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Abstract

This article presents an operational safety assessment model and analysis in cases where failure rate and repair rate vary over
time, using the maximum likelihood analytical method as a method for estimating reliability parameters and uses Gumbel’s
graphic paper for the estimation of maintainability parameters. The proposed approach takes into account both reliability
and maintainability analyses, unlike current approaches in the literature which perform either reliability or maintainability
analyses. A Weibull law for a reliability study has the advantage of being generalized and can also model, under certain
conditions, one of the most frequent cases of distribution of technical repair times, namely the logarithmic normal distri-
bution, which lends itself well to comparison with the laws of extreme values. The hypothesis acceptance test used is the
Kolmogorov—Smirnov test. The application on the equipment of the Cameroonian Company of Petroleum Depots (CCPD)
of Garoua is based on a FMEA analysis and provides parameters and curves after operation of the time between failures
and technical times to repair (TTR).

Keywords FMECA - Operational safety - Technical Time to Repair - Time between failures - Weibull
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competitiveness of the global market and the complexity of
the systems designed due to the integration of various tech-
nologies (Guillerm 2011). It is in this context that the notion
of robustness takes place. This is because a robust produc-
tion system must be able to cope with disruptions in order
to maintain its performance at a high level (Ntricker and
Lanza 2014). However, its disruptions take place throughout
the life cycle of the system, and therefore both when it is in
operation and when it is down (the quality of maintenance
has an influence on the lifespan of a system). For this reason,
the operational safety can be seen as an indicator or param-
eter to validate the robustness of a system.

Basically, there are three main concepts that help to
understand the concept of operational safety (Avizienis
et al. 2000). These are the attributes of operational safety,
the impediments to operational safety, and the means by
which operational safety is achieved. Operational safety
attributes refer to the quantifiable, evaluable properties that
characterize the performance of the system. These are reli-
ability, maintainability, availability, and security. Reliability
refers to continuity of service, i.e., “the ability of an entity
to perform a required function, under given conditions, dur-
ing a given period of time” (NF X 60-500). Maintainability
refers to the ability to be repaired and evolved. It is “the
ability of an entity to be maintained or restored, within a
given period of time, to a state in which it can perform a
required function, when maintenance is performed under
given conditions, with prescribed procedures and means”
(NF X 60-500). Availability is “the ability of a good to
perform a required function under given conditions, at a
given time during a given time interval, assuming that the
supply of external needs is assured” (Nzié 2006). Safety is
defined for a machine as its ability to perform a function
without harming the health and integrity of the operator
(Nzié 2006). Obstacles to operational safety refer to unde-
sirable and unexpected causes or results of operation (Ciame
2009). It can be a failure, a mistake or a mistake (Avizienis
et al. 2000). Failure is the “cessation of an entity’s ability to
perform a required function” (DIN EN 13306 2010); Fault
is the supposed cause of an error (Villemeur 1991); The
error is the part of a system’s state that can cause a failure
(Laprie 1995). As far as the means of operational safety are
concerned, they refer to all the techniques used in order to
avoid the presence of faults and thus avoid potential failures.
It can be measures to prevent, tolerate, eliminate or pre-
dict faults (Avizienis et al. 2000). Fault prevention refers to
actions aimed at preventing the occurrence or introduction of
faults; The purpose of the fault tolerance action is to give the
system the ability to deliver an acceptable service, even in
the presence of faults; the elimination of faults refers to the
reduction of the presence of faults; Defect prediction refers
to the estimation of the presence, creation, and consequences
of defects. Although operational safety is considered to be
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the science of failures (Villemeur 1991; Zwingelstein 1995),
It can also be understood on the one hand as the ability of a
system to have its functional performance (reliability, main-
tainability, availability) and not to generate risk (security),
and on the other hand as the set of activities for assessing
the suitability of a system. As a result, the assessment of
operational safety involves the estimation of its attributes of
reliability, maintainability, availability and safety.

A number of recent studies relating to operational safety
studies of identifiable systems can be mentioned. Among
them, we have the work related to computer networking
systems such as, modeling the work reliability of a com-
puter system with priority to hardware repair over hardware
replacement, and upgrading software subject to technical
control and MRT from the semi-Markov regenerative point
technique (Kumar and Malik 2014); Availability study and
analysis of power systems in the sugar industry based on
variables under different types of failure and general repair
(Kadyan and Kumar 2015); Analysis of the reliability and
performance of an industrial system on the basis of a free
warranty policy under a period of Niwas and Garg (2018).
For the studies of the systems based on the copula approach
(joint probability distribution), we can mention, the analysis
of the availability, the MTTF (Mean time to Failure) and the
costs of a system with two units in a series configuration
with the failure of the controller and the man with differ-
ent types of failure and two types of repair of the Gumbel-
Hougaard family (Singh et al. 2013); the study of the cost
evaluation based on the performance of a system composed
of two subsystems in series Variable and priority additional
repair of the first defective unit (Lado et al. 2018); the study
of some reliability characteristics of a 2 out of 4 consecutive
linear system connected to a support device for operation
using the Kolmogorov method (Yusuf et al. 2018); Analy-
sis of the network environment using a reliability approach
using the Markov process that converts the Markov process
to a non-Markov process (Kuldeep et al. 2017); the study
of a complex repairable system composed of two subsys-
tems in serial configurations under k-out-of-n: G/F diagram
with different types of failure and two types of repair using
Gumbel-Hougaard (Gahlot et al. 2020). reliability analysis
of distributed hardware-software systems (Vijayalakshmi
2015); Fault tolerance study (Sari and Akkaya 2015); the
study of reliability measurements, sensitivity analysis of
a coal handling unit for a thermal power plant consisting
of two subsystems in series configuration using additional
variable techniques (Kumar and Ram 2013); Analysis of a
system comprising two subsystems in serial configuration
with different types of failures and copula repair approach
(Abdul and Singh 2019); Prediction of the reliability of a
distributed system with homogeneity in the software and the
server using a joint probability distribution via the copula
approach (Raghav et al. 2021).
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From the above, we can again notice a strong mark of
the attributes of dependability. However, the evaluation
of its parameters often involves the use of probability
distributions. Discrete probability distributions (binomial
distribution and Poisson distribution) are used to quantify
the failure under stress (Lyonnet 2006), that occurs when
an entity refuses to change state when asked to do so
(Villemeur 1991). Continuous probability distributions
(Weibull’s distribution, exponential distribution, normal
distribution, lognormal distribution, Gamma’s distri-
bution, and Gumbel’s distribution) are associated with
continuous random variables, and are used to quantify
the duration of a feature’s operation (Villemeur 1991).
However, the assumption made for the statistical distribu-
tion of technical repair times and operating times assumes
that there is an estimator for each of the parameters. The
hypothesis of invariability of the repair rate imposes a
law of exponential maintainability, which is not, however,
the most frequent in practice (Dhillon 2006). In addition,
the lognormal distribution, which is the most common
(Bellaouar 2014; Morice 1968), can be modeled by a
two-parameter Weibull distribution. The two-parameter
Weibull reliability distribution is also modelled, using
the maximum likelihood method (Perreault and Bobee
1992; Lannoy 1994), which consists in establishing an
analytic function called likelihood, based on the probabil-
ity density function, whose variables are the parameters
that we want to estimate, so that the maximum of said
function is obtained at the estimated estimators. The max-
imum likelihood method has the advantage of providing
an unbiased, efficient, consistent, and robust estimator
(Lloyd and Lipow 1962). Two distributions allow a study
of maintainability according to the size N of the sample.
These are the lognormal distribution for large samples
and the distribution of extreme values (LVE), including
Gumbel, for small samples. This paper proposes a model
for assessing operational safety and analysis in the case
where operation and repair times are variable over time,
using the maximum likelihood analytical method and
the Gumbel graphical method as parameter estimation
methods.

2 Methods

Safety analyses are important to ensure proper design
and monitoring of production systems. The probabilistic
approach is an effective way to account for uncertainties,
and has so far been addressed for reliability, maintain-
ability and safety studies. We therefore propose in the
following paragraphs, a model to consider them together.

2.1 Reliability and maintenability: operational
safety fundamental parameters

The reliability function over a period of time t is the differ-
ence between the cumulative distribution function where
t —» oo and the cumulative distribution function in the
period of time t or, alternately, it is the subtraction of the
cumulative distribution function of failure over a period
of time t from unity.

R0 =P(T;>1) =1-F() €))

The hazard rate function is a representation of the fail-
ure rate pattern of the ratio between a particular prob-
ability density function (p. d. f.), and its cumulative dis-
tribution function (c. d. f.) or its reliability function. For
continuous random variables, the cumulative distribution
function is defined by

F(r) = / Of (ndt @

where: f (t) =probability density function of the distribution
of value t over the interval O to ¢. The hazard rate function
is then defined as

_ 0

A(t) = RQ) 3

Thus the reliability function is defined by:
R(t) = e/ 4)

The maintainability function M(¢), for any distribution,
is expressed by the following relationship

t

M@ =P(T, <t) = / 0g(t)dt )

g(t) is the probability density function of the maintenance
(repair) time. Obviously maintainability is as a cumulative
distribution function as the complementary of reliability
F(t). Thus the maintainability function is defined also by
the following expression, thanks to (1) and (4):

M) = 1 — e~/ont0d (6)

The repair rate function is analogically defined by:

_ 80
pO) =T — M0 @)

Given that many workplace accidents occur during
maintenance operations or as a result of a reliability prob-
lem (Nzié 2006), guaranteeing the security of equipment
in operation implies taking the necessary measures to
ensure reliability and maintainability (Nzié et al. 2017).

@ Springer
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In this case, security can be expressed as follows (Ciame
2009):

S(tr.1,) = P[(Ty > 1) U (T, < 1,)] = R(1p) + M(1,) = R(1) M (1,)
= o/ 4 Ao 11— e ouwa _ o/t A(r)dr(l _ e—/gw)dz)

®)
S(ig.1,) = 1+ im0 (e faoi_ 1) ©)

1, andt, are respectively the variables operational and repair
time of the production system

2.1.1 Probabilistic operational safety assessment model

Let us name OpS(;,1,) the operational safety function.
From the equations of its fundamental parameters, reliabil-
ity and maintainability given in (4) and (6), and consider-
ing the expression of safety given to Eq. (8) we express
it as follows:

OpS(tyt,) =P[(T > 1) U (T, <1,) U (Tp > 1) U (T, <1,)]
= 1= [(R(y) = 1) (1 =M (1,)]"

Thus is deduced after some transformations the mathemati-
cal expression of operational safety.

(10)

. . 2
OpS(1y.1,) = 1 = (a0 — e Sio | (1)

By analogy with Eqgs. (3) and (7), the risk rate function can
be deduced, after calculating the probability density of the func-
tional safety function, which also makes it possible to calculate
the function of the confidence rate.

Let us name now l(tf t,), (p(tf t,) and 1//(tf, t,), the func-
tions of probability density, risk rate and confidence rate,
respectively. We can express them as follows

0%0pS(1;,1,)

Wi t) = —5 5, — = H () [R() ~ 1t [1 - (1)
| (12)

_ )
o(.1,) = orS(ent) (13)
v(ipt,) = 1= o1, (14)

3 Operational safety analysis
by the maximum likelihood method

3.1 Maximum likelihood method

Either to estimate a parameter 6 of a statistical distribution
law on the basis of observations #,,1,, ..., ¢, of the random

@ Springer

variable time. The likelihood L(¢,, t,, ..., 1,;;0) is defined as
the probability of observing the durations ¢,,1,, ..., ¢, for a
given value of the parameter 6. The maximum likelihood
method consists in taking as estimator of the parameter 6,
the value of § which maximizes the likelihood.

For a reliability analysis, the likelihood function is given
by the following expression (Kumar and Malik 2014):

L(ty. 1y t,:0) = [ [ '(0.0) (15)

With¢,, 1,, ..., t,: observed failure times; 8 = (0,,0,, ..,0,):
the vector of parameters sought; f(z;, 8): the failure prob-
ability density function.

If L(z, 0) is differentiable and if the maximum of the like-
lihood function exists at 5, then it satisfies the following
equation:

OL(ty, ... 1,30y, ..., 6,)

20,

l

=0 (16)

0.=0.

i~

Or in logarithmic form by the following equation:

An(L(ty, s 1,301, ..., 0,))
20 =0 a7
i 9i=§i
Withi=1,...r

3.2 Probabilistic evaluation model

For a variable failure rate, the following relation may
describe Weibull’s law for the reliability function (Dhillon
2006):

Rty =e @' (18)

With @, the shape parameter and a, the scale parameter.
The maintainability function for the law of extreme val-
ues is expressed by:

a(t—u)

M) = e (19)

With a, the inverse of the slope and u, the location param-
eter read from the Gumbel graph paper.

Thus, the operational safety expression given to Eq. (10)
takes the following form:

OpS(ty.1,) = 1 - [(e_<£)0 - 1) (1 - e—e”("'“))r (20)



195

Life Cycle Reliability and Safety Engineering (2024) 13:189-206

Teom Woij I9p

s mouepmodedoy ¢ € € 1 [ensIA oSewrep uoisig QWY1 POPRXH Teopy  -ur£o pue uolsid s309101g QA99[S JJeYS UOISIJ
sIea3 A1) Jo uon Sur
-eouqnp o rdoxd amsug g1 € ¢ [ensipA  93eyeaIq puB Jeam [1o0], uoneoLