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Abstract
In this paper, the two-parameter generalized uniform distribution is considered as a lifetime model and its distributional and 
reliability characteristics are discussed. The maximum likelihood and Bayes estimates for both parameters are derived when 
the lifetime data are progressively type-II censored. The asymptotic confidence intervals and highest posterior density (HPD) 
credible intervals for the parameters are also discussed. For carrying out the Bayes estimation, the Metropolis-Hastings 
algorithm is used for generating a Markov chain Monte Carlo (MCMC) sample from the posterior distribution. The perfor-
mance of the derived estimates is illustrated using a Monte Carlo simulation study. Finally, two real data sets are analyzed 
with respect to the estimation methods discussed.

Keywords  Generalized uniform distribution · Maximum likelihood estimation · Bayesian estimation · Metropolis-Hastings 
algorithm · Monte Carlo simulation

1  Introduction

In reliability estimation, the lifetime of a system or an item 
is assumed to follow a certain statistical distribution, which 
is then used for studying the reliability characteristics of 
the system. Various versatile statistical models have been 
proposed in the literature over the past years, some of them 
being exponential, gamma, Weibull etc. For more details 
see, Lawless (2003) and Sinha (1986). Once a statistical 
model is assumed for the lifetime of the system/unit, life-
testing experiments are conducted on a random sample of 
items and inferences are then drawn, about the reliability 
characteristics, on the basis of the observed failure-time 
data. Generally, in reliability theory, the lifetime of a device 
is assumed to be a non-negative random variable with no 
finite upper limit. In practice, it seems very much plausible 
to have an upper bound to the lifetime of a system/unit, since 
nothing is immortal and thus there should be some maxi-
mum lifetime possible for the product. Also, as mentioned 
in Balakrishnan and Aggarwala (2000), the uniform distribu-
tion is one of the frequently used distributions in life studies. 

It is also an interesting distribution to discuss, particularly 
from a mathematical point of view. Of course, it is also to 
one’s benefit to have a wider choice of distributional results 
when modelling lifetime data.

Proctor (1987) introduced the four-parameter general-
ized uniform distribution which is a counterpart to the Burr 
type XII. Tiwari et al. (1996) studied the Bayes estimation 
for parameters in the Pareto distribution using the general-
ized uniform distribution. Lee (2000) derived the maximum 
likelihood estimator (MLE), modified MLE, minimum risk 
estimator (MRE) and uniformly minimum variance unbiased 
estimator (UMVUE) of shape and scale parameters in gener-
alized uniform distribution and proposed several estimators 
for the right tail probability using the proposed estimators 
for shape and scale parameters. Dixit et al. (2003) studied 
the problem of efficient estimation of parameters of a uni-
form distribution in the presence of outliers. He assumed 
that a set of random variables X1,X2 … ,Xn represents the 
masses of roots where out of n-random variables some of 
these roots (say k) have different masses; therefore, those 
masses have different uniform distributions with unknown 
parameters and these k observations are distributed with 
generalized uniform distribution (GUD), see Bhatt (2014). 
Ali et al. (2005) considered independent generalized uniform 
distributions for the stress and strength model and obtained 
the minimum variance unbiased reliability estimator. Phal 
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and Dixit (2012) obtained the MLE and the UMVUE of 
P(X ≤ Y) , where both X and Y follow the uniform distri-
bution and outliers are generated from a generalized uni-
form distribution (GUD). It was shown that UMVUE is 
better than MLE when one parameter of GUD is known. 
When both parameters of the GUD are unknown, P(X ≤ Y) 
was estimated by using a mixture estimate and was shown 
that the estimator of P(X ≤ Y) is consistent. Bhatt (2014) 
obtained the characterization result based on the expecta-
tion of the function of a random variable for generalized 
uniform distribution. The uniform distribution and its gener-
alization find various applications in practice. For the design 
of anchorage regions in traditional set-up, the stress on the 
anchorage length is commonly assumed to be uniformly 
distributed. Further, the force of water flow, stress on the 
venting valve, etc. may have generalized uniform distribu-
tion, see Pal (2022). Pal (2022) found suitable estimators of 
reliability function for the stress-strength model when stress 
and strength independently follow generalized uniform dis-
tribution and strength stochastically dominates stress.

The progressive type-II censoring has been stud-
ied extensively by numerous researchers. The foremost 
advantage of the above censoring scheme, that it allows 
for the removal of live units during the course of the 
life testing experiment, has made this censoring scheme 
applicable in various fields of study. Moreover, it results 
in reduced cost and time of the experiment. The progres-
sive type-II censoring, which includes the conventional 
type-II censoring scheme as a special case, was first intro-
duced by Cohen (1963), although (Herd 1956) was the 
first to discuss the idea of progressive censoring in his 
PhD thesis entitled "Estimation of the parameters of a 
population from a multi-censored sample" at Iowa state 
college (Ames, Iowa). Since then various authors have 
discussed inferential methods using progressive type-II 
right censoring for different statistical models. Hofmann 
et al. (2005) discussed that in many situations the type-
II progressive censoring schemes significantly improve 
upon the conventional type-II censoring. For the recent 
work on the progressive censoring one can see the follow-
ing references: Kumar et al. (2017) studied the Nakagami 
distribution as a reliability lifetime model, Chaturvedi 
et al. (2018) discussed the reliability estimation from a 
family of distributions, Almongy et al. (2021) applied 
transformer insulation using Weibull extended distribu-
tion (Kumar and Kumar 2022) obtained estimation for 
reliability from inverse Pareto distribution, Kumari et al. 
(2022) discussed estimation of multicomponent reliabil-
ity from the inverse Pareto lifetime model, Shukla et al. 
(2023) studied inferential analysis of the Weibull-G fam-
ily of distributions, Saini et al. (2023) discussed infer-
ence on multicomponent stress-strength reliability from 

