estimates. For illustrative purposes, the proposed estimation methods are applied to a simulated 
dataset, showcasing their practical relevance and applicability. Finally, the proposed methods are validated using real-world 
data, affirming their effectiveness in practical applications.

Keywords Intuitionistic fuzzy lifetime data · Weighted exponential-Lindley distribution · Bayesian estimation · Square 
error loss function · Lindley approximation · Tierney and Kadane approximation

1 Introduction

In the realm of engineering science, ensuring the reliability 
of devices is a pivotal concern. Device reliability denotes 
the probability that a system will function efficiently over 
a designated time frame and under specified operating 
conditions. Frequently lauded as a highly effective tool for 
analyzing lifetime data, reliability or survival functions 
play a crucial role in evaluating system performance. How-
ever, conventional data sources often fall short in provid-
ing accurate and precise information, leading to challenges 
in estimating probabilities with confidence. To surmount 
the obstacles posed by inaccurate and imprecise data, the 

innovative concept of fuzzy reliability has been introduced. 
The paradigm of fuzzy reliability stands out as a more robust 
and resilient concept compared to the classical reliability 
approach, dismantling the traditional reliance on precisely 
defined lifetime density parameters. In the real-world sce-
nario, the lifetime of a system is inherently entwined with 
randomness and fuzziness, challenging the rigidity of con-
ventional reliability paradigms. Zadeh (Zadeh 1968) intro-
duced the fuzzy set theory. Since then, this theory has found 
applications across various mathematical and engineering 
disciplines, undergoing continuous refinement and adapta-
tion by researchers and scientists. Lifetime random varia-
bles often come with precise parameters in their probability 
density distributions. However, the challenge arises when 
uncertainties and imprecisions in the data make it difficult 
to confidently determine these parameters. In such cases, a 
more practical approach involves treating the parameters as 
fuzzy quantities. A fuzzy set comprises elements or objects 
characterized by diverse levels of membership, each distin-
guished by a specific membership function. These degrees 
of membership typically fall within a range spanning from 
zero to one. Fuzzy sets play a pivotal role in addressing 
uncertainties and vagueness, proving to be indispensable 
mathematical tools in various domains beyond artificial 
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intelligence, control theory, and decision analysis. They find 
extensive application in fields like pattern recognition, where 
ambiguity in data classification is prevalent. Additionally, 
fuzzy sets are instrumental in risk assessment and manage-
ment, contributing significantly to the field of finance. In the 
realm of engineering, fuzzy logic controllers enhance system 
performance by accommodating imprecise inputs. Moreover, 
fuzzy sets have proven valuable in medical diagnosis, facili-
tating the interpretation of complex and ambiguous patient 
data. The adaptability of fuzzy sets makes them versatile 
tools in diverse disciplines, contributing to advancements 
in understanding and managing complex systems. Hashim 
(Hashim 2019) addressed the challenge of fuzzy reliabil-
ity estimation within the context of the Lomax distribution. 
Neamah and Ali (Neamah and Ali 2020) delved into the 
intricacies of parameter estimation for fuzzy lifetime data, 
specifically focusing on the Frechet distribution. Pak et al. 
(Pak et al. 2014) explored the Bayesian approach to estimat-
ing the parameters of the Rayleigh distribution in the context 
of fuzzy lifetime data. Pak et al. (Pak et al. 2013a) drew 
inferences for the Weibull distribution based on fuzzy data. 
Further, Shafiq et al. (Shafiq et al. 2016) suggested the fuzzy 
estimators for the three-parameter lognormal distribution. 
The proposed estimators cover stochastic variation as well 
as fuzziness of the observations. Pak (Pak 2017) investigated 
the maximum likelihood estimation and Bayesian estimation 
for Lindley distribution when the available observations are 
reported in the form of fuzzy data. Huang and Zuo (Huang 
et al. 2006) proposed a new method to determine the mem-
bership function of the estimates of the parameters and the 
reliability function of multi-parameter lifetime distributions. 
Taha and Salman (Taha and Salman 2022) compared differ-
ent estimation method for reliability function of Rayleigh 
distribution based on fuzzy lifetime data. Alharbi and Kamel 
(Alharbi and Kamel 2022) proposed the Fuzzy Bayesian esti-
mation to get the best estimate of the unknown parameters of 
a two-parameter Kumaraswamy distribution from a frequen-
tist point of view. Ali and Hasan (Ali and Hasan 2023) gave 
estimate of the parameters of the Topp leone-Kumaraswamy 
distribution using the informational standard Bayes estima-
tion methods in light of different loss functions which are 
often random and fuzzy mixture in it and expressed in fuzzy 
numbers and leads to estimate the fuzzy reliability function 
within certain ranges of belonging to the fuzzy group. Sruthi 
and Kumar (Sruthi and Kumar 2021) considered the estima-
tion of system reliability of a repairable system comprising 
of three identical and independent components with repair 
rate as well as failure rate of component, as fuzzy num-
ber. Shareef and Hussain (Shareef and Hussain 2023) used 
a beta membership function to study the classical method 
of obtaining estimation of the fuzzy reliability function of 
the new mixed distribution (Weibull-Raleigh-Exponential). 
Al-Noor and Al-Sultany (A-l Noor and A-l Sultany 2017) 

