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Abstract
In the present study, a novel methodology named “Picture Fuzzy Lambda-Tau Methodology (PFLTM)” is developed for the 
reliability and risk analysis of complex systems in uncertain and fuzzy environments. The methodology obtained is help-
ful for both qualitative and quantitative analyses of complex systems. In qualitative analysis, the Petri Net (PN) Model is 
developed from the corresponding fault tree. Whereas, in quantitative analysis, picture fuzzy set theory is combined with 
the lambda-tau methodology to get the membership function of reliability parameters. Additionally, a new method for risk 
analysis is developed to address the limitations of conventional risk analysis methods. The washing unit of a paper mill 
has been considered to exhibit the proposed methodology. Various expressions of reliability measures of the system, like 
mean time to repair (MTTR), mean time between failures (MTBF), reliability, availability, and expected number of failures 
(ENOFs), are obtained. Also, for different spreads, the numerical values of these measures are calculated and compared 
with different existing methodologies.

Keywords Picture fuzzy set · Petri nets · Lambda-tau methodology · Triangular picture fuzzy set · Washing unit

1 Introduction

Reliability engineering is specifically referred to as a tech-
nical field that studies all kinds of failure-driven charac-
teristics of a system. If everything went according to plan 
and all the requirements were satisfied, there would be no 
cause for complaint or failure, and as a result, there would 
be no need for reliability engineering. But, this is sadly not 
the case. Failure is almost always a part of systems. Any 
significant failure in the system's operation, or a series of 
smaller problems, could lead to a disaster that would harm 
human lives and damage the environment, ecosystem, and 
property in a way that can't be restored. Growing concern 
over the performance of critical systems has led researchers 
to develop various reliability techniques for more efficient 

analysis of these systems (Cai 1996a). Traditional reliability 
techniques rely on two assumptions: a binary-state assump-
tion that the system can only be in one of two states: fully 
operating or completely failed, and a probability assump-
tion, which means a system's reliability is measured by the 
probability that it will be able to carry out required tasks 
efficiently without any error during a certain time period 
(Kai Yuan et al. 1991a). Traditional reliability techniques 
are named "probist" by Cai (1996a), and the systems studied 
by it were known as "probist systems" (Cai 1996a; Kai Yuan 
et al. 1991a). Various researchers have applied traditional 
reliability techniques for the analysis of the complex sys-
tems (Jamadar et al. 2023; Kumari et al. 2019; Musa et al. 
2023). However, in many systems, it is extremely challeng-
ing to estimate the correct probabilities due to presence of 
uncertainty in the data collected from the system. In addi-
tion, it is specifically highlighted that the probist reliability 
theory does not provide accurate results when the system 
fails very rarely or when hypothetical samples are used for 
result calculations. Also, the system can be present in more 
than two states i.e. system can work in partially failed mode. 
Consequently, neither the binary-state assumption nor the 
probability assumption can be used in all practical situations. 
Therefore, in order to overcome the limitations of probist 
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theory Kai-Yuan et al., (1991c) have proposed the use of 
possibility and fuzzy-state assumptions as an alternative to 
probability and binary state assumptions. According to the 
possibility assumption, failure behavior of the system may 
be described in terms of possibility measures, and accord-
ing to fuzzy-state assumption the system’s success and fail-
ure are described in terms of fuzzy states. Fuzzy states are 
defined by fuzzy set theory (FST) given by Zadeh (1965). 
Other benefits of using FST over probabilistic theory are:

• Fuzzy theory is particularly useful in situations where the 
uncertainty is not easily quantifiable or does not fit well 
with traditional probabilistic models.

• Fuzzy theory is beneficial when dealing with linguistic 
variables or qualitative data that are difficult to measure 
precisely. This is often the case in models that incorpo-
rate human reasoning and decision-making.

• Fuzzy models can handle nonlinear relationships more 
effectively than probabilistic models.

FST is important for understanding and analyzing the reli-
ability of industrial systems in unpredictable circumstances. 
FST has been extensively used for estimating the reliability 
of repairable systems. It provides a valuable tool for main-
tenance planning and decision-making. By analyzing failure 
data and repair times, FST can help identify potential weak-
nesses in a system and prioritize maintenance activities to 
ensure optimal performance and minimize downtime (Cai 
1996a, b; Chen 1994; Kai Yuan et al. 1991a, b; Kumari et al. 
2021; Mon and Cheng 1994; Verma et al. 2002). Thereafter, 
numerous direct and indirect fuzzy set expansions have been 
developed and successfully applied in the majority of real-
life situations. Intuitionistic fuzzy set (IFS) theory given by 
Atanassov (1999), is one of the extensions of FST which 
assigns a non-membership and a membership degree inde-
pendently in such a way that the total of the two degrees 
must be less than one. IFS theory is widely used for the 
reliability analysis of complex systems. Some of the signifi-
cant contributions are mentioned below. Shu et al. (2006) 
did an analysis of printed circuit board assembly using 
expert's knowledge and experience. They utilized IFS for 
the analysis of the system. The integration of expert knowl-
edge with the IFS technology allowed for a more efficient 
and effective evaluation of the system. Mahapatra and Roy 
(2009) evaluated the reliability of series and parallel systems 
using triangular IF numbers and their arithmetic operations. 
Kumar et al. (2013) evaluated the Membership function and 
Non-membership function reliability parameters of series 
and parallel systems using time-dependent IFS. Garg et al. 
(2013b) evaluated the reliability of engineering systems 
using IFS. Their study found that IFS proved to be a useful 
tool in assessing the reliability of complex engineering sys-
tems by considering various uncertainties and vagueness in 

the data. Kumar and Kaushik (2020) assessed the reliability 
of the AP1000 passive safety system by employing qualita-
tive data, such as expert opinions and judgements, within the 
IFS environment. Utilising qualitative data was found to be a 
valuable method for evaluating the safety performance of the 
system, highlighting the significance of expert opinions in 
assessing intricate engineering systems such as the AP1000.