Topp-Leone distribution, Kumari et al. (2024) obtained 
Bayesian and classical estimates of the reliability from 
the power Lindley distribution, Saini et al. (2024) stud-
ied statistical inference on reliability from Kumaraswamy 
distribution, Goel and Krishna (2024) discussed acciden-
tal breakages in progressively type-II censored lifetime 
experiments, Tian et al. (2024) obtained inferences and 
optimal censoring scheme for a competing-risks model 
from inverse exponentiated Rayleigh distribution and ref-
erences cited therein.

The progressive type-II right censoring scheme can be 
described as follows: Suppose that n items are put on life 
test, under pre-fixed  progressive censoring scheme 
R
∼
= (R1,R2,… ,Rm) and the fixed number of failures m. At 

the time of the first failure, R1 units are removed randomly 
from the remaining n − 1 live units, and after the second 
failure, R2 units are removed randomly from the remaining 
n − R1 − 1 live units and so on. This procedure is continued 
until remaining live units Rm are removed from the life test 
at the time of mth failure. Clearly, 

∑m

i=1
Ri + m = n . If 

x1, x2,… , xm denote the observed failure times, then the 
likelihood function of these sample data is given as

In this paper, we have considered generalized uniform distri-
bution (GUD), with shape and scale parameters (indicating 
the maximum lifetime of a product), as a feasible lifetime 
model. The main contribution of this paper is to study the 
maximum likelihood and Bayesian estimation of the param-
eters of GUD using progressively type-II censored data. The 
GUD model is suitable in life testing experiments where it 
is desirable to have an upper limit on the maximum age of 
an item. In practice, it is not desirable to assume the upper 
limit of the lifetime of an item to be infinity, as none of the 
electronic, mechanical or biological units can work forever. 
Here, the parameter � being the scale parameter provides 
an upper limit to the lifetime of an item. It also suggests 
the maximum lifetime of an item when the unit will need 
to be replaced. It will be interesting to see the effect of the 
progressively type-II censored data on the estimation of 
the parameters of GUD as it has increasing and U-shaped 
failure rate functions depending on the true values of the 
parameters.

The rest of the paper is articulated as follows: In sec-
tion 2 the model and its reliability characteristics are dis-
cussed along with data generation techniques. Section 3 
deals with the derivation of MLEs of the parameters and 
their asymptotic interval estimates. In section 4 we have 
derived the Bayes estimates of the parameters along with 
the highest posterior density (HPD) intervals using the 

L(x
∼
) =A

m
∏

i=1
f (xi)[1 − F(xi)]Ri ;0 ≤ x1 ≤ x2⋯ ≤ xm < ∞,

where A =n(n − R1 − 1)(n − R1 − R2 − 2)… (n − R1 − R2 −⋯ − Rm − m + 1).
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Metropolis-Hastings (MH) algorithm. In section 5 we have 
discussed the details of the Monte Carlo simulation study, 
their results and conclusions of the study. Finally, in sec-
tion 6, two real data sets are studied concerning different 
estimation methods discussed above.

2 � Model description

In this section, we discuss some statistical properties and reli-
ability characteristics of the GUD.

2.1 � Statistical properties

The probability density function (pdf) and the corresponding 
cumulative distribution function (cdf) of GUD(�, � ), respec-
tively, are given by

The r-th raw moment of the above distribution is given by

In particular,

fX(x;𝛼, 𝜃) =
𝛼

𝜃

(
x

𝜃

)𝛼−1

; 0 < x < 𝜃 < ∞ ; 𝛼 > 0

FX(x;𝛼, 𝜃) =
(
x

𝜃

)𝛼

; 0 < x < 𝜃 < ∞ ; 𝛼 > 0

E[Xr] =
𝛼𝜃r

r + 𝛼
; r + 𝛼 > 0

The mode and median of the distribution are, respectively, 
given by

Here, � and � are the shape and scale parameters, respec-
tively. As special cases, for � = 1 the distribution reduces to 
uniform distribution on the interval (0, � ) and power distri-
bution for � = 1 . Also, this distribution is positively (nega-
tively) skewed for 𝛼 < 1 (𝛼 > 1) . Figure 1a shows plots of 
the above pdf for � = 1 and different values of � . GUD also 
has relationships with exponential and Pareto distributions 
in such a way:

•	 If X ∼ GUD(�, �) then the distribution of Y = − � ln(X∕�) 
is standard exponential i.e Y ∼ Exp(1).

•	 If X ∼ GUD(�, �) then the distribution of Z = 1∕X is 
Pareto with shape parameter � and scale parameter � i.e 
Z ∼ Pa(�, �) , where � = 1∕�.

2.2 � Reliability characteristics

The reliability function of GUD ( �, � ) is given by

E[X] =
��

1 + �
and Var[X] =

��2

(1 + �)2(2 + �)

M0 =
[

3

21∕�
−

2�

1 + �

]
� and Md =

�

21∕�

R(t) = 1 − F(t) = 1 −
(
t

𝜃

)𝛼

; 0 < t < 𝜃 < ∞ ; 𝛼 > 0
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Fig. 1   Plots of pdf and hazard rate function of GUD
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The hazard rate function of GUD ( �, � ) is given by

The Mean time to system failure of GUD ( �, � ) is given by

Figure 1 shows the plots of the pdf and hazard rate function 
of GUD for different values of the parameter � and � = 1 . 
Figure 1b shows that, for 𝛼 > 1 , the hazard-rate function 
is a monotonically increasing function of t. For 𝛼 < 1 the 
hazard-rate decreases monotonically for t < t0 and increases 
monotonically for t > t0 , where t0 = �(1 − �)1∕�.

2.3 � Data generation from GUD

Let X1∶m∶n,X2∶m∶n,… ,Xm∶m∶n be a progressively type-II right 
censored sample obtained from a sample of size n from 
GUD(�, � ) with the pre-specified censoring scheme 
R
∼
= (R1,R2,… ,Rm) . Then the likelihood function of the 

sample, with Xi∶m∶n = xi is given by

where, A = n(n − R1 − 1)(n − R1 − R2 − 2)… (n − R1 − R2 −⋯ − Rm−1 − m + 1).
Before giving the algorithm to generate progressively 

type-II right censored sample from GUD(�, � ) we state 
the following theorem from (Balakrishnan and Aggarwala, 
2000, page. 18).

Theorem 1  Let X1∶m∶n,X2∶m∶n,… ,Xm∶m∶n denote a progres-
sively type-II right censored sample from the standard expo-
nential distribution, with censoring scheme (R1,R2,… ,Rm) . 
Define

Z1 = nX1∶m∶n

Z2 = (n − R1 − 1)(X2∶m∶n − X1∶m∶n)

... ...

...  ...

Zm = (n − R1 − R2 −⋯ − Rm−1 − m + 1)(Xm:m:n − Xm−1:m:n)

Then the "Progressively Type-II right censored spacings" 
defined above, are all independent and identically distrib-
uted as standard exponential.

h(t) =
f (t)

R(t)
=

𝛼 t𝛼−1

𝜃𝛼 − t𝛼
; 0 < t < 𝜃 < ∞ ; 𝛼 > 0

MTSF = E[X] =
��

1 + �

L(x
∼
) =A

(�
�

)m m
∏

i=1

(xi
�

)[

1 −
(xi
�

)�]Ri

;0 < x1 ≤ x2⋯ ≤ xm < � < ∞; � > 0

2.3.1 � Algorithm to generate data from GUD

For generating Progressively type-II right censored sample 
from GUD(�, � ) we make use of the following algorithm 
given in (Balakrishnan and Aggarwala, 2000, page.33).

1.	  Generate n iid standard uniform random variables 
(u1, u2,… , un).

2.	  Set zi = −log(1 − ui) ; i = 1, 2… , n . Then z1, z2,… , zn 
are iid standard exponential random variables.

3.	  Set y1 = z1∕n and yi = yi−1 +
zi

n−
∑i−1

j=1
Rj−i+1

; i = 2, 3,… ,m 

for the given censoring   scheme R
∼
= (R1,R2,… ,Rm) . 

Then y1, y2 … ym is a progressively type-II right cen-
sored sample from a standard exponential distribution.

4.	  Set xi = FX
−1(yi) = �(1 − e−yi )1∕� ; i = 1, 2… ,m . Then 

x1, x2 … xm is the required progressively type-II right 
censored sample from GUD ( �, �).

3 � Maximum likelihood estimation

Let x1, x2 … , xm be a progressively type-II censored sam-
p le  f rom GUD(�, �  )  w i t h  censor ing  scheme 
R
∼
= (R1,R2,… ,Rm) . Then the likelihood function is;

where; A = n(n − R1 − 1)(n − R1 − R2 − 2)… (n − R1 − R2 −⋯ − Rm − m + 1).
Taking the natural logarithm of the above equation we get;

Differentiating the above equation w.r.t � and � we get,

Also,

(1)
L(x

∼
) =A

(�
�

)m m
∏

i=1

(xi
�

)�−1[
1 −

(xi
�

)�]Ri

;0 < x1 ≤ x2⋯ ≤ xm < � < ∞; � > 0

(2)

logL = logA + m log � − m� log �

+ (� − 1)

m∑
i=1

log xi +

m∑
i=1

Ri log
[
1 −

(xi
�

)�]

(3)

� log L

��
=

m

�
− m log � +

m∑
i=1

log xi −

m∑
i=1

Rix
�
i
log(

xi

�
)

[
1 −

(
xi

�

)�]
��

(4)
� log L

��
= −

m�

�
+

m∑
i=1

�Rix
�
i[

1 −
(

xi

�

)�]
��+1
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Now, when both parameters are unknown the MLEs of � 
and � can be found by simultaneously solving the following 
non-linear equations;

and

The equations (8) and (9) cannot be solved analytically, 
and thus we use some appropriate numerical method to 
solve them. The bivariate Newton-Raphson method, which 
involves the following iterative procedure, can be used.

(5)

�2 log L

��2
= −

m

�2
−

m∑
i=1

Ri

(
xi

�

)2�[
log

(
xi

�

)]2
[
1 −

(
xi

�

)�]2

−

m∑
i=1

Ri

(
xi

�

)�[
log

(
xi

�

)]2
[
1 −

(
xi

�

)�]

(6)

�2 log L

��2
=

m�

�2
−

�2

�2�+2

m∑
i=1

Rix
2�
i[

1 −
(

xi

�

)�]2

−
�(� + 1)

��+2

m∑
i=1

Rix
�
i[

1 −
(

xi

�

)�]

(7)

�2 logL

����
= −

m

�
+

m∑
i=1

Rix
�
i[

1 −
(

xi

�

)�]
��+1

+ �

m∑
i=1

Rix
2�
i
log

(
xi

�

)

[
1 −

(
xi

�

)�]2
�2�+1

+ �

m∑
i=1

Rix
�
i
log

(
xi

�

)
[
1 −

(
xi

�

)�]
��+1

=
�2 log L

����

(8)

� logL

��
=

m

�
+

m∑
i=1

log xi − m log � −

m∑
i=1

Rix
�
i
log(

xi

�
)

[
1 −

(
xi

�

)�]
��

= 0

(9)
� log L

��
=

m∑
i=1

�Rix
�
i[

1 −
(

xi

�

)�]
��+1

−
m�

�
= 0

(10)
[
𝛼(k+1)

𝜃(k+1)

]
=

[
𝛼(k)

𝜃(k)

]
− Î−1(𝛼(k), 𝜃(k))

[
𝜕 logL

𝜕𝛼
𝜕 logL

𝜕𝜃

]

𝛼=𝛼̂,𝜃=𝜃̂

where, (�(k), �(k)) denotes the value of (�, �) at the kth itera-
tion and Î(𝜃(k), 𝛼(k)) is the observed fisher information matrix 
given by;

Alternatively, one can use the maxLik package of R pro-
gramming language to directly maximize the log likelihood 
function which along with the ML estimates of the param-
eters, also returns the standard errors of these estimates.

3.1 � Asymptotic variances and confidence intervals

Since the distribution of 𝛼̂ and 𝜃̂ cannot be determined, 
hence it is not possible to obtain the expressions for the 
variances or standard errors of the estimates. So we pro-
ceed by considering the asymptotic variance-covariance 
matrix of (𝛼̂, 𝜃̂) which can be computed using the inverse 
of Fisher’s information matrix, given by;

where, the expressions for �
2 log L

��2
,
�2 log L

����
,
�2 logL

����
 and �

2 logL

��2
 

have been computed in equations (5), (6) and (7). The 
expected values of these expressions are very complicated 
to handle analytically and thus, for obtaining the estimate 
of the asymptotic variance-covariance of (𝛼̂, 𝜃̂) we use the 
inverse of observed Fisher’s information matrix, given by;

i.e. the estimate of asymptotic variance-covariance matrix 
of (𝛼̂, 𝜃̂) is given by Î−1(𝛼̂, 𝜃̂) and we can obtain the esti-
mates of the variances, ̂Var(𝛼̂) and ̂Var(𝜃̂) , as the diagonal 
elements of this matrix. Using the large sample property 
of MLEs, which states that (𝛼̂, 𝜃̂) converges in distribu-
tion to N2((�, �), I

−1(�, �)) and the estimates of vari-
ances, we obtain the two-sided 100(1 − �)% asymptotic 

confidence intervals for � and � as 𝛼̂ ± z𝛾∕2

√
̂Var(𝛼̂) and 

𝜃̂ ± z𝛾∕2

√
̂Var(𝜃̂) respectively. The coverage probabilities 

for both the parameters can be obtained as follows;

(11)Î(�(k), �(k)) =
⎡

⎢

⎢

⎣

− �2 log L
��2

− �2 log L
����

− �2 log L
����

− �2 log L
��2

⎤

⎥

⎥

⎦�=�(k), �=�(k)

(12)I(�, �) = E
⎡

⎢

⎢

⎣

− �2 log L
��2

− �2 log L
����

− �2 log L
����

− �2 log L
��2

⎤

⎥

⎥

⎦

(13)Î(�̂, �̂) =
⎡

⎢

⎢

⎣

− �2 log L
��2

− �2 log L
����

− �2 log L
����

− �2 log L
��2

⎤

⎥

⎥

⎦�=�̂, �=�̂

CP𝛼 = P

⎡⎢⎢⎢⎣

�����
𝛼̂ − 𝛼�
̂Var(𝛼̂)

�����
≤ z𝛾∕2

⎤⎥⎥⎥⎦
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and

where, z�∕2 is the upper (�∕2)th quantile of the standard nor-
mal distribution and 0 < 𝛾 < 1.

4 � Bayes estimation

In this section, we consider the estimation of parameters 
of the model under Bayesian setup when both of them are 
unknown. Due to the non-existence of conjugate prior and 
for the sake of similarity with the likelihood function, the 
prior distributions for � and � are independently chosen 
as gamma and inverted gamma distributions, respectively, 
with the following pdfs

where, (a1, b1, a2, b2) are the hyper parameters of the model. 
The families of gamma/inverted gamma distributions are 
amply flexible as these can model a variety of priors infor-
mation. Moreover, non-informative priors are particu-
lar cases of these priors. Also, the parameters of gamma/
inverted gamma priors can be merged with model param-
eters, so that mathematical computations become easy. Thus, 
the joint prior distribution of (�, �) can be obtained as

The posterior distribution of � and � , given the progressively 
type-II censored data, can be obtained as follows;

where L(x
∼
|�, �) denotes the likelihood function of the data 

x
∼
= (x1, x2,… , xm).
Using equations (1) and (14) we get the posterior dis-

tribution as;

CP𝜃 = P

⎡
⎢⎢⎢⎣

�����
𝜃̂ − 𝜃�
̂Var(𝜃̂)

�����
≤ z𝛾∕2

⎤
⎥⎥⎥⎦

g1(𝛼;a1, b1) ∝ 𝛼b1−1e−a1𝛼;𝛼, a1, b1 > 0

g2(𝜃;a2, b2) ∝ 𝜃−b2−1e−a2∕𝜃;𝜃, a2, b2 > 0

(14)

g(𝛼, 𝜃;a1, b1, a2, b2) ∝ g1(𝛼;a1, b1)g2(𝜃;a2, b2)

i.e. g(𝛼, 𝜃;a1, b1, a2, b2)

∝ 𝛼b1−1e−a1𝛼𝜃−b2−1e−a2∕𝜃;𝛼, 𝜃 > 0

�(�, �|data) ∝ L(x
∼
|�, �)g(�, �)

(15)

𝜋(𝛼, 𝜃|data) ∝ 𝛼m+b1−1

𝜃m+b2+1

m∏
i=1

(xi
𝜃

)𝛼−1[
1 −

(xi
𝜃

)𝛼]Ri

e−a1𝛼e−a2∕𝜃

;0 < x1 ≤ ⋯ ≤ xm < 𝜃 < ∞; 𝛼 > 0

For obtaining the Bayes estimates of any parametric func-
tion �(�, �) under squared error loss function (SELF) we 
need to compute,

The solution of the above equation requires the computa-
tion of complex integrals, but, the analytic solution does 
not seem feasible. Hence, we propose to use approximation 
methods using MCMC simulation techniques. These tech-
niques and corresponding algorithms are discussed in the 
following sub-sections.

4.1 � Metropolis–Hastings (M–H) algorithm

Here we discuss an efficient MCMC technique called the 
Metropolis–Hastings (MH) algorithm to generate a sample 
from the above-derived posterior distribution and compute 
the estimate of any parametric function using the generated 
sample. The MH algorithm, initially proposed by Metropolis 
and Ulam (1949) and later extended by Hastings (1970), 
consists in generating a Markov chain of random samples 
from a probability distribution which eventually converges 
to the target distribution (from which we originally wanted 
to generate sample) using a proposal distribution.

We have considered symmetric proposal distribution of 
type q(�� |�) = q(�|��

) for generating candidate values for the 
parameters. Here we have considered generating candidate 
values for (�, �) from Bivariate Normal distribution. Since, 
generating values from Normal distribution allows for pro-
ducing negative values as well, which is not acceptable, thus 
we follow the approach discussed below in the algorithm for 
generating values.

4.1.1 � Algorithm

1.	 Set the initial value of the parameters (�(0), �(0)).
2.	 Repeat the following steps T times 

(a)	 For 1 ≤ t ≤ T , generate (��

, �
�

) from N2 (�
∼

(t−1), S) , 
where �

∼

(t−1) = ( ln(�(t−1)), ln(�(t−1)) )

(b)	 Set ��

= exp(�
�

) and ��

= exp(�
�

).
(c)	 Compute r = min

[
1,

� ( �
�
, �

� | �(t−1), �(t−1))
� ( �(t−1), �(t−1)) | �� , �� )

]
.

(d)	 Generate u from Unif(0, 1).
(e)	 If u < r  , update (�(t), �(t)) with (��

, �
�

) , else 
(�(t), �(t)) = (�(t−1), �(t−1)).

The initial values (�(0), �(0)) are chosen as the MLEs of � 
and � . The choice of the variance covariance matrix of the 
proposal distribution, often called as the tuning parameter, 
is an important issue. Here we have considered the observed 

E[�(�, �)|data] = ∫ ∞

0
∫ ∞

0
�(�, �)�(�, �|data)d�d�

∫ ∞

0
∫ ∞

0
�(�, �|data)d�d�
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Fisher’s information matrix as the initial value for S and 
further modified so as to improve the acceptance rate. One 
can refer to Natzoufras (2009) for a detailed discussion on 
the topic. The initial M0 values out of M are discarded as 
the burn-in sample and the Bayes estimates for any para-
metric function �(�, �) are computed using the following 
expression

where, (�(i), �(i)) ;i = M0 + 1 ,M0 + 2,… , M is the generated 
sample of observations from the target posterior distribu-
tion �.

The Bayes estimates, under SELF, for � and � can be 
obtained as

4.2 � Highest posterior density (HPD) intervals

The generated MCMC sample in the previous section can 
be used to construct HPD credible intervals for the param-
eters. Following the work by Chen and Shao (1999), we 
discuss the construction of HPD credible interval for � 

𝜙̂B(𝛼, 𝜃 | data) = 1

M −M0

[
M∑

i=M0+1

𝜙(𝛼(i), 𝜃(i))

]

𝛼̂B =
1

M −M0

M∑
i=M0+1

𝛼(i)

𝜃̂B =
1

M −M0

M∑
i=M0+1

𝜃(i)

and the same procedure can be used for the construction 
of HPD credible interval for �.

L e t  𝛼(1) < 𝛼(2) <,… ,< 𝛼(K) ;K = M −M0  ,  r e p -
resent the ordered values of the generated sam-
ple �(M0+1) , �(M0+2) … �(M) .  Then, the 100 (1 − �) % 
HPD credible interval, where 0 < 𝛾 < 1 , is given by 
( �(j), �(j+[(1−�)K]) ) . The index j is chosen such that;

where, [x] denotes the greatest integer value of x.

5 � Simulation study

In this section, we study the performances of the MLE’s and 
Bayes estimates of the parameters (both unknown) based on 
simulated data sets under two different parameter set-ups, 
( � = 1, � = 1 ) and ( � = 2, � = 1 ). The study is conducted 
for two sample sizes viz. n = 30 (moderate sample size) and 
n = 50 (large sample size) and nine censoring schemes for 
each sample size with different failure information. These 
censoring schemes are presented in Table 1. The progres-
sive type-II censored data from GUD is obtained using the 
algorithm discussed in subsection 2.3.1. For evaluating the 
performance of the MLE’s, the average of the estimates (AE) 
and average of corresponding mean squared error (MSE) are 
computed based on 10,000 replications for each censoring 
scheme. The average length (AL-95) and coverage prob-
abilities (CP-95) of 95% asymptotic confidence intervals 
for parameters are also computed. The results of simulation 
study are reported in Tables 2 and 3.

�(j+[(1−�)K] ) − �(j) = min
1≤j≤K

(
�(j+[(1−�)K] ) − �(j)

)

Table 1   Progressive Type-II 
censoring schemes used in the 
simulation study

Scheme No. n m Censoring scheme: R
∼
= (R1,R2,…Rm)

1 30 12 (2,2,2,2,0,0,0,2,2,2,2,2)
2 ( 1,1,1,1,1,1,1,1,1,1,1,7 )
3 ( 0,0,0,0,0,0,0,0,0,0,0,18)
4 15 (10,0,0,0,0,0,0,0,0,0,1,1,1,1,1)
5 (1,0,2,0,2,0,2,0,2,0,2,0,2,0,2)
6 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,15)
7 24 (2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1)
8 (2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2)
9 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6)
10 50 20 (20,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2)
11 (0,4,1,3,2,0,4,2,2,2,1,1,0,2,1,1,1,1,1,1)
12 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30)
13 25 (20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1)
14 ( 1,0,2,1,1,0,0,3,1,1,1,1,1,0,2,0,2,1,1,1,1,1,0,0,3)
15 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25 )
16 40 (10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
17 (3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3 )
18 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10)
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For computing the Bayes estimates of the parameters 
we have used Metropolis-Hastings (MH) algorithm. The 
estimates are obtained under the squared error loss func-
tion using informative prior as discussed in section 4. The 
values of the hyperparameters in the case of informative 

priors are taken in such a way that the mean of the prior 
distributions come out equal to the true values of the param-
eters. The hyperparameters of the model are chosen as 
(a1 = 2, b1 = 2, a2 = 1, b2 = 1) . In the MH algorithm the 
starting values of the parameters (�(0), �(0)) are chosen as the 

Table 2   MLEs of the 
parameters with associated 
MSE, AL and CP when � = 1 
& � = 1

Here, AE = Average estimate, MSE = Mean squared error, AL-95 = Average length of 95% confidence 
interval, CP-95 = Coverage probability of 95% confidence interval

Scheme no. Estimates for � Estimates for �

AE MSE AL-95 CP-95 AE MSE AL-95 CP-95

1 1.163 0.137 1.134 0.95 0.902 0.056 0.780 0.77
2 1.176 0.159 1.220 0.96 0.914 0.075 0.974 0.79
3 1.199 0.195 1.356 0.96 0.926 0.116 1.238 0.79
4 1.132 0.095 0.988 0.95 0.921 0.029 0.545 0.80
5 1.134 0.094 0.970 0.95 0.913 0.027 0.487 0.77
6 1.156 0.137 1.170 0.95 0.940 0.063 0.919 0.82
7 1.089 0.060 0.847 0.96 0.955 0.008 0.264 0.81
8 1.085 0.058 0.833 0.96 0.958 0.007 0.229 0.81
9 1.090 0.065 0.873 0.96 0.960 0.012 0.371 0.85
10 1.089 0.058 0.832 0.96 0.943 0.019 0.461 0.83
11 1.089 0.049 0.747 0.95 0.929 0.021 0.445 0.80
12 1.103 0.080 0.967 0.96 0.961 0.070 1.010 0.85
13 1.071 0.046 0.765 0.96 0.956 0.009 0.294 0.83
14 1.071 0.044 0.713 0.95 0.949 0.016 0.419 0.84
15 1.089 0.062 0.854 0.96 0.962 0.039 0.736 0.86
16 1.052 0.030 0.635 0.95 0.975 0.004 0.199 0.86
17 1.051 0.030 0.625 0.95 0.974 0.003 0.178 0.85
18 1.054 0.034 0.653 0.95 0.975 0.007 0.296 0.88

Table 3   MLEs of the 
parameters with associated 
MSE, AL and CP when � = 2 
& � = 1

Scheme no. Estimates for � Estimates for �

AE MSE AL-95 CP-95 AE MSE AL-95 CP-95

1 2.298 0.535 2.267 0.95 0.945 0.016 0.402 0.79
2 2.354 0.615 2.441 0.96 0.946 0.021 0.491 0.81
3 2.399 0.792 2.714 0.96 0.948 0.030 0.612 0.81
4 2.263 0.377 1.974 0.96 0.955 0.009 0.280 0.80
5 2.263 0.359 1.938 0.96 0.952 0.008 0.253 0.79
6 2.304 0.539 2.332 0.96 0.960 0.017 0.460 0.84
7 2.185 0.252 1.700 0.96 0.976 0.002 0.134 0.82
8 2.173 0.233 1.668 0.96 0.978 0.002 0.117 0.82
9 2.180 0.259 1.744 0.95 0.979 0.003 0.189 0.86
10 2.166 0.221 1.654 0.96 0.970 0.005 0.236 0.84
11 2.176 0.205 1.491 0.95 0.960 0.006 0.229 0.81
12 2.217 0.334 1.943 0.96 0.970 0.018 0.497 0.86
13 2.140 0.186 1.528 0.96 0.977 0.002 0.150 0.84
14 2.148 0.172 1.431 0.95 0.973 0.004 0.213 0.85
15 2.175 0.246 1.705 0.96 0.977 0.010 0.369 0.88
16 2.097 0.123 1.266 0.95 0.987 0.001 0.101 0.87
17 2.098 0.119 1.248 0.95 0.987 0.001 0.090 0.86
18 2.105 0.131 1.305 0.95 0.989 0.002 0.149 0.89
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respective MLEs of the parameters and the tuning param-
eter S is chosen as the observed Fisher’s information matrix 
I−1(𝛼̂, 𝜃̂) . The tuning parameter is further adjusted so as to 
improve the acceptance rate. We have generated 1, 00, 000 
observations out of which initial 20% were discarded as the 
burn-in sample and the remaining ones are used for comput-
ing the estimates. For evaluating the performance of these 

estimates the average of the estimates (AE) and average of 
corresponding mean squared error (MSE) are computed 
based on 1000 replications for each censoring scheme. 
Also, the coverage probability of 95% HPD credible interval 
(HPD-95) along with the corresponding average length of 
the interval (AL-95) is computed. The simulation results are 

Table 4   Bayes estimates of the 
parameters when � = 1, � = 1

Scheme no. Bayes estimates for � Bayes estimates for �

AE MSE AL-95 HPD-95 AE MSE AL-95 HPD-95

1 1.201 0.053 1.034 0.99 0.900 0.012 0.682 0.91
2 1.167 0.036 0.878 0.99 0.928 0.010 0.694 0.91
3 1.172 0.040 0.870 0.98 0.904 0.011 0.694 0.76
4 1.175 0.042 0.968 1.00 0.908 0.009 0.550 0.95
5 1.145 0.030 0.825 0.99 0.948 0.007 0.619 0.94
6 1.148 0.031 0.803 0.99 0.924 0.007 0.298 0.80
7 1.113 0.018 0.675 0.99 0.953 0.003 0.202 0.84
8 1.123 0.022 0.804 1.00 0.947 0.003 0.282 0.98
9 1.113 0.019 0.743 1.00 0.959 0.002 0.343 0.99
10 1.106 0.017 0.686 0.99 0.945 0.004 0.379 0.98
11 1.107 0.016 0.590 0.98 0.928 0.006 0.319 0.83
12 1.115 0.019 0.699 0.98 0.953 0.008 0.689 0.95
13 1.094 0.014 0.602 0.99 0.957 0.002 0.204 0.88
14 1.085 0.011 0.556 0.99 0.957 0.003 0.300 0.96
15 1.098 0.014 0.630 0.99 0.962 0.004 0.507 0.98
16 1.072 0.008 0.491 0.99 0.971 0.001 0.136 0.88
17 1.064 0.007 0.488 1.00 0.978 0.001 0.127 0.97
18 1.070 0.008 0.516 1.00 0.977 0.001 0.232 1.00

Table 5   Bayes estimates of the 
parameters when � = 2, � = 1

Scheme no. Bayes estimates for � Bayes estimates for �

AE MSE AL-95 HPD-95 AE MSE AL-95 HPD-95

1 2.384 0.243 2.166 0.98 0.951 0.003 0.365 0.91
2 2.276 0.110 1.686 0.98 0.969 0.002 0.346 0.92
3 2.273 0.116 1.726 0.98 0.953 0.003 0.185 0.71
4 2.292 0.131 1.94 1.00 0.956 0.002 0.271 0.93
5 2.208 0.073 1.489 0.98 0.983 0.001 0.284 0.94
6 2.227 0.082 1.514 0.96 0.959 0.002 0.17 0.76
7 2.153 0.046 1.394 0.99 0.978 0.001 0.098 0.84
8 2.181 0.061 1.677 1.00 0.975 0.001 0.126 0.94
9 2.165 0.051 1.508 1.00 0.981 0.000 0.161 0.99
10 2.140 0.037 1.331 1.00 0.975 0.001 0.179 0.97
11 2.159 0.042 1.197 0.98 0.965 0.001 0.154 0.82
12 2.160 0.042 1.272 0.99 0.989 0.001 0.327 0.98
13 2.116 0.030 1.196 1.00 0.980 0.001 0.094 0.88
14 2.106 0.024 1.083 1.00 0.980 0.001 0.137 0.97
15 2.112 0.028 1.149 0.99 0.992 0.001 0.23 0.99
16 2.087 0.020 1.016 1.00 0.987 0.000 0.062 0.90
17 2.074 0.017 1.002 1.00 0.989 0.000 0.057 0.97
18 2.080 0.019 1.035 1.00 0.990 0.000 0.105 1.00
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reported in Tables 4 and 5, respectively. From these Tables, 
the following conclusions are made:

•	 The MLEs of both parameters (shape and scale) are quite 
satisfactory even for censoring schemes with less failure 
information and seem to converge to actual values as n 
and m increase. It is observed that the shape parameter � 
and the scale parameter � , respectively, are consistently 
overestimated and underestimated by the MLEs.

•	 The estimates perform well as far as mean squared 
errors are concerned, which are much less and gradually 
decrease with increasing values of n and m, as expected.

•	 The observed coverage probability of � matches with the 
true confidence coefficient, but the same is not observed for 
� . In fact, even for the largest values of n and m the cover-
age probability does not seem to attain desired value.

•	 The average length of the confidence intervals for both 
parameters is quite small. It is therefore suggested that for 
the estimation of shape parameter both the point and inter-
val estimation methods work quite well. As far as scale 
parameter is concerned point estimation works compara-
tively better.

•	 The average values of the Bayes estimates are close to the 
true values of the parameters � and � , respectively, even for 
small values of m and n.

•	 The mean squared error for both the parameters is much 
less and gradually decreases as m and n increase. As in the 
case of MLEs, the same trend i.e. overestimation of � and 
underestimation of � by the estimates is observed here.

•	 The observed coverage probability for � is very good, even 
more than the true confidence coefficient. The same for � is 
quite satisfactory and close to the true confidence coefficient 
for most censoring schemes and even better in cases with 
high failure information. As compared to the case of MLE’s 
the interval estimates have significantly improved here.

Thus, it is observed that both point and interval estimation 
methods in both of the classical and Bayesian paradigm work 
quite well for both parameters.

6 � Real data analysis

In this section, two real data sets are analyzed. The data pro-
vide the breaking strength of jute fibre at two different gauge 
lengths. These data have been taken from (Xia et al. 2009) and 
are also used by Pal (2022). These data sets are given below:

Data set 1: Breaking strength of jute fibre when gauge 
length = 10 mm.

693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 
108.94 50.16 671.49 183.16 257.44 727.23 291.27 101.15 
376.42 163.40 141.38 700.74 262.90 353.24 422.11 43.93 
590.48 212.13 303.90 506.60 530.55 177.25

Data set 2: Breaking strength of jute fibre when gauge 
length = 20 mm.

71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 
662.66 45.58 578.62 756.70 594.29 166.49 99.72 707.36 
765.14 187.13 145.96 350.70 547.44 116.99 375.81 581.60 
119.86 48.01 200.16 36.75 244.53 83.55

For testing the goodness of fit of the model to the data, 
we have considered Kolmogorov-Smirnov (KS), Cramer-Von-
Mises (CVM) and Anderson-Darling (AD) tests. The p-values 
of the three tests for both data sets are satisfactory and thus 
show that the model fits the data quite well. The value of the 
statistics and corresponding p-values are reported in Table 6. 
For the illustration of estimation methods using the given data, 
three values of m (failure information) and nine different cen-
soring schemes (3 schemes corresponding to each value of 
m) are used, which are presented in Table 7. The point and 
interval estimates, both classical and Bayes, of the parameters 
under each data set are computed. For the Bayesian computa-
tions, MCMC method is used having a posterior sample size 
of 1, 00, 000 with a burn-in period 20, 000. The results are 
reported in Tables 8 and 9, respectively. Also, we have drawn 

Table 6   Goodness of fit tests for 
the real data sets

KS CVM AD

Statistic P-value Statistic P-value Statistic P-value

Data set 1 0.1406 0.5467 0.11306 0.5272 1.6362 0.1473
Data set 2 0.2051 0.139 0.23603 0.2076 1.3237 0.2247

Table 7   Progressive type-II censoring schemes used in real data anal-
ysis

Censoring 
scheme no

n m Censoring scheme: R
∼
= (R1,R2,… ,Rm)

1 30 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 0 0 2 1 0 1 2 1 0 0 2 1 2
3 20 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2
5 25 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

0 0 0 1
6 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 2
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Fig. 2   Trace and ACF plots of � (Green) and � (Pink) for the real data set 1
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Fig. 3   Trace and ACF plots of � (Green) and � (Pink) for the real data set 2
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diagnostic plots like trace and ACF plots of the MCMC sam-
ples to check the convergence for each censoring scheme. 
These plots are shown in Figs. 2 and 3, respectively. The trace 
plots show the fine mixings of the generated Markov chains in 
each case. Also, the ACF plots show that there is no autocor-
relation present in the generated MCMC samples.

7 � Conclusions and future scope

This paper deals with the classical and Bayesian estimation 
methods of the parameters of two-parameter generalized uni-
form distribution (GUD). The GUD is a very useful lifetime 
model in real-life situations and it can model a variety of 
lifetime data sets. The maximum likelihood and the associ-
ated asymptotic confidence interval estimates of the param-
eters were developed. The Bayes estimates and HPD credible 
intervals based on the MCMC method were also derived. A 
Monte Carlo simulation was carried out to compare vari-
ous estimates developed. Simulation results showed that the 
Bayes estimates with some prior information outperformed 
the ML estimates and the HPD credible intervals gave better 
results than the asymptotic confidence intervals. Two dif-
ferent real data sets were analysed for illustrative purposes. 
As a future course of study, using the same methodology, 
we can obtain various estimates of the parameters as well 
as the reliability characteristics of different lifetime models.
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