approximated non-Bayesian computational methods to esti-
mate inverse Weibull parameters and reliability function 
with fuzzy data. The uncertainty is modeled using triangu-
lar fuzzy number. Sabry et al. (Sabry et al. 2021) derived 
inference of the reliability parameter of fuzzy stress strength 
RF = P(Y < X) is attached to the difference between stress 
and strength values when X and Y  are independently distrib-
uted from inverse Rayleigh random variables. Nevertheless, 
fuzzy sets employ a sole attribute parameter, the member-
ship degree, to signify both support and opposition, lacking 
the ability to depict a neutral state—neither supporting nor 
opposing. To overcome this limitation, Atanassov (Atan-
assov 1986) proposed the concept of intuitionistic fuzzy sets, 
serving as an extension to Zadeh's fuzzy set. In contrast to 
conventional fuzzy sets, intuitionistic fuzzy sets introduce 
an additional non-membership parameter, providing a more 
nuanced characterization of the inherent ambiguity within 
the objectively defined world. Zahra et al. (Roohanizadeh 
et al. 2022a) studied parameter and reliability estimation for 
the Pareto distribution, utilizing a generalized intuitionistic 
fuzzy number as the set parameter. Ebrahimnejad and Jam-
khaneh (Ebrahimnejad and Jamkhaneh 2018) investigated 
the challenge of estimating reliability for the Rayleigh dis-
tribution, approaching the problem by treating the parameter 
as a generalized intuitionistic fuzzy number. Hu and Ren (Hu 
and Ren 2023) considered the reliability estimation of the 
Inverse Weibull distribution based on intuitionistic fuzzy 
lifetime data. Moreover, Roohanizadeh et al. (Roohaniza-
deh et al. 2022b) focused on different estimation approaches 
of two-parameter Weibull (TW) distribution based on the 
intuitionistic fuzzy lifetime data including, maximum likeli-
hood and Bayesian estimation methodology. Kumar (Kumar 
2021) determined the fuzzy reliability of different systems in 
which the lifetime of components is following fuzzy expo-
nential distribution where fuzzy reliability function and its 
α-cut set are presented. In real-life situations, things can 
be uncertain due to randomness, fuzziness, or roughness. 
Sometimes, these uncertainties overlap, creating complex 
issues that can’t be solved with just one approach. Fuzzy 
stochastic theory is a solution, blending fuzzy set and prob-
ability theories to understand phenomena where randomness 
and fuzziness interact. Imagine it like a puzzle where pieces 
of randomness and fuzziness come together. Researchers use 
concepts like fuzzy random variables to make sense of it. 
For example, Huibert (Huibert 1978) suggested this idea.

This paper introduces a valuable Bayesian method for 
estimating parameters and reliability in the context of the 
one-parameter Weighted Exponential-Lindley distribu-
tion (WXLD) using intuitionistic fuzzy lifetime data. For 
this, Bayesian estimates of parameters and reliability are 
obtained under the SELF and LINEX loss functions utilizing 
the Lindley and T-K approximation. The rest of this paper is 
organized as follows: After this introduction, Sect. 1, provide 
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an overview of the current state of reliability estimation for 
the WXLD lifetime model. Additionally, we explore the 
background and importance of fuzzy sets and intuitionistic 
fuzzy sets in this research. Moving on to the Sect. 2, we 
delve into the concepts of fuzzy sets and intuitionistic fuzzy 
sets, extending key ideas from probability theory to fuzzy 
set theory. In Sect. 3, we delve into the exploration of Bayes 
estimators under the framework of SELF, employing Lindley 
and T-K approximations, alongside the utilization of Monte 
Carlo simulation for estimation. Section 4 presents a numeri-
cal study elucidating the efficacy and performance of these 
methodologies. The practicality of the proposed method is 
validated with a real dataset in the Sect. 5. Lastly, the Sect. 6 
draws conclusions, addresses limitations, and outlines poten-
tial directions for future research.

2  Preliminary knowledge and likelihood 
function

In this study, we proposed a distribution, called Weighted 
Exponential-Lindley distribution (WXLD) [Sharma and 
Kumar (Sharma and Kumar 2023)] which is a mixture of 
gamma (2, 1/θ) and one-parameter Exponential-Lindley 
distribution (XLD) [Chouia and Zeghdoudi (Chouia and 
Zeghdoudi 2021)] and it is described as follows:

Let a random variable X ∼ WXLD(�) then the probabil-
ity density function (pdf), Cumulative distribution function 
(cdf) and reliability functions are defined respectively as

The fuzzy set removes the uncertainty and vagueness 
which the classical set is failed to address. To do this, the 
fuzzy set added steady assessment in the grades of member-
ships of an element of a set through membership function. 
Mathematically it can be defined as:

Definition 1. (Zadeh (Zadeh 1968)). Let X be a non-empty 
set. A fuzzy set A in X is characterized by its membership 
function �A ∶ X → [0, 1]and�A(x)degree of membership of 
element x in fuzzy set A for each x ∈ X and A is completely 
determined by the set of tuples A =

{(
x,�A(x)

)|||x ∈ X} . 
Also, degree of non-membership of element x ∈ X in a fuzzy 

(1)f (x, �) =
4�3x(2 + � + x)e−2�x

(1 + �)2
, x ≥ 0, � ≥ 0

(2)F(x, �) = 1 − e2�x
(

2�2x2

(1 + �)2
+ 2�x + 1

)
;x ≥ 0, � ≥ 0

(3)andR(x) = e−2�x
(

2�2x2

(1 + �)2
+ 2�x + 1

)

set A is denoted by vA(x) and is equal to 1 − �A(x) . From here 
it is clear that 0 < 𝜇A(x) + 𝜈A(x) ≤ 1.

Atanassov (Atanassov 1986) introduced the concept 
of Intuitionistic Fuzzy Sets (IFS), which incorporates 
two essential parameters: membership degrees and non-
membership degrees. This formulation enables a more 
comprehensive representation of the inherent character-
istics of entities, providing a nuanced description of their 
attributes.

Definition 2. Let X be a non-empty universal set. 
An IFS x̃  on universe of discourse X is given by x̃  = {
< x,𝜇�A(x), 𝜈�A(x) >∶ x ∈ X

}
 with �x̃(x) ∶ X → [0, 1] and 

�x̃(x) ∶ X → [0, 1]. �x̃(x) and �x̃(x) define the membership and 
degree of non-membership of the element x ∈ X to the set Ã , 
for every x ∈ X, 0 ≤ �x̃(x) + �x̃(x) ≤ 1 respectively and the 
degree of hesitation is �x̃(x) = 1 −

(
�x̃(x) + �x̃(x)

)
.

Triangular Intuitionistic Fuzzy Numbers (TriIFNs) and 
Trapezoidal Intuitionistic Fuzzy Numbers (TraIFNs) stand 
out as unique categories within the realm of intuitionistic 
fuzzy numbers. These classes essentially broaden the scope 
of intuitionistic fuzzy numbers. The membership and non-
membership functions for TriIFN having fuzzy number 
x̃ = (�, �, �) is

and the Trapezoidal fuzzy number can be defined as 
x̃ = (�, �, � , �) with the membership function

2.1  Intuitionistic fuzzy probability

In the subsequent section, we introduce novel conceptual-
izations of probability tailored to Intuitionistic Fuzzy Sets 
(IFSs). These innovative notions will serve as foundational 
elements in the discourse on estimation, specifically in the 
context of intuitionistic fuzzy observations.

�x̃(x) =

⎧⎪⎨⎪⎩

x−�

�−�
� ≤ x ≤ �

�−x

�−�
� ≤ x ≤ �

0 otherwise

�x̃(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−�

�−�
� ≤ x ≤ �

1 � ≤ x ≤ �
�−x

�−�
� ≤ x ≤ �

0 otherwise
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Definition 3. Given a probability space (ℝn,℘,P) , the prob-
ability of an intuitionistic fuzzy observation x̃  within the 
realm of ℝn is determined as follows:

Let X be a continuous random variable specified by � and 
having a pdf f (x, �) . In the following, we define intuitionistic 
fuzzy conditional density, which is the conditional density 
of X given the intuitionistic fuzzy observation x̃ , as follows

Where,

Subsequently, the likelihood function of � given IFS x̃  is 
defined as follows

(4)P
(
x̃
)
= ∫

ℝn

1 − �x̃(x) + �x̃(x)

2
dP

f
(
x|̃x) = u(x)f (x, �)

∫
ℝ
u(x)f (x, �)dx

,∀x ∈ ℝ

u(x) =
1 − � x̃(x) + �x̃(x)

2

(5)L
(
�|̃x) =

n∏
i=1

P(̃xi|�) =
n∏
i=1

∫
ℝ

ui(x)f (x|�)dx =
(
4�3

)n
(1 + �)2n

n∏
i=1

∫ x(2 + � + x)e−2�xui(x)dx

Where, ui(x) =
1−𝜈x̃i (x)+𝜇x̃i

(x)

2

Corollary 1. Introducing intuitionistic fuzzy conditional 
expectation involves utilizing intuitionistic fuzzy con-
ditional density and an intuitionistic fuzzy observation 
x̃ = (̃x1, x̃2,… , x̃n) . Given a random variable X, the intuition-
istic fuzzy conditional expectation is expressed as follows:

Where, u(x) = 1−𝜈x̃(x)+𝜇x̃(x)

2

3  Bayesian estimation

In Bayesian statistical inference, the prior distribution is piv-
otal, embodying our existing knowledge or beliefs regard-
ing the parameters. Its selection significantly influences the 
accuracy of estimating the posterior distribution. Opting for 
a suitable prior distribution is critical as it directly impacts 
the ultimate inference outcomes.

The gamma distribution stands out as a versatile continu-
ous probability distribution, boasting numerous desirable 
attributes. This versatility renders it a frequent preference 
for parameter priors in Bayesian statistics. With the gamma 
distribution, we have the flexibility to adjust its parameters 

(6)E
(
X|̃x) = �

ℝ

xf (x|�)dx = �
ℝ

x
u(x)f (x, �)

∫
ℝ
u(x)f (x, �)dx

dx

to align with various prior beliefs. Furthermore, its nota-
ble property of conjugacy streamlines posterior distribution 
computations. When employed as a prior distribution, the 
gamma distribution maintains its form when multiplied with 
the likelihood function, thus simplifying posterior distribu-
tion calculations. The pdf of the gamma distribution is:

In this section, we assume that the parameter � follows 
Gamma (a, b). i.e.,

In the Bayesian framework, the posterior distribution of 
� can be expressed as follows:

�post
(
�|̃x) ∝ L(�|̃x)×�(�)

𝜋(𝜔) =
𝛽𝛼

Γ(𝛼)
𝜔𝛼−1e−𝛽𝜔,𝜔 > 0, 𝛼, 𝛽 > 0

(7)𝜋(𝜃) =
ba

Γ(a)
𝜃a−1e−b𝜃 , 𝜃 > 0, a, b > 0

According to the Eq. (6), the Bayes estimator of the func-
tion g(�) of � under SELF is:

where ,  W(�) = ln�(�) + lnL
(
�|̃x) ≡ �(�) + L∗(�) and 

E
(
g(�)|̃x] indicates the posterior expectation. Equation (9) 

eludes analytical derivation, prompting us to employ two 
approximations: Lindley’s and T-K approximation, along-
side a Markov Chain Monte Carlo (MCMC) method for its 
estimation.

3.1  Lindley approximation

Lindley's approach, initially introduced by Lindley (Lind-
ley 1980), offers a method to approximate the ratio of two 

(8)∝
ba

Γ(a)
�a−1e−b� ×

n∏
i=1

∫
∞

0

ui(x)f (x|�)dx

�B
S
= E

(
g(�)|̃x] = ∫ ∞

0
g(�)�post

(
�|̃x)d�

∫ ∞

0
�post

(
�|̃x)d�

=
∫ ∞

0
g(�)L(�|̃x) × �(�)d�

∫ ∞

0
L(�|̃x) × �(�)d�

(9)=
∫ ∞

0
g(�)eW(�)d�

∫ ∞

0
eW(�)d�
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integrals, as presented in Eq. (9). In the context of a single-
parameter scenario, Lindley's approximation for Eq. (9) 
takes the following form

where �(�) is the logarithm of prior distribution.

We see that,�1 =
(a−1)

�
− b

By evaluating all the expressions in Eq. (10) at the maxi-
mum likelihood estimate (MLE) of � , we derive the approxi-
mation g∗

B
 for Eq. (9). In our study, we have

Setting the partial derivative of the log-likelihood eq. (11) 
with respect to � equal to zero yields

Due to the absence of a closed-form solution for likeli-
hood Eq. (12), an iterative numerical approach becomes nec-
essary to obtain the MLE. Specifically, the Newton–Raph-
son method is employed for determining the MLE of the 
parameter � . The Newton–Raphson algorithm presents a 
direct method for estimating the parameters within a likeli-
hood function, achieved through iterative procedures. If we 
denote the parameter value from the hth step as �̂(h) , then at 
the (h + 1) step of the iteration process, the updated param-
eter is obtained as follows:

where the notation A|h , representing any partial derivative 
A , signifies that the partial derivative is evaluated at �̂(h) . To 
proceed with the Newton–Raphson method, we obtain the 
second-order derivative of the log-likelihood with respect to 
the parameter using the following procedure

(10)g(�) +
1

2
g11�11 + �1(�)g1�11 +

1

2
L∗
3
�2
11
g1

g1 = (dg(�))∕d�, g11 = (d2g(�))∕(d�2), �1 = (d�(�))∕d�, L∗3
= (�3L∗(�))∕(��3), �11 = [−(?2L∗(�))∕(�2)](−1)

(11)

L∗(�) = 3nlog� − 2nlog(1 + �) +

n∑
i=1

log∫ 4x(2 + � + x)e−2�xui(x)dx

(12)

�L∗(�)

��
=

3n

�
−

2n

(1 + �)

−

n∑
i=1

∫ {
2x(2 + � + x)e−2�x + e

−2�x
}
xu

i
(x)dx

∫ x(2 + � + x)e−2�xu
i
(x)dx

= 0

(13)�̂(h+1) = �̂(h) −

�

��
L∗(�)|h

�2

��2
L∗(�)|h

�2

��2
L∗(�) =

−3n

�2
+

2n

(1 + �)2
+

n�
i=1

⎧⎪⎨⎪⎩

∫ �
2x(2 + � + x)e−2�x + e−2�x

�
x2ui(x)dx

∫ x(2 + � + x)e−2�xui(x)dx
−

�∫ 2x2(2 + � + x)e−2�xui(x)dx

∫ x(2 + � + x)e−2�xui(x)dx

�2⎫⎪⎬⎪⎭

The iteration process persists until convergence, defined 
as |||�𝜃(h+1) − �𝜃(h)

||| < 𝜖 , where � is a predetermined threshold. 
The resulting estimate of � obtained via the Newton–Raph-
son algorithm is subsequently denoted as �̂  , representing the 
MLE.

Now, to apply Lindley’s form in Eq. (10), we obtain.
�
11

=
−3n

�̂2
+

2n

(1 + �̂)
2

+

n�
i=1

⎧
⎪⎨⎪⎩

∫ �
2x

�
2 + �̂ + x

�
e
−2�̂x + e

−2�̂x
�
x
2
u
i
(x)dx

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

−

⎡
⎢⎢⎢⎣

∫ 2x
2(2 + �̂ + x)e−2�̂xu

i
(x)dx

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

⎤
⎥⎥⎥⎦

2⎫
⎪⎬⎪⎭

 and

The approximate Bayes estimate of � , denoted as �∗
BL

 , for 
the squared error loss function, is determined as the poste-
rior mean of g(�) = � , as specified by Eq. (10) in the fol-
lowing manner

where, �1 =
a−1

�̂
− b. Likewise, to compute the posterior 

mean of R(x) , we defineg(�) = e−2�x
(

2�2x2

(1+�)2
+ 2�x + 1

)
 and

L
∗
3
(�) =

6n

�̂3
−

4n�
1 + �̂

�3
−

n�
i=1

⎧⎪⎨⎪⎩

∫ �
2x

�
2 + �̂ + x

�
e
−2�̂x + e

−2�̂x
�
x
5
u
i
(x)dx

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

+

�∫ 2x
2(2 + � + x)e−2�̂xu

i
(x)dx

��∫ 2x
3(2 + � + x)e−2�̂xu

i
(x)dx

�

�∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

�2

⎫⎪⎬⎪⎭

+ 2

n�
i=1

⎧⎪⎨⎪⎩

�∫ x
2
e
−2�̂x

u
i
(x)dx

�

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

×

⎛⎜⎜⎜⎝

∫ x
3
e
−2�̂x

u
i
(x)dx

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

−

⎡⎢⎢⎢⎣

∫ x
2
e
−2�̂x

u
i
(x)dx

∫ x

�
2 + �̂ + x

�
e−2�̂xu

i
(x)dx

⎤⎥⎥⎥⎦

2⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

(14)�∗
BL

= �̂ + �1�11 +
1

2
L∗
3
�2
11
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3.2  Tierney and Kadane’s approximation

Setting Q(�) = W(�)∕n and Q∗(�) =
[
lng(�) +W(�)

]
∕n , the 

expression in Eq. (9) can be re-expressed as

Following Tierney and Kadane (Tierney and Kadane 
1986), we can approximate Eq. (16) as:

where �
∗
 and � maximize Q∗(�) and Q(�) , respectively and 

�∗ and � are the minus the inverse of the second derivatives 
of Q∗(�) and Q(�) at �

∗
 and � , respectively.

In this case, we have

where m is a constant; therefore, � can be obtained by solv-
ing the following equation:

and from the second derivative of W(�) , we have

where

The expressions for W∗(�), �∗
BT

 and R∗
BT

 in Eq. (17) can 
be straightforwardly derived by applying the same rationale 
with g(�) = � and g(�) = e−2�x respectively.

(15)
R
∗
BL
(x) = e

−2�̂x

(
2�̂2x2

(1 + �̂)
2
+ 2�̂x + 1

)

{
1 +

1

2
x
4�

11
− x

2

[
�
1
�
11
+

1

2
L
∗
3
�2

11

]}

(16)
E
(
g(�)|̃x) =

∞∫
0

enQ
∗(�)d�

∫ ∞

0
enQ(�)d�

(17)g∗
BT
(�) =

(
�∗
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3.3  MCMC method

In this section, we explore the utilization of MCMC method-
ologies, notably the Metropolis–Hastings (M-H) algorithm, 
to generate samples from the posterior density function. Sub-
sequently, leveraging these samples, we compute the Bayes 
estimates. Based on the gamma prior � ∼ Gamma(a, b) and 
the likelihood function, the posterior pdf of � can be writ-
ten as

Observing that the density function �post
(
�|̃x) is unknown, 

our empirical findings suggest its resemblance to a normal 
distribution. Therefore, to produce random samples from 
�post

(
�|̃x) , we adopt the M-H algorithm, employing a normal 

proposal distribution as follows.
Step 1: Start with an initial guess value �(0).
Step 2: Set l = 1.
Step 3: Generate �(l) from �post

(
�|̃x) using M-H algorithm 

with the proposal distribution h(𝜃) ≡ I(𝜃 > 0)N(�𝜃, 1) , where 
I(.) is the indicator function, as follows:

(a) Let u = �(l−1) . Here we set �(0) ≡ �̂ .

(18)

�post
(
�|̃x) ∝ �3n+a−1

(1 + 2�)2n
e−b�

n∏
i=1

x(2 + � + x)e−2�xui(x)dx

(b) Generate v from the proposal distribution h.
(c) Let s(u, v) = min

{
1,

�post(v|̃x)h(u)
�post(u|̃x)h(v)

}
.

(d) Accept v with probability p(u, v) or accept u with 
probability 1 − p(u, v).

Step 4: Compute R(l)(t) = e−2�
(l)x
(

2�(l)
2
x2

(1+�(l))
2 + 2�(l)x + 1

)
.

Step 5: Set l = l + 1.

Step 6: Repeat steps 3–5, k times and obtain �(l) and R(l)(t) 
for l = 1, 2,… ., k.

Now, the Bayes estimates of the parameter � and reliabil-
ity function R(t) with respect to SELF become
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and.
R∗
BM

(x) = E∗
�
R(x)�̃x� = 1

k

∑k

l=1
R(l)(x) respectively.

�∗
BM

= E∗
(
�|̃x) = 1

k

k∑
l=1

�(l)

4  Numerical study

In this section, we showcase experimental findings aimed 
at examining the behaviors of various methods across dif-
ferent sample sizes. Initially, with a fixed � = 1 and vary-
ing values of n, we generated independent and identically 
distributed (i.i.d) random samples from WXLD. Subse-
quently, each instance of x underwent fuzzification using 
the fuzzy information system (f.i.s.) depicted in Fig. 1. 
Following that, we computed the Bayes estimates of the 
parameter � and the reliability function R(t) at t = 1, for 
the fuzzy sample. We utilized Lindley’s approximation, 
T-K approximation and the MCMC technique for this 
computation. To ensure fair comparison, we adopted 
non-informative priors for � , setting both shape and scale 
parameters to a = b = 0 in the Gamma distribution. Press 
(Press 2001) recommended employing very small non-
negative values for the hyperparameters to maintain proper 
priors in such cases. We experimented with a = b = 0.0002 
as suggested. The average values and mean squared 
errors (MSE) of the estimates over 10,000 replications 
are presented in Tables 1 and 2. The experimental find-
ings indicated distinct outcomes when utilizing Lindley’s 
approximation versus the MCMC technique for computing 

Fig. 1  Fuzzy information system used to encode the simulated data

Table 1  Average values (AV) 
and mean squared errors (MSE) 
of the Bayes estimates of � for 
various sample sizes (n)

n �∗
BL

�∗
BT

�∗
BM

AV MSE AV MSE AV MSE

10 1.1726 0.1285 1.1714 0.1257 1.1769 0.1289
15 1.1635 0.1236 1.1609 0.1223 1.1632 0.1233
20 1.1453 0.1139 1.1420 0.1068 1.1459 0.1142
25 1.1421 0.0974 1.1407 0.0941 1.1425 0.0971
30 1.1315 0.0789 1.1287 0.0736 1.1311 0.0785
40 1.1289 0.0546 1.1210 0.0518 1.1291 0.0547
50 1.1172 0.0468 1.1132 0.0435 1.1175 0.0466
60 1.1148 0.0374 1.1126 0.0310 1.1150 0.0376
70 1.1027 0.0280 1.1002 0.0228 1.1021 0.0277

Table 2  Average values (AV) 
and mean squared errors 
(MSE) of the Bayes estimates 
of reliability function R(t) for 
various sample sizes (n)

n R
∗
BL

R
∗
BT

R
∗
BM

AV MSE AV MSE AV MSE

10 0.3386 0.0113 1.3394 0.0105 0.3388 0.0115
15 0.3421 0.0094 0.3436 0.0087 0.3425 0.0095
20 0.3435 0.0086 0.3457 0.0076 0.3438 0.0087
25 0.3441 0.0075 0.3461 0.0062 0.3445 0.0078
30 0.3459 0.0063 0.3472 0.0052 0.3453 0.0065
40 0.3468 0.0058 0.3480 0.0047 0.3462 0.0054
50 0.3475 0.0041 0.3483 0.0032 0.3479 0.0042
60 0.3481 0.0033 0.3491 0.0026 0.3480 0.0032
70 0.3487 0.0028 0.3498 0.0019 0.3492 0.0024
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Bayes estimates. Lindley’s approximation exhibited slower 
computational performance compared to the MCMC tech-
nique. Furthermore, irrespective of the method used, an 
increase in sample size corresponded to a reduction in the 
MSEs of the estimates. Regarding minimum MSEs, the 
T-K estimates typically outperformed both the Lindley and 
MCMC estimates for the parameter � and the reliability 
function R(t).

5  Real life application

To exemplify the practical application of the proposed 
methods, we will analyze real data obtained from an 
experiment conducted by Pak et al. (Pak et al. 2013b). 
In an experimental setup, a group of 25 ball bearings 
undergoes a life test. The performance of each ball bear-
ing is tracked until it reaches a point of failure, with 
the failure times recorded as fuzzy numbers denoted by 
x̃i = (�i, xi, �i) . Here, �i = 0.05xi, �i = 0.03xi and the values 
of xi, i = 1,… , 25 , are presented in Table 3. These fuzzy 
numbers represent the uncertainty surrounding each failure 
time, considering the potential variation in performance. 
The membership functions corresponding to these fuzzy 
numbers are defined as follows:

For these fuzzy data, the maximum likelihood estimate 
(MLE) of � is found to be approximately �̂ = 0.0912. Using 
the Gamma(2, 2) prior and employing Lindley’s approxima-
tion, the Bayes estimate of � �∗

B
 is approximately 1.1237 

with the reliability function R(t) evaluated at t = 1 yield-
ing an estimate R∗

B
= 0.9875. Also, Utilizing Tierney and 

Kadane’s approach, the Bayes estimates yield �∗
BT

= 1.0256 
and R∗

BT
= 0.9852 . We apply the M-H algorithm, using a 

proposal distribution of N(�̂, 1) to compute the Bayes esti-
mates of � and the reliability function R(t) . This yields 
�∗
BM

= 1.1127 and R∗
BM

= 0.9824 , respectively.

�x̃i
(x) =

{ x−(xi−�i)

�i
xi − �i ≤ x ≤ xi

xi+�i−x

�i
xi ≤ x ≤ xi + �i

i = 1, ..., 25.

6  Conclusions

In traditional reliability analysis using the Weighted Expo-
nential-Lindley distribution, the assumption typically 
revolves around the availability of precise lifetime data, 
where observed lifetimes are considered exact real numbers. 
However, real-world scenarios often introduce complexities 
where experimental results may not be precisely recorded 
or measured. Instead, each observable event might only be 
associated with a fuzzy subset within the sample space. In 
our paper, we delve into the Bayesian estimation approach 
for both parameter estimation and reliability function deter-
mination of the WXLD, specifically tailored for cases where 
lifetime observations are represented by fuzzy numbers. 
This study introduced two approximation techniques: Lind-
ley’s and Tierney and Kadane’s, in addition to employing a 
MCMC method.

for computing Bayes estimates. Following this, we con-
ducted an extensive simulation study to assess the performance 
of these methodologies thoroughly. Our findings unequivo-
cally indicate that the Tierney and Kadane procedure outper-
forms others, yielding the most precise parameter estimates, 
as evidenced by the Mean Squared Errors (MSEs) presented in 
Tables 1 and 2. Hence, it appears justifiable to advocate for the 
adoption of Tierney and Kadane's approximation method for 
estimating the unknown parameter � and reliability function 
R(t) derived from WXLD.

While this study offers valuable insights into Bayesian 
estimation approaches for the WXLD when dealing with 
fuzzy lifetime data, several limitations and avenues for future 
research exist. Firstly, the sensitivity of results to prior selec-
tion remains a concern, warranting further exploration into 
the impact of different prior specifications on estimation out-
comes. Additionally, the assumption of consistency in the 
fuzziness of observed data across events may not always hold 
in practical scenarios, potentially introducing biases. Fur-
thermore, while the proposed methodologies were validated 
using simulated datasets, validation with real-world data from 
diverse sources could enhance the robustness of the findings. 
Looking ahead, future research could focus on extending the 
Bayesian framework to accommodate multivariate settings and 
incorporate covariates to improve predictive accuracy. Robust-
ness analyses, exploring the performance of estimation tech-
niques under various model assumptions and the development 

Table 3  Failures of 25 ball 
bearings data

i 1 2 3 4 5 6 7 8 9 10

xi 17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12
i 11 12 13 14 15 16 17 18 19 20
xi 55.56 7.80 67.80 67.80 68.64 68.64 84.12 84.12 93.12 98.64
i 21 22 24 24 25
xi 105.12 105.84 127.92 128.92 173.40
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of user-friendly software tools could further advance the appli-
cability of these methods in reliability analysis across different 
industries.
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