The fault tree analysis (FTA) method assumes that each 
event's underlying causes are random and unrelated to each 
other statistically. However, some frequent causes may pro-
duce relationships in event probabilities that go against the 
independence requirements and may increase the risk of 
failure. Markov models efficiently overcome this limitation. 
However, employing the Markov approach for analysing 
systems requires the computation of a substantial number 
of equations. PNs provide a convenient solution to all these 
limitations. The use of PNs permits the effective simultane-
ous construction of minimum cut and route sets, unlike the 
fault tree. Modeling a system using PNs has other advantages 
too, like making the overall understanding of the system bet-
ter with its tools (Kumar and Aggarwal 1993). Knezevic 
and Odoom (2001) have combined the theory of PNs with 
FST and Lambda-Tau Methodology (LTM). Their strategy 
is based on quantitative analysis of systems utilizing the FST 
and LTM. Whereas, qualitative modeling of the system is 
done using PN, with fundamental events being represented 
by triangular membership functions; hence the resulting 
methodology was named Fuzzy Lambda-Tau Methodology 
(FLTM). FLTM was utilized by many researchers with the 
aim of finding the reliability of complex systems (Dhiman 
and Kumar 2022; Garg et al. 2013a; Knezevic and Odoom 
2001; Sharma and Mamta 2022; Srivastava et al. 2019). 
FLTM has the drawback that it only considers the degree of 
membership for the reliability analysis of system. To over-
come drawback of FLTM, researchers combined PNs theory 
with IFS theory and LTM, creating a method called Intui-
tionistic Fuzzy Lambda-Tau Methodology (IFLTM) (Garg 
2013, 2014; Kushwaha et al. 2021, 2022). But it was later 
discovered that one critical aspect, i.e., the degree of neutral-
ity, is missing from the IFLTM. The degree of neutrality may 
be observed in circumstances wherein, human perspectives 
result in "yes," "abstain," "no," and refuse responses. For 
instance, 600 people can cast a ballot in an election, and the 
voting results are summarized as follows: 350 voted in favor, 
79 abstained from voting, 140 voted against, and 31 refused 
to vote. When a group votes "abstain,” it indicates they 
reject both “agree” and “disagree” with the candidate but 
still count the vote. Invalid ballots or voting absentees are 
both examples of group “refusal of voting" (Dutta and Ganju 
2018). Thereafter, to overcome this shortcoming of IFS, the 
picture fuzzy set (PFS) was developed by Cuong and Kre-
inovich (2013, 2014). PFS takes into account the neutral, 
positive, and negative membership degrees of elements for 
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a more realistic representation of human behavior. Hence, 
to overcome the drawbacks of FLTM and IFLTM/VLTM, 
the present work proposes a novel methodology known as 
the Picture Fuzzy Lambda-Tau Methodology (PFLTM) for 
assessing the behavior of complex systems under ambigu-
ous and uncertain circumstances. The primary benefit of 
PFLTM is that it utilizes superior PFS for the analysis of 
complex systems.

Objective of the study includes the comparison of mem-
bership function of various reliability parameters obtained 
using proposed method with the one obtained using VLTM. 
Another important objective of the study is to compare the 
defuzzified values for different spreads (±15%,±25,±50) 
obtained by FLTM and VLTM with proposed PFLTM. 
Furthermore, risk analysis of the system is also done using 
picture fuzzy sets to overcome the drawbacks of traditional 
risk analysis methods and to identify the most critical com-
ponent of the system. A paper mill's washing unit is used to 
demonstrate the suggested method. Various expressions of 
reliability measures like mean time to repair (MTTR), mean 
time between failures (MTBF), reliability, availability, and 
expected number of failures (ENOFs) are obtained, and there 
are numerical values with different spreads that are calcu-
lated and compared with crisp, FLTM, and VLTM.

The remainder of the article is structured as follows: The 
PN theory is introduced in Sect. 2, and the procedure for 
transforming the FTA model into a PN model is also given 
here. This section also describes the lambda-tau approach 
for estimating the reliability of repairable systems. Picture 
fuzzy sets theory is given in Sect. 3. A new method to find 
reliability using PNs and picture fuzzy sets is proposed in 
Sect. 4. An example of the washing unit of a paper mill has 
been taken into consideration in order to explain the sug-
gested technique in Sect. 5. Also, this section compares the 
new methodology with the existing methods. Risk analysis 
of the washing unit is done in Sect. 6. Section 7 draws con-
clusions and Sect. 8 at the end contains the future scope of 
the study.

2  Basic concepts

2.1  Petri nets theory

Petri net (PN) is a mathematical tool developed by C.A. 
Petri in the early 1960s for modeling complex repairable 
systems. PNs are mathematical and graphical tools for 
defining the relationships between conditions and out-
comes. It is considered powerful system modeling tool 
because it can express a wide range of logical relations. It 
may also be used to observe dynamic behavior in addition 
to simulation, reliability analysis, and failure monitoring. 
The following are some of the fundamental components 
of PNs: places, immediate transition, timed transition, 
arc, token, inhibitor arc. Figure 1 shows a simple net that 
includes all of the PN’s elements.

PNs are widely used by researchers for reliability analy-
sis and failure monitoring of complex systems (Dhiman 
and Kumar 2022; Garg 2013, 2014; Garg et al. 2013a; 
Hura and Atwood 1988; Knezevic and Odoom 2001). In 
the discipline of reliability modelling, PNs are easier to 

Fig. 1  Elements of Petri Nets Model

Fig. 2  ‘AND/OR’ logic gate operations for fault tree and Petri nets

Table 1  Conventional expression of Lambda-Tau methodology

Gate λAND τAND λOR τOR
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use and outperform traditional FTA. ‘AND/OR’ logic gate 
operations for both “fault tree and Petri nets” are shown 
in Fig. 2.

2.2  Lambda‑tau methodology (LMT)

LTM is a method used for quantitative analysis of the PN 
model repairable systems. The fundamental formulae for � 
and � for components connected by ‘AND’ and ‘OR’ gates 
are deduced by Mishra (2012) and are shown in Table 1. 
These formulas might be used to derive a number of system 
parameters, including those given in Table 2.

3  Picture fuzzy set theory

Some basic concepts related to picture fuzzy set theory are 
given below:

3.1  Picture fuzzy set (PFS)

Let X be a universal set, than PFS Ã defined on X is math-
ematically represented by following equation

where �
Ã
(x), ηÃ(x), νÃ(x)ϵ[0,1] and �

Ã
(x) is degree of posi-

tive membership, η
Ã(x) is degree of neutral membership, 

ν
Ã
(x) is degree of negative membership of x in Ã . Following 

are some properties of �
Ã
(x), ηÃ(x), �Ã(x)

 i. Sum of �
Ã
(x), ηÃ(x), νÃ(x) is less than equal to 1

 ii. degree of refusal membership is given by 
1 −

(
�
Ã
(x) + η

Ã(x) + ν
Ã
(x)

)

For instance on a universal set X, if a PFS Ã′s member-
ship values are [0.5, 0.3, 0.1] where �

Ã
(x) is 0.5, η

Ã(x) is 0.3 
and ν

Ã
(x) is 0.1. It can be explained as, if X is the outcome 

of votes casted by ten individuals, then five voted in favor, 

(3)Ã =
{(

x,�
Ã
(x), ηÃ(x), νÃ(x)

)
∨ x ∈ X

}

three abstained from voting, one voted against, and one did 
not participate in the election.

3.2  α‑cut of picture fuzzy set

Let Ã is PFS on universal set X. Then α-cut of PFS Ã is a 
crisp subset and is given by

where � ∈ [0,1] . That is.

are � cut of positive, neutral, negative membership function 
respectively of PFS.

(4)
A� =

{
x ∶ x ∈ Xsuchthat�

Ã(x) ≥ �, 1 − �
Ã(x) ≥ �, 1 − �

Ã(x) ≥ �
}

(5)
A𝛼
+

=
�
x ∈ X ∶ 𝜇Ã(x) ⩾ 𝛼

�
A
(1−𝛼)

(±)
= x ∈ X ∶∈ 1 − 𝜂Ã(x)and

A1−𝛼
−

=
�
x ∈ X ∶ 1 − 𝜈Ã(x) ⩾ 𝛼

�
,

⎫⎪⎬⎪⎭

Table 2  Reliability parameters 
for system analysis

Parameters Formulae

Mean time to failure (MTTFs) MTTFs =
1

�s

Mean time to repair (MTTRs) MTTRs =
1

�s

= �s

Mean time between failure (MTBFs) MTBFs = MTTFs +MTTRs

Availability As(t) =

(
�s

�s+�s

)
+

(
�s

�s+�s

)
⋅ e−(�s+�s)⋅t

Reliability e−�s⋅t

Expected number of failures (ENOFs)
Ws(0, t) =

(
�s⋅�s

�s+�s

)
⋅ t +

(
�s

�s+�s

)2

⋅

[
1 − e−(�s+�s)⋅t

]

Fig. 3  α-cut of TPFS Ã
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3.3  Triangular picture fuzzy set (TPFS)

Let Ã be a PFS which can be represented as 
Ã = ⟨[(l,m, n);�, �, �]⟩ , where l,m, n belongs to real num-
bers. Then membership function of triangular picture fuzzy 
number for positive, neutral, negative degrees of member-
ship is given respectively by

Also α-cut of TPFS Ã = ⟨[(l,m, n);�, �, �]⟩ is given by 
Eq. 9 and graphically shown in Fig. 3.

A�
+ =

[

l + �
�
(m − l), n − �

�
(n − m)

]

A1−�
± =

[

l + �
�
(m − l), n − �

�
(n − m)

],

3.4  Arithmetic operations on two TPFSs

Consider two TPFSs Ã = ⟨�(l,m, n);�1, �1, �1
�⟩ and 

B̃ = ⟨�(p, q, r);�2, �2, �2
�⟩ where 0 ≤ �1 ≤ �1 ≤ �1 ≤ 1 and 

0 ≤ �2 ≤ �2 ≤ �2 ≤ 1. Then arithmetic operations between 
two TPFSs are given by equations.

1. Ã⊕ B̃ = ⟨

[

(l + p,m + q, n + r);min(�1,�2);min(�1, �2);min(�1, �2)
]

⟩
 (10)

2. Ã⊖ B̃ = ⟨

[

(l − p,m − q, n − r);min(�1,�2);min(�1, �2);min(�1, �2)
]

⟩
 (11)

3. Ã⊗ B̃ ≃ ⟨

[

(l × p,m × q, n × r);min(�1,�2);min(�1, �2);min(�1, �2)
]

⟩
 (12)

4. Ã∕B̃ = ⟨

[

(l∕p,m∕q, n∕r);min(�1,�2);min(�1, �2);min(�1, �2)
]

⟩
 , 0 ∉

[

p, r
] 

(13)

(6)(x) =

⎧
⎪⎪⎨⎪⎪⎩

0;x ≤ l

�

�
x−l

m−l

�
;l ≤ x ≤ m

�

�
n−x

n−m

�
;m ≤ x ≤ n

0;n ≤ x

(7)1 − �
Ã
(x) =

⎧
⎪⎪⎨⎪⎪⎩

0;x ≤ l

�

�
x−l

m−l

�
;l ≤ x ≤ m

�

�
n−x

n−m

�
;m ≤ x ≤ n

0;n ≤ x

(8)1 − �
Ã
(x) =

⎧
⎪⎪⎨⎪⎪⎩

0;x ≤ l

�

�
x−l

m−l

�
;l ≤ x ≤ m

�

�
n−x

n−m

�
;m ≤ x ≤ n

0;n ≤ x

(9)A1−�

−
=

[
l +

�

�
(m − l), n −

�

�
(n − m)

]

4  Proposed picture fuzzy lambda‑tau 
methodology

A novel approach known as picture fuzzy lambda-tau meth-
odology (PFLTM) has been proposed in the present work for 
the analysis of the repairable industrial systems. Fundamen-
tal assumptions of the methodology are:

• The λ and τ of the components are constant, independent, 
and distributed exponentially.

• After repairs components are considered as good as new.
• All subsystems don't malfunction at the same time.
• Each component has its own repair facility.
• Repair of the component starts immediately after its fail-

ure.

First step of the methodology is to gathering data in 
the form of � and � of components from multiple sources. 
Since, the great majority of data obtained is either out of 
date or were created in a variety of operational and envi-
ronmental conditions hence is bound to have uncertainties 
and imprecision. Therefore, the obtained crisp data of � 
and � is transformed into fuzzy numbers to deal with these 
uncertainties and imprecision. More specifically, the crisp 
data of � and � is transformed into triangle picture fuzzy 
numbers with known spread as proposed by the design 
maintenance expert/system reliability analyst. Figure 4 
depicts the � and � of the ith component of a system in the 
form of triangle picture fuzzy numbers with equal spread 
15% in both directions. In the next step of the methodol-
ogy, a fault tree model of the repairable industrial system 
is developed based on the primary causes of failure of its 
subcomponents for reliability analysis. The PN model is 
then derived from its corresponding fault tree model, and its 
minimal cut sets are determined using the matrix approach 
(Liu and Chiou 1997). Once the triangular picture fuzzy 
numbers for each component and PN model of the system 
are obtained, the triangular picture fuzzy numbers for the 
� and � of top position of PN model are obtained using the 
proposed PFLTM. The proposed picture fuzzy expressions 
(Eqs. 13–18) for the � and � for the OR/AND transitions of 
PN model for triangular picture fuzzy numbers are obtained 
by utilizing conventional lambda-tau expression given in 
Table 1. For that let the � and � be represented by triangu-
lar picture fuzzy set as �̃i = ⟨���i1, �i2, �i3

�
;�i, �i, �i

�⟩ and 
�̃i = ⟨���i1, �i2, �i3

�
;�i, �i, �i

�⟩
For positive membership function: Expression for 

AND-Transition
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Expression for OR-Transition
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⎧
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��
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Fig. 4  triangle picture fuzzy numbers for � and � of the ith component with ±15%  spread
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For neutral membership function: Expression for 
AND-Transition

Expression for OR-Transition

For negative membership function: Expression for 
AND-Transition

�(�η) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

∏n

i=1

��
λi2 − λi1

� �η

ηi
+ λi1

�
⋅

∑n

j=1

⎛
⎜⎜⎜⎝

∏n

i = 1

i ≠ j

��
τi2 − τi1

� �η

ηi
+ τi1

�⎞⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣

∏n

i=1

�
−
�
λi3 − λi2

� �η

ηi
+ λi3

�
⋅

∑n

j=1

⎛⎜⎜⎜⎝

∏n

i = 1

i ≠ j

�
−
�
τi3 − τi2

� �η

ηi
+ τi3

�⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(15)�
�
�η
�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏n

i=1

��
τi2 − τi1

� �η

ηi
+ τi1

�

∑n

j=1

⎡
⎢⎢⎢⎣

∏n

i = 1

i ≠ j

�
−
�
τi3 − τi2

� �η

ηi
+ τi3

�⎤⎥⎥⎥⎦

,

∏n

i=1

�
−
�
τi3 − τi2

� �η

ηi
+ τi3

�

∑n

j=1

⎡
⎢⎢⎢⎣

∏n

i = 1

i ≠ j

��
τi2 − τi1

� �η

ηi
+ τi1

�⎤⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

�(�η) =

[

∑n

i=1

{

(

λi2 − λi1
)
�η
ηi

+ λi1

}

,
n
∑

i=1

{

−
(

λi3 − λi2
)
�η
ηi

+ λi3

}

]

(16)�(�η) =

⎧
⎪⎪⎨⎪⎪⎩

∑n

i=1

��
(λi2−λi1)

�η

ηi
+λi1

�
⋅

�
(τi2−τi1)

�η

ηi
+τi1

��

∑n

i=1

�
−(λi3−λi2)

�η

ηi
+λi3

� ,

∑n

i=1

��
−(λi3−λi2)

�η

ηi
+λi3

�
⋅

�
−(τi3−τi2)

�η

ηi
+τi3

��

∑n

i=1

�
(λi2−λi1)

�η

ηi
+λi1

� ,

⎫⎪⎪⎬⎪⎪⎭

�(�ν) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣

∏n

i=1

��
λi2 − λi1

� �ν

νi
+ λi1

�
⋅

∑n

j=1

⎛⎜⎜⎜⎝

∏n

i = 1

i ≠ j

��
τi2 − τi1

� �ν

νi
+ τi1

�⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣

∏n

i=1

�
−
�
λi3 − λi2

� �ν

νi
+ λi3

�
⋅

∑n

j=1

⎛⎜⎜⎜⎝

∏n

i = 1

i ≠ j

�
−
�
τi3 − τi2

� �ν

νi
+ τi3

�⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭



300 Life Cycle Reliability and Safety Engineering (2024) 13:293–307

Expression for OR-Transition
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Several reliability indicators of importance, such as 
MTBF, reliability, ENOFs, and availability, are then deter-
mined utilizing Eqs. 13–18, minimal cuts, and formulae 
given in Table 2. Finally, the fuzzy output is defuzzified 
into a crisp value, because the majority of human or com-
puter actions or judgements are based on binary or crisp 
data. Out of several defuzzification techniques, centre of 
gravity method of defuzzification is used here in this study. 
General formula for the defuzzification using alpha cut 
method is given below
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Table 3  Failure rate and repair 
time data

Components λi τi

Cleaners(i = 1,2,3) 3*10–3 2
Filter(i = 1) 1*10–3 3
Deckers(i = 7,8) 5*10–3 3
Screeners(i = 5,6) 5*10–3 3

Fig. 5  PN model of paper mill’s washing unit

Fig. 6  Fault tree model of paper 
mill’s washing unit
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Fig. 7  Membership function of reliability parameters (a) Failure rate (b) Repair time (c) MTBF (d) Reliability (e) Availability (f) ENOFs
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where µÃ(x) is the membership function defined on the inter-
val [x1, x2].

5  An illustration

Kraft pulp is a dry material that can be used again to make 
paper. An important part of the paper making process is 
washing kraft pulp. The better the pulp is cleaned, the less 
it has to be bleached, and the less bleach used implies less 
is the wastage of resources. Therefore, pulp washing is an 
important aspect of pulp processing and, hence, of paper 
making. This process is used to separate the pulp from 
the black liquid in order to wash off residual compounds 
such as alkali-lignin formed during the cooking process. 
Prepared pulp is washed in three to four phases, and given 

(19)Defuzzifiedvalue =
∫

x2
x1
x ⋅ �

Ã
(x) ⋅ dx

∫
x2
x1
�
Ã
(x) ⋅ dx

below are four important subsystems of the washing unit 
(Garg 2013).

• Filter (F): A filter is single component in the washing 
unit that is used to drain black liquid from prepared pulp.

• Cleaners (C): In this subsystem, three cleaning units 
are placed in parallel. Each unit uses centrifugal force 
to clear the pulp. Any failure reduces the system's effi-
ciency and the paper's quality.

• Screeners (S): In this subsystem, two screener units are 
linked in series. These strainers are used to remove big, 
raw, or irregularly shaped threads from pulp. Failure of 
anybody will result in the entire system failing.

• Deckers (D): In this subsystem, two decker units are con-
nected in a parallel arrangement. Deckers are used to 
minimize the blackness of the pulp. When both compo-
nents of the decker fail, the decker fails completely.

The following are the steps for determining the mem-
bership function of various reliability parameters:

Table 4  Reliability achieved 
using the existing VLTM given 
by Garg 2013 and crisp

α Crisp Garg 2013 (VLTM)

a a’ b c’ C

0 0.894488 0.909898 0.909898 0.894488 0,87,916 0.87916
0.1 0.894488 0.907323 0.907967 0.894488 0.881073 0.88171
0.2 0.894488 0.904751 0.906037 0.894488 0.882986 0.884262
0.3 0.894488 0.902182 0.904108 0.894488 0.8849 0.886816
0.4 0.894488 0.899615 0.902182 0.894488 0.886816 0.889371
0.5 0.894488 0.89705 0.900256 0.894488 0.888732 0.891929
0.6 0.894488 0.894488 0.898332 0.894488 0.89065 0.894488
0.7 0.894488 –- 0.89641 0.894488 0.892568 –
0.8 0.894488 - 0.894488 0.894488 0.894488 –-
0.9 0.894488 –- - –- –- –-
1.0 0.894488 –- –- –- –- –-

Table 5  Reliability 
achieved using the proposed 
methodology i.e. PFLTM

Proposed methodology (PFLTM)

a a a’ a’’ b c’’ c` c

0 0.909898 0.909898 0,909,898 0,894,488 0.87916 0.87916 0.87916
0.1 0.906809 0.907691 0.908181 0.894488 0.88086 0.881346 0.882221
0.2 0.903723 0.905486 0.906466 0.894488 0.882561 0.883533 0.885283
0.3 0.900641 0.903283 0.904751 0.894488 0.884262 0.885721 0.888349
0.4 0.897563 0.901081 0.903038 0.894488 0.885964 0.887911 0.891417
0.5 0.894488 0.898882 0.901326 0.894488 0.887667 0.890102 0.894488
0.6 –- 0.896684 0.899615 0.894488 0.889371 0.892294 –
0.7 –- 0.894488 0.897905 0.894488 0.891076 0.894488 –-
0.8 –- –- 0.896196 0.894488 0.892782 –- –-
0.9 –- –- 0.894488 0.894488 0.894488 –- –-
1.0 –- –- –- –- –- –- –-
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Step 1. Data in the form of � and � of various compo-
nents has to be collected in first step from various sources. 
These sources include system specialists, past research, 
historical documents. Obtained data is given in Table 3.

Step 2. Because the data gathered in the preceding stage 
from diverse sources might be imprecise, and confusing, and 
is gathered under a range of environmental conditions. Con-
sequently, crisp data collected in the first stage is fuzzified 
into TPFNs with known and equal spreads of ±15% in left 

and right direction of the centre with corresponding α-cut 
as shown in Fig. 4.

Step 3. The PNs model of the system given in Fig. 5 is 
then derived from its corresponding fault tree model which 
is given in Fig. 6. Here “WUF” represents failure of wash-
ing unit. Minimal cut sets computed using the matrix tech-
nique are {F}, {C1,  C2,  C3}, {S1}, {S2} {D1,  D2}. Several 
of the relevant reliability indicators, such as MTBF, reli-
ability, ENOFs, and availability, are then calculated using 
Eqs. 13–18, minimal cuts, and formulas shown in Table 2. 

Table 6  Defuzzified and Crisp 
values

a: membership function; b: non-membership function; c: positive membership function;
d: negative membership function; e: neutral membership function; f: FLTM

Reliability parameters Crisp values Defuzzified values for different spreads

 ± 15%  ± 25%  ± 50%

Failure rate (×  10–2) 1.11503242 a: 1.115547070 1.116462306 1.120757028
b: 1.115545004 1.116456565 1.120734019
c: 1.115548372 1.116470103 1.120767128
d: 1.115546148 1.116459189 1.120741114
e: 1.115544975 1.116455513 1.120730003
f: 1.115544048 1.116453908 1.120723368

Repair time 2.979753413 a: 3.125007842 3.400270069 5.083074784
b: 3.124394662 3.398320817 5.066900493
c: 3.125765921 3.412453133 5.091208764
d: 3.124687124 3.406745234 5.077048197
e: 3.124297546 3.397823345 5.047000854
f: 3.124110632 3.397416543 5.059311004

Reliability 0.8944884933 a: 0.8945090792 0.8945457948 0.8947199224
b: 0.8945089963 0.8945455624 0.8947189561
c: 0.8945091876 0.8945458189 0.8947202349
d: 0.8945089123 0.8945456598 0.8947618700
e: 0.8945089456 0.8945455088 0.894761234
f: 0.8945089579 0.8945454549 0.8947185086

Availability 0.9688463438 a: 0.9670014039 0.9634998037 0.9424275914
b: 0.9670092496 0.9635248650 0.9426122570
c: 0.9670007554 0.9634901234 0.9422435632
d: 0.9670058245 0.9635100244 0.9425645656
e: 0.9670108752 0.9635301278 0.9426504383
f: 0.9670128837 0.9635364897 0.9426985719

MTBF 92.66324602 a: 93.86128539 96.11371438 109.4252421
b: 93.85624116 96.09785293 109.3027481
c: 93.86513873 96.11400123 109.4364729
d: 93.85863674 96.10231245 109.3589197
e: 93.85516790 96.09503485 109.2793721
f: 93.85390493 96.09049753 109.2454306

ENOFs 0.1089194546 a: 0.1088924613 0.1088412862 0.1085855418
b: 0.1088925789 0.1088416517 0.1085864462
c: 0.1088924246 0.1088412209 0.1085851011
d: 0.1088925374 0.1088414096 0.1085860011
e: 0.1088926028 0.1088417180 0.1085866054
f: 0.1088926334 0.1088418210 0.1085868585
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These parameters are calculated using PFS [0.5, 0.9, 0.7] 
where 0.5 is positive membership value (µ), (1 − 0.9 = 0.1) 
is neutral membership value (η) and (1 − 0.7 = 0.3) is nega-
tive membership value (ν). Figure 7 depicts the computed 
results for the mission time t = 10 h by PFLTM for ±15% 
spreads, along with VLTM, FLTM, and classic reliability 
(crisp) approach results. Whereas Table 4 and 5 Compares 
the reliability obtained using VLTM and proposed methods 
i.e. PFLTM corresponding to different membership.

Step 4. Last step of the methodology is to find the defuzz-
ified results of the reliability indices, as most of the deci-
sions made by humans or machines in daily life are based on 
binary or crisp results. As a result, for application purposes, 
the fuzzified results must be converted to crisp results by the 
technique of defuzzification. Out of several defuzzification 
techniques, centre of gravity method of defuzzification is 
used here in this study. General formula for the defuzzifica-
tion using centre of gravity method is given in Eq. 19.

5.1  Comparison and discussion

The results for a washing unit of paper plant are obtained 
using the crisp reliability approach, FLTM, VLTM, and the 
proposed method PFLTM for the different membership val-
ues. Figure 7, Tables 4, and 5 contains the obtained results 

and after comparing the results, the following conclusions 
are drawn:

1. The value of  reliability parameters calculated using 
crisp methodology remains constant for all values of α. 
Table 4 clearly exhibits the same i.e. reliability of sys-
tem is equal to 0.894488 at all α levels. Hence this meth-
odology is appropriate when the data is exact and defi-
nite, and it does not give trusted results when vagueness 
is involved in the data.

2. The VLTM provided by Garg in (2013) is less practical 
since it does not take into account the degree of neutral 
membership values. VLTM only considers the degree of 
membership and non-membership, whereas the degree 
of hesitation or indeterminacy is simply obtained by 
subtracting the sum of degree of membership and non-
membership from 1. This implies that, degree of neutral 
membership is not considered in VLTM. Table 4 shows, 
for example, that the degree of membership and non-
membership values corresponding to reliability of the 
system r = 0.902182 are 0.3 and 0.6 , respectively.There 
is a 0.1 degree of hesitation/indeterminacy that the reli-
ability value of system is 0.902182. However, there no 
degree of neutral membership involved here.

3. Hence, the suggested technique eliminates the shortcom-
ing of VLTM by considering 0.1 as the degree of neutral 
membership denoted by the red line in Fig. 7 and  a” and 
 c” in Table 5. Therefore, in PFLTM, along with positive 
(μ) and negative (ν), a neutral (η) membership is also 
considered to better capture the ambiguity present in 
the data. Table 5, for example, shows that the degrees of 
positive, negative, and neutral memberships correspond-
ing to the reliability of the system r = 0.903723 are 0.2, 
0.29, and 0.41, respectively. The degree of neutral mem-
bership, i.e. 0.41 is not considered in FLTM and VLTM. 
Also, there is a 0.1 degree of hesitation/indeterminacy, 
that the reliability value of the system is 0.903723.

4. Table  6 contains the crisp and defuzzified values 
of various system parameters at different spreads, 

Table 7  Linguistic terms and their corresponding picture fuzzy num-
bers

Linguistic terms Picture fuzzy set

Absolute low {(0.0, 0.0, 0.0;1.0, 1.0, 1.0)}
Very low {(0.04, 0.11, 0.15; 0.5, 0.7, 0.6)}
Low {(0.17, 0.25, 0.36; 0.5, 1.0, 0.8)}
Medium {(0.32, 0.4, 0.56; 0.5, 0.9, 0.75)}
High {(0.52, 0.63, 0.75; 0.7, 0.95, 0.8)}
Very high {(0.72, 0.81, 0.92; 0.4, 0.6, 0.5)}
Absolute high {(1.0, 1.0, 1.0; 1.0, 1.0, 1.0)}

Table 8  Linguistic values of R̃ij
 

and W̃ij
 of sub-components

Component Sub-com-
ponents

Linguistic value of 
severity of loss ( ̃Wij

)
Linguistic value of probabil-
ity of failure ( ̃Rij

) by  E1

Linguistic value of prob-
ability of failure ( ̃Rij

) 
by  E2

F Very high Very low (0.4,0.9,0.65) Low(0.42,0.8,0.51)
C C1 Medium High (0.5,0.85,0.6) Medium(0.32,0.9,0.7)

C2 Medium High (0.5,0.85,0.6) Medium(0.32,0.9,0.7)
C3 Medium High (0.5,0.85,0.6) Medium(0.32,0.9,0.7)

S S1 High Very high (0.45,0.86,0.65) High(0.55,0.9,0.7)
S2 High Very high (0.45,0.86,0.65) High(0.55,0.9,0.7)

D D1 Medium Very high (0.425,0.85,0.7) High (0.5,0.8,0.6)
D2 Medium Very high (0.425,0.85,0.7) High (0.5,0.8,0.6)
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i.e., ± 15, ± 25, and ± 50. The values of these parameters 
have been defuzzied because it is easier for humans and 
machines to work with defuzzied values. The centre of 
gravity method given in Sect. 4 has been used to obtain 
the defuzzied values. Table 6 clearly shows that defuzz-
ied values change with a change in spread, whereas crisp 
values don’t change with spread. Table 6 is very helpful 
for system analysts or decision makers in making a new 
maintenance plan for the system. For example, now sys-
tem analysts can use the new MTBF, i.e., 93.86513873, 
obtained using the new PFLTM for developing newer 
optimized maintenance plan.

5. It is also observed from Table 6 that the defuzzied values 
of the system parameters increases or decreases with 
increase or decrease in the spread. This implies that the 
results obtained using the proposed PFLTM are con-
servative in nature and hence helpful to plant analysts 
or decision makers in getting a better idea about the 
plant. Thus, plant personnel can get higher profits using 
defuzzied results obtained by the proposed PFLTM.

6  Risk analysis using picture fuzzy set

Risk analysis of a system is consideredan essential task for 
developing a good maintenance plan for any system. For the 
risk analysis of a washing unit, this study utilizes the method 
given by Chen and Chen (2003). The “severity of loss ( ̃Wi )” 
due to each component and the “probability of failure ( ̃Ri )” of 
each components are required. The value of R̃i and ̃Wi of com-
ponents depends on R̃ij

 and W̃ij
 of their sub-components. The 

“probability of failure ( ̃Rij
 )” of any sub-component is a func-

tion of MTBF of that sub-component on the other hand the 
severity of loss ( ̃Wij

 ) depends on the MTTR of that sub-com-
ponent. R̃ij

 and W̃ij
 of each sub-components can be represented 

in linguistic terms (Table 7) by using the MTBF and MTTR 
these sub-components. Then the “probability of failure ( ̃Ri )” 
of components is calculated in terms of their sub-components 
using these linguistic terms in Eq. 20 given by Chen and Chen 
in 2003.

where i = F, C, S, D and j represents number of sub-compo-
nents present in each component for example for C, j = 1, 2, 
3 and for S, j = 1, 2 and for D, j = 1, 2. Set of seven linguistic 
terms with their corresponding PFS is given in Table 7. The 
linguistic values given to each sub-component by two system 
experts  E1 and  E2 along with their degree of confidence (ωi) 
is given in Table 8. Thereafter, algorithm given by Chen and 

(20)�Ri =
(
∑n

j=1
�Rij

⊗ �Wij
)

∑n

j=1
�Wij

Chen in 2003 is used to obtain the R̃ij
 of each component of 

washing unit.
Step 1. Find the R̃i of every component by applying 

Eq. 9–12 and Eq. 20 on R̃ij
 and W̃ij

 of each sub-component and 
the obtained results are as follows:

Step 2. Using results obtained in Step 1 and Table 7, 8 the 
failure probability R̃i of every component is:

Step 3. Using the study given by Wang et al. (2017) the 
score of each component is obtained and given as:

Score(R̃F) = -0.01; Score(R̃C) = 0.06; Score(R̃S) = 0.15; 
Score(R̃D) = 0.1125.

Greater the score, greater is the probability that com-
ponent will fail. Since order of the calculated scores is 
Score(R̃S) > Score(R̃D) > Score(R̃C) > Score(R̃F ) hence rank-
ing order of picture fuzzy set is R̃S>R̃D>R̃C>R̃F . As a result, 
component S has the highest failure probability, followed by 
D, C, and F. Hence, obtained results are very helpful to plant 
personals in designing better maintenance plan.

7  Conclusion

The current research paper develops a new methodology 
known as the picture fuzzy lambda-tau methodology for the 
modeling and analyzing complex systems. The paper mill's 
washing unit is considered here to demonstrate the proposed 
methodology. The proposed methodology is very helpful for 
qualitative and quantitative analyses of complex systems. 

�RC =
(�RC1

⊗ �WC1
)⊕ (�RC2

⊗ �WC2
)⊕ (�RC3

⊗ �WC3
)

( �WC1
⊕ �WC2

⊕ �WC3
)

�RS =
(�RS1

⊗ �WS1
)⊕ (�RS2

⊗ �WS2
)

( �WS1
⊕ �WS2

)

�RD =
(�RD1

⊗ �WD1
)⊕ (�RD2

⊗ �WD2
)

( �WD1
⊕ �WD2

)

R̃F = {(0.105, 0.18, 0.255;0.41, 0.85, 0.58)}

R̃C = {(0.42, 0.515, 0.655;0.41, 0.875, 0.65)}

R̃S = {(0.62, 0.72, 0.835;0.45, 0.88, 0.7)}

R̃D = {(0.62, 0.72, 0.835;0.462, 0.825, 0.65)}
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Qualitative analysis of the system is done by obtaining its 
PN model whereas, for quantitative analysis the proposed 
PFLTM is utilized to obtain the membership function of 
reliability parameters such as MTBF, ENOFs, reliability, and 
availability. Furthermore, a systematic framework based on 
risk analysis has been developed to assist maintenance engi-
neers in analysing and forecasting the behaviour of the sys-
tem. The conversion of the available data into picture fuzzy 
numbers has greatly increased the ability of LTM for the 
efficient analysis the reliability of the system. Picture fuzzy 
set theory is used instead of fuzzy and vague set theory to 
deal more efficiently with imprecise and uncertain data. 
Therefore, the proposed methodology for reliability and 
risk analysis based on picture fuzzy set not only overcomes 
the challenges of existing methodologies but also includes 
domain experts' confidence levels and knowledge in a more 
versatile and pragmatic manner. In summary, important find-
ings of the present study are:

Developed a more reliable approach to analyze the behav-
iour of complex systems by utilizing picture fuzzy sets, 
which are defined by positive, negative and neutral mem-
bership functions;
Calculated reliability indices, such as Mean Time 
Between Failures (MTBF) and Mean Time To Repair 
(MTTR), which are crucial for determining the mainte-
nance requirements of complex systems;
A comparison is made between the membership func-
tions of different reliability parameters produced using 
the proposed method and those acquired using VLTM. 
The results of this comparison are provided in Table 4, 
5, and Fig. 7;
The defuzzified values of several reliability parameters 
for various spreads (± 15%, ± 25%, ± 50%) produced by 
FLTM and VLTM were compared with the proposed 
PFLTM;
Utilizing risk analysis to develop an appropriate mainte-
nance plan to enhance system performance and minimise 
operational and maintenance expenses.

8  Future scope of the methodology

In future research, proposed methodology can be applied to 
various industries like thermal power plants, power distribu-
tion systems, battery manufacturing units, etc. This will pro-
vide a more comprehensive understanding of the reliability 
of complex systems and help improve maintenance strate-
gies. Moreover, a comprehensive framework that combines 
metaheuristics and multi-criteria decision making (MCDM) 
can be created to effectively identify components that pose 
a risk of failure.
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