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Abstract
The present paper deals with a stochastic model of a transport bus/truck running with six identical tyres and one spare wheel 
considered as standby. Out of six tyres, two tyres are in working position arranged one in each side of front end. Whereas 
remaining four are arranged in rear end with two of each side in parallel. The bus/truck will fail due to the tyre failure if in 
addition of spare unit any side of front-end tyre fails or both the tyres working in parallel in either of the rear-end side fail 
completely. The repair is carried out only when the transport bus/truck fails completely due to the tyre failure. The replace-
ment of a failed tyre with standby spare wheel is carried out with constant rate and during this replacement process the 
system remains down. For the successfully running of the bus/truck each side of front end tyres and at least one of each side 
of rear-end tyre must be in good condition. The continous parametric markov process and supplementary variable technique 
is used to obtain various economic related measure of system effectiveness. Maximum likelihood approach is used to derive 
the estimates of unknown parameters for MTSF.
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1  Introduction

In the realm of automotive engineering, ensuring vehicle 
reliability is crucial for safety and efficiency, especially 
when incorporating a spare wheel as a backup feature. The 
replacement of units, such as tires, engines, or other critical 
components, plays a pivotal role in enhancing the reliability 
and availability of the automotive system. Engineers fre-
quently employ redundancy strategies to guarantee system 
availability and reliability to enhance these characteristics. 
As a result, during the past several decades, a wide range 
of standby systems have been built and examined. These 
research’s primary goals have been to provide evaluation 
methodologies and tools to show the system’s reliability, 
availability, maintainability, and safety. Under reliability 

analysis, numerous researchers contributed to the examina-
tion of various models by employing supplementary tech-
niques. For instance, Gupta and Singh (2021) examined a 
Markov chain system model of a power generating system, 
focusing on redundancy to enhance reliability. In power 
generating system model three generating units and one 
transformer unit is sufficient to run the system satisfacto-
rily, the fourth generator and second transformer is added 
as a redundant unit to enhance the reliability of the system. 
Goyal et al. (2021) discussed measures of cost-effectiveness 
and reliability in a windmill water pumping system incorpo-
rating warranty and two types of repair facilities to ensure 
the system’s ongoing and satisfactory operation. Addition-
ally, studies by Pundir and Patawa (2019) addressed two 
repairable dissimilar units’ cold standby system waiting 
for repair facility after failure of system units. Barak et al. 
(2018) analyzed two unit cold standby system with the facil-
ity that the server investigate the failed unit before repair or 
replacement. Also the refreshment facility available for the 
server whenever required for his better performance. The 
cold standby unit may fail from prolonged periods of inac-
tivity or for any other reason, whereas the operational unit 
may fail straight from normal mode. Kumar et al. (2018) 
evaluated performance measures of a redundant system 
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with preventive maintenance, giving priority to the original 
unit for repair. Other studies, such as Gupta and Chaudhary 
(2019), Ram et al. (2013) and Ram and Manglik (2016), 
explored various aspects of repairable manufacturing sys-
tems, including common cause failures, waiting times, and 
multiple-state complexities. Kumar et al. (2015) employed 
a probabilistic approach to analyze the reliability of casting 
processes in foundries, considering factors like availabil-
ity and mean time to failure. Liu et al. (2015) investigate a 
repairable cold standby system with functioning vacations 
and vacation interruption as needed. Each study contributes 
valuable insights to the broader understanding of reliability 
and mean time to system failure, highlighting the impor-
tance of standby unit and repair of failed unit. Incorporating 
insights from previous studies, the current study addresses 
stochastic analysis of a six-wheeler vehicle, which includes 
a standby spare wheel strategically designed to mitigate tire-
related issues.

The purpose of the present study is to explore the reli-
ability, availability, and cost-benefit analysis of a six-wheeler 
transport bus or truck equipped with a single spare wheel. 
The article has been structured as follows: Sect. 2, titled 
“Material and Methods,” outlines the necessary notations, 
system states, and description of the system model. Sec-
tion 3 presents the mathematical model of fundamental 
equation and their Laplace Transformations. In Sect. 4, the 
focus is on exploring the reliability, mean time to system 
failure (MTSF), availability and expected system’s profit. 
Additionally, numerical studies are conducted to provide 
further clarity on the results obtained. In Sect. 5, Classical 
estimation has been considered to derive the estimates of 
unknown parameters for MTSF.

2 � Materials and methods

2.1 � Symbols and system state

(a) Symbols:

Pi(t)	� the probability that the system is in state Si at 
epoch t ( i = 0 to 9)

Pj(x, t)	� the probability that the system is in state Sj at 
epoch t that has been in this state for x unit 
duration of time, i.e. x unit time for repair that 
has been lapsed in state Sj at time t (j = 7 to 9).

�	� constant failure rate of each tyre and so that the 
failure time of each tyre follows exponential 
distribution.

�	� constant replacement rate of the tyre.

�j(x) , hj(x)	� general repair rate and corresponding p.d.f. of 
repair time of the system

(b) To establish the different states of the system, the fol-
lowing symbols have been defined initially:

6 − OG	� Six tyres are in good condition and 
operative.

5 − OG	� Five tyres are in good condition.

1 − SG	� Spare wheel in good condition

S rep / S F	� Spare wheel is under replacement/ in failed 
mode respectively.

Ā, B̄, C̄, D̄, Ē, F̄	� A, B, C, D, E, F as represented in block 
diagram are failed respectively.

2.2 � Description of system model

The block diagram of the system model representing the 
network of the tyres is shown in Fig. 1. Here the tyres A 
and B of both the side of front end are connected in series 
system. Two tyres in each side of (C,D) and (E,F) rear end 
are arranged in parallel configuration.

The transition diagram with possible states of the system 
model along with transition rates between them is shown in 
Fig. 2. In this diagram, S0 , S2 , S3 , S4 , S5 , S6 are up states, S1 
is down state and S7 , S8 , S9 are failed states.

Initially in (state S0 ) all the six tyres are in good condition 
and operative and spare wheel is kept as standby. In state S1 
system in down state where one tyre is failed and replace-
ment of failed unit by spare standby wheel is under process. 
In state S2 the bus is in running condition with six tyres in 
good and operative and spare wheel is failed. In state S3 / S4 / 
S5 / S6 one rear end tyre C/D/E/F from parallel system has 
failed but system is still operative. System transit in failed 
state S7 if any of the tyre A or B fails from state S2 . It moves 
to the failed state S8 from S3 or S4 if tyre D in S3 or tyre C 
in S4 fails. Similarly, system reaches to the failed state S9 
from operative states S5 or S6 if tyre F in S5 or tyre E in S6 
fails. The repairman is busy in two types of activity (i) for 
replacement of failed tyre when the system in down state 
S1 (ii) for repair of the failed tyre when the system in failed 
state S7 , S8 , S9.

hj(x) = �j(x) exp

⎡
⎢⎢⎣
−

x

∫
0

�j(u)du

⎤
⎥⎥⎦
;j = 7, 8, 9
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3 � Mathematical model

3.1 � Fundamental equations and their laplace 
transformations

Simple probabilistic examination, utilizing the Poisson 
process, results in a series of integro-differential equa-
tions as outlined below:

(1)
[
�

�t
+ 6�

]
P0(t) =

9∑
j=7

∞

∫
0

Pj(x, t)�j(x)dx

(2)
[
�

�t
+ �

]
P1(t) =6�P0(t)

Fig. 1   Block diagram of the system model

Fig. 2   Diagram depicting the transitions between system states
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Initial condition

Three boundary conditions

3.2 � Solution of the model

In Sect.  3.1, the equations derived are solved utilizing 
Laplace Transform techniques to ascertain the probability 
associated with each system state.

(3)
[
�

�t
+ 5�

]
P2(t) =�P1(t)

(4)
[
�

�t
+ �

]
Pi(t) =�P2(t);i = 3, 4, 5, 6

(5)
[
�

�t
+

�

�x
+ �j(x)

]
Pj(x, t) =0;j = 7, 8, 9

(6)P0(0) = 1, Pi(0) = 0 i = 1 to 6

(7)Pj(x, 0) = 0 j = 7, 8, 9

(8)P7(0, t) = �P2(t)

(9)P8(0, t) = �P3(t) + �P4(t)

(10)P9(0, t) = �P5(t) + �P6(t)

(11)

P∗
0
(s) =

[
(s + 6�) −

6�2�

(s + 5�)(s + �)
(s)h∗

7
(s)

−
12�3�

(s + 5�)(s + �)(s + �)

(
h∗
8
(s) + h∗

9
(s)

)]−1

(12)P∗
1
(s) =

6�

s + �
P∗
0
(s)

(13)P∗
2
(s) =

6��

(s + �)(s + 5�)
P∗
0
(s)

(14)P∗
k
(s) =

6�2�

(s + �)(s + �)(s + 5�)
P∗
0
(s);k = 3, 4, 5, 6

(15)P∗
7
(s) =

6�2�

(s + �)(s + 5�)

[
1 − h∗

7
(s)

s

]
P∗
0
(s)

(16)P∗
8
(s) =

12�3�

(s + �)(s + �)(s + 5�)

[
1 − h∗

8
(s)

s

]
P∗
0
(s)

4 � Numerical example

4.1 � Reliability analysis

The reliability of the system is the probability that the sys-
tem does not reach to any of the failed state during (0,t) 
which means that the system will be either in any of the up 
state or it is in down state at time t when the repair of the 
system is not permissible. So to obtain reliability of the sys-
tem we regard the failed state S7 , S8 and S9 of the system as 
absorbing. In view of this the expression of reliability R(t) 
in terms of its Laplace transform is given:

The value of R(t) can be obtained by taking Inverse Laplace 
Transform (ILT) of the Eq. (18) by using MATLAB for vary-
ing values of failure rate as � = 0.03, 0.05, 0.07 and fixed 
replacement rate � = 0.9 . The expression of the reliability 
for the above three values of failure rate � are respectively 
given as follows:

By varying mission time 0 to 140 at step 10 in Eqs. (19–21), 
we calculated the values of reliability as given in Table  1 
for the different values of � . These values of reliability are 
plotted graphically in Fig.  3 and important conclusion are 
drawn.

From the curve plotted in Fig. 3, it is revealed that the 
reliability of the system decreases uniformly as mission time 
t increases. It approaches to zero for the large value of t 
as it should be. From critical examination of the reliability 
graphs, it is observed that at mission time 90, the reliabil-
ity of the system is 0.0834 which means at time t = 90 the 

(17)P∗
9
(s) =

12�3�

(s + �)(s + �)(s + 5�)

[
1 − h∗

9
(s)

s

]
P∗
0
(s)

(18)

R∗(s) = P∗
0
(s) + P∗

1
(s) + P∗

2
(s) + P∗

3
(s)

+ P∗
4
(s) + P∗

5
(s) + P∗

6
(s)||�7(x)=�8(x)=�9(x)=0

=
1

(s + 6�)

[
1 +

6�

(s + �)

+
6��

(s + �)(s + 5�)
+

24�2�

(s + �)(s + �)(s + 5�)

]

(19)
R(t) = 0.0086206e(−0.9)t − 0.25e(−0.18)t

+ 1.241379e(−0.03)t

(20)
R(t) = 1.2705882e(−0.05)t − 0.3e(−0.3)t

+ 0.02941176e(−0.9)t

(21)
R(t) = 1.3012048e(−0.07)t − 0.37e(−0.42)t

+ 0.0737951e(−0.9)t
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system is reliable only 08%. Similarly, at mission time t = 
140 the system is reliable only 01%.

4.2 � Mean time to system failure (MTSF)

Mean time to system failure (MTSF) is the predicted elapsed 
time between inherent failures of a system during operation. 
MTSF may also be defined as the average time to reach into 
any of the failed state of the system. Taking s tends to zero 
in Eq. (18) we can get the expression of MTSF as follows:

varying the value of replacement rate ( � ) as 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, for three different values of failure rate 
� as 0.03, 0.05 and 0.07 in Eq. (22) the values of MTSF are 
shown in Table  2. These values of MTSF of corresponding 
to each value of failure rate are plotted graphically in Fig.  4 
to draw the important conclusions.

(22)

MTSF = lim
s→0

R∗(s)

=

[
1

6�
+

1

�
+

1

�

]

Fig. 3   Reliability of the system 
as a function of time t

Table 1   Reliability and 
availability of the system as a 
function of time t

Mission time 
(t)

Reliability R(t) Availiability A(t)

� = 0.03 � = 0.05 � = 0.07 � = 0.03 � = 0.05 � = 0.07

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.8783 0.7557 0.6405 0.9517 0.9033 0.8565
20 0.6745 0.4667 0.3208 0.8829 0.7960 0.7207
30 0.5036 0.2835 0.1593 0.8175 0.7021 0.6071
40 0.3737 0.1720 0.0791 0.7567 0.6192 0.5114
50 0.2770 0.1043 0.0393 0.7005 0.5462 0.4308
60 0.2058 0.0633 0.0192 0.6484 0.4817 0.3629
70 0.1520 0.0384 0.0097 0.6002 0.4249 0.3057
80 0.1126 0.0233 0.0048 0.5556 0.3747 0.2575
90 0.0834 0.0141 0.0024 0.5143 0.3305 0.2169
100 0.0618 0.0086 0.0012 0.4761 0.2915 0.1828
110 0.0458 0.0052 0.0006 0.4407 0.2571 0.1539
120 0.0339 0.0031 0.0003 0.4080 0.2268 0.1297
130 0.0251 0.0019 0.0001 0.3776 0.2000 0.1092
140 0.0186 0.0012 0.0001 0.3496 0.1764 0.0920
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From the graph plotted in Fig.  4, we observe that the 
MTSF of the system decrease uniformly as the replace-
ment rate ( � ) increases and from this we conclude that, 
as much as the replacement rate of component is high the 
chances of the system failure is low. Moreover, as the fail-
ure rate increases the MTSF decreases irrespective of the 
value of replacement rate.

4.3 � Point‑wise availability analysis

It is denoted by A(t) and is defined as the probability that 
the system as in any of the working (operative) state ( S0 , 

S2 , S3 , S4 , S5 and S6 ) at time t and its value in terms of its 
Laplace Transform (LT) is given by

To calculate the availability of the integrated system, we 
perform the inverse Laplace transform of Eq. (23). Repair 
time distribution hj(t) ; j = 7,8,9 follows Lindley with param-
eters �j ( j = 7,8,9) then the value of h∗

j
(s) =

(s+�j+1)�
2
j

(1+�j)(s+�j)
 for 

three different failure rate � = 0.03, 0.05, 0.07 and fixed 
replacement rate � = 0.9, and repair parameter �j = 0.7 for 
all j = 7,8,9. The expressions of point-wise availabilities for 
different failure rates 0.03, 0.05 and 0.07 respectively are as 
follows by using MATLAB:

(23)

A∗(s) = P∗
0
(s) + P∗

2
(s) + P∗

3
(s) + P∗

4
(s) + P∗

5
(s) + P∗

6
(s)

=

[
1 +

6��

(s + 5�)(s + �)
+

24�2�

(s + �)(s + �)(s + 5�)

]
P∗
0
(s)

(24)

A(t) = 0.01635855e(−0.90832185)t

− 0.01964903e(−0.21393854)t

− 0.02737489e(−0.68001621)t

+ 1.03066537e(−0.00772338)t

(25)

A(t) = 0.05443684e(−0.3956625)t

− 0.12180939e(−0.61718821)t

+ 1.02325315e(−0.01255624)t

+ 0.044119388e(−0.92459299)t

Fig. 4   The trend of mean time 
to system failure with respect to 
� and �

Table 2   Trend of MTSF with respect to � and �

Replacement rate � = 0.03 � = 0.05 � = 0.07

0.01 138.8889 123.33333 116.6667
0.02 88.88889 73.33333 66.66667
0.03 72.22222 56.66667 50.0000
0.04 63.88889 43.33333 41.66667
0.05 58.88889 43.33333 36.66667
0.06 55.55556 40.0000 33.33333
0.07 53.1746 37.61905 30.95238
0.08 51.38889 35.83333 29.16667
0.09 50.0000 34.44445 27.7788
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Now, varying mission time from 0 to 140 at step 10 in Eqs. 
(24–26) we obtain the values of point-wise availability of 
the system in Table  1 for three different values of � . The 
curves of the system’s availability with respect to the time t 
for � = 0.03, 0.05, 0.07 are sketched in Fig.  5.

From analysis of the availability graph plotted in Fig.  5, 
reveals a uniform decrease in the system’s availability as 
the time and failure rate of a tyre increases. From the above 
analysis it has been concluded that at time t = 140 there are 
34% chances for the system being operative when � = 0.03 . 
Similarly, chances of the system being operative tends to 
17% and 09% respectively for � = 0.05 and � = 0.07 , at t 
= 140.

4.4 � Busy period analysis of repairman

(i) Due to replacement
Let Brep(t) be the probability that the repairman is busy 

in the replacement of failed tyre in state S1 . Then its value 
in terms of its Laplace Transform is given by

(26)

A(t) = 1.01567467e(−0.01715178)t

+ 0.07916223e(−0.94933176)t

− 0.09483691e(−0.56175823)t

cos(0.1602647 t)
+ 0.245197e(−0.5617582)t

sin(0.1602647 t)

Then expressions of Brep(t) by taking Inverse Laplace 
Transform of Eq. (27) for varying values of failure rate 
� = 0.03, 0.05 and 0.07 for fixed replacement rate as � = 0.9 
and repair parameter �j = 0.7 for all j = 7,8,9 are respec-
tively given by:

(ii) Due to repair from the failed state
Let Br(t) be the probability that the repairman is busy 

in the repair in any of the failed state S7 , S8 and S9 . So, by 

(27)

B∗
rep
(s) = P∗

1
(s)

=

(
6�

s + �

)
P∗
0
(s)

(28)

Brep(t) = 0.241133e(−0.213938)t

− 0.032684e(−0.6800162)t − 0.230682e(−0.908321)t

+ 0.022232e(−0.007723)t

(29)
Brep(t) = 0.703051e(−0.395662)t − 0.342227e(−0.617881)t

+ 0.036552e(−0.012556)t

− 0.397376e(−0.924592)t

(30)

Brep(t) = 0.050450e(−0.0171517)t

− 0.561589e(−0.949331)t

+ 0.511138e(−0.561758)t

cos(0.1602647 t)
+ 1.0911126e(−0.5617582t)

7 sin(0.1602647 t)

Fig. 5   Availability of the system 
as a function of time t
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additive law of probability, the probability that the repair-
man will be busy at epoch t when system initially starts from 
S0 as given by in Laplace transform is as follows:

Then expressions of Br(t) by taking Inverse Laplace 
Transform of Eq. (31) for varying values of failure rate 
� = 0.03, 0.05 and 0.07 when � = 0.9 and �j = 0.7 for all j 
= 7,8,9 are as follows:

4.5 � Cost‑benefit analysis

Maintaining control over costs is vital to uphold product reli-
ability. If we assume that the service facility remains consist-
ently accessible, we can express the anticipated profit within 
the timeframe (0, t] as follows:

(31)

B∗
r
(s) =

9∑
j=7

P∗
j
(s)

=

[
6�2�

(s + �)(s + 5�)

{
1 − h∗

7
(s)

s

}

+
12�2�

(s + �)(s + �)(s + 5�)

{(
1 − h∗

8
(s)

)
s

+

(
1 − h∗

9
(s)

)
s

}]
P∗
0
(s)

(32)

Br(t) = 0.0273748e(−0.68001621)t

+ 0.019649e(−0.213938)t − 0.0163585e(−0.908321)t

− 1.03066e(−0.007723)t + 1.0

(33)

Br(t) = 0.121809e(−0.6171882)t

− 0.0544368e(−0.395662)t − 1.023253e(−0.01255624)t

− 0.044119e(−0.924592)t + 1.0

(34)

Br(t) = 0.094836e(−0.5617582)t cos (0.160264 5 t)

− 0.07916223e(−0.9493317)t

− 1.0156746e(−0.01715178)t

− 0.24519705e(−0.5617582)t sin (0.1602647 t) + 1.0

(35)

EP(t) = Total revenue in time interval (0,t)
− ((Expected cost of replacement during (0,t)
+ (Expected cost of repair during (0,t))

EP(t) = I0

t

∫
0

A(u)du

−
⎛

⎜

⎜

⎝

I1

t

∫
0

Brep(u)du + I2

t

∫
0

Br(u)du
⎞

⎟

⎟

⎠

where I0 = the income generated per unit of system up time.
I1 = the replacement cost per unit of time.
I2 = the repair cost per unit of time.
Setting the value of � = 0.9, �j = 0.7 , I0 = 100, I1 = 30, I2 

= 60 and varying the values of failure rate � by 0.03, 0.05, 
0.07, 0.1 in Eq. (35) respectively we compute the expression 
of EP(t) as follows:

For � = 0.03 expected profit equation EP(t) is:

For � = 0.05 expected profit equation EP(t) is:

Similarly we can obtain the expression of EP(t) for 
� = 0.07 and � = 0.1 . The net expected profit EP(t) for 
� = 0.03, 0.05, 0.07 and 0.1 is shown in Table 3 for different 
values of t ranging 0 to 140. 

From the analysis of Table  3 and the corresponding 
Fig. 6, it is concluded that initially the profit increases up to 
an extent as the time increase and then it starts decreasing. 
At time t = 0, profit is zero. It is also revealed from Table 3 
that for � = 0.03 profit is maximum at t = 130 and after this 
it starts decreasing. Moreover, for � = 0.05 , profit is maxi-
mum at t = 80 where as for � = 0.07 profit is maximum 
at t = 60 and for � = 0.1 profit is maximum at t = 40. It is 
obvious from the curves that the system goes in loss after t 
= 200, 150 and 110 for � = 0.05, 0.07 and 0.1 respectively.

(36)

EP(t) = I0
(

0.040256e(−0.6800162t)

+0.0918442e(−0.213938t) − 0.0180096e(−0.9083218t)

− 133.4474242e(−0.0072338 t) + 133.3333
)

−
[

I1
(

0.0480642e(−0.68001621 t) −1.1271175

e(−0.21393854 t) + 0.253965e(−0.9083218 t)

−2.8786154e(−0.0077233 t) + 3.70370
)

+ I2(t − 0.040256e(−0.68001621 t)

− 0.091844e(−0.213938 t)

+ 0.0180096e(−0.908321t)

+ 133.44742e(−0.00772338t) −133.33333)]

(37)

EP(t) = I0
(

0.1973618e(−0.6171882t) − 0.1375840e(−0.395662t)

−81.4935416e(−0.0125562t)

−0.4477176 e(−0.9245929 t) + 81.481481
)

−
[

I1
(

0.5544974e(−0.6171882 t) − 1.7768965

e(−0.3956625 t) + 2.9110867 e(−0.0125562 t)

+0.429785e(−0.9245929 t) + 3.70370
)

+ I2(t − 0.197361 e(−0.61788212 t)

− 0.137584e(−0.395662 t) + 81.493541

e(−0.0.125562t) + 0.0477176e(−0.9245929t) − 81.4814814)]
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5 � Classical estimation

In this section, we consider the classical estimation of the 
model parameters. Suppose that the failure and replace-
ment time distribution are independently distributed as 
Exponential.

Let W̃1 =
(
w11,w12, .....w1n1

)
 are random sample of size n1 

for failure time and W̃2 =
(
w21,w22, .....w2n2

)
 are random 

sample of size n2 for replacement time and Yi =
2∑
j=1

wij ; i = 

1,2.
Then the joint likelihood function is

The log-likelihood function is

L = L
(
W1,W2

||�, �
)
= �n1e−�Y1�n2e−�Y2

logL = n1 log � − �Y1 + n2 log � − �Y2

By using maximum likelihood approach, the maximum like-
lihood estimates of (�, �) are

Using large sample theory of M.L.E, the asymptotic sam-
pling distribution of (�, �) is N2

(
0,F−1

)
 where F is observed 

Fisher Information matrix with diagonal elements as

and non-diagonal elements as zero. The asymptotic 
(1 − �) × 100% confidence interval for Ψ = (�, �) is 

Ψ̂ + Z𝛾∕2

√
V
(
Ψ̂
)

 . Here V
(
Ψ̂
)
 is variance of Ψ̂ obtained 

from F and Z�∕2 is upper 100 × (�∕2 )th percentile of standard 

𝛼̂ =
n1

Y1
, 𝛽 =

n2

Y2

F11 = E

(
−
�2 logL

��2

)
=

n1

�2
, F22 = E

(
−
�2 log L

��2

)
=

n2

�2

Table 3   Expected profit with respect to failure rate as function of time t

Mission time 
(t)

� = 0.03 � = 0.05 � = 0.07 � = 0.1

Revenue Total 
cost

Profit Revenue Total 
cost

Profit Revenue Total 
cost

Profit Rev-
enue

Total 
cost

Profit

0 0 0 0 0 0 0 0 0 0 0 0 0
10 982 38.1 943.9 960 57 903 937 74.4 862.6 904 98.1 805.9
20 1899 97.2 1801.8 1809 157.8 1651.2 1724 214.2 1509.8 1610 289.2 1320.8
30 2749 193.2 2555.8 2557 317.1 2239.9 2386 426.9 1959.1 2168 566.4 1601.6
40 3535 326.7 3208.3 3216 528.6 2687.4 2944 700.2 2243.8 2608 911.4 1696.6
50 4264 494.1 3769.9 3798 785.7 3012.3 3414 1025.4 2388.6 2955 1310.7 1644.3
60 4938 693.9 4244.1 4312 1082.7 3229.3 3810 1393.5 2416.5 3230 1751.4 1478.6
70 5562 923.7 4638.3 4764 1416.3 3347.7 4143 1798.8 2344.2 3446 2226.3 1219.7
80 6139 1181.1 4957.9 5164 1780.8 3383.2 4424 2234.4 2189.6 3617 2727.3 889.7
90 6674 1463.7 5210.3 5516 2173.2 3342.8 4661 2695.8 1965.2 3752 3249.3 502.7
100 7169 1769.7 5399.3 5826 2590.5 3235.5 4860 3179.1 1680.9 3859 3787.2 71.8
110 7627 2097.9 5529.1 6100 3029.1 3070.9 5028 3681 1347 3943 4338.6 - 395.6
120 8051 2446.2 5604.8 6342 3486.6 2855.4 5170 4197.9 972.1 4010 4899.9 - 889.9
130 8444 2813.1 5630.9 6555 3960.9 2594.1 5289 4728.3 560.7 4062 5469.9 - 1407.9
140 8807 3197.7 5609.3 6743 4450.2 2292.8 5389 5269.8 119.2 4104 6045.3 - 1941.3

Table 4   Estimates of MTSF for various values of � and �

� 0.03 0.05 0.07

� 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08

True 
value

88.889 63.889 55.556 51.389 73.333 48.333 40.000 35.833 66.667 41.667 33.333 29.167

MLE 88.742 63.742 55.401 51.229 73.262 48.263 39.922 35.750 66.626 41.627 33.286 29.114
SE 0.200 0.146 0.133 0.129 0.174 0.108 0.090 0.083 0.166 0.095 0.074 0.066
CI lower 88.350 63.457 55.140 50.977 72.921 48.052 39.744 35.586 66.300 41.441 33.140 28.985
CI upper 89.133 64.028 55.662 51.481 73.603 48.475 40.099 35.913 66.952 41.813 33.431 29.243
Width 

CI
0.783 0.571 0.522 0.504 0.682 0.423 0.354 0.327 0.652 0.372 0.292 0.258
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normal distribution. The respective asymptotic distribution 
of MTSF(M) is N2

(
0,M� F−1 M

)
 where M� =

(
�M

��
,
�M

��

)
.

5.1 � Simulation study and result

Now, we shall use the simulation result to discuss the MLE 
performance of MTSF for the proposed system. We have 
fixed the sample size n1 = n2 = 100,000. And generate the 
samples from exponential distribution for different param-
eter values and calculate their estimated values. After putting 
the ML estimates of the parameters in the obtained expres-
sion of MTSF (22), we get MLEs of MTSF. All the analysis 
have been performed using R Software.

Table 4 provide the MLE of MTSF and also their SE and 
confidence interval for varying values of � and � . From the 
Table 4 it is observed that as failure rate and replacement 
rate increases MTSF decreases. Moreover, ML estimates of 
MTSF are closer to true values.

6 � Conclusion

From critical examination of the model, the authors conclude 
that the system model is highly functional due to the spare 
wheel as the MTSF decreases when the replacement rate 
increases. Moreover, as the failure rate increases the MTSF 
decreases irrespective of the values of replacement rate. It 
was also determined that profit of the user initially increases 
up to an extent with the time and start to decrease after a 
particular time. From the classical estimation ML estimate 
of MTSF are closer to true value of MTSF. Therefore, the 

analyzed results are beneficial for automotive industries to 
make this system more reliable and more profitable for users.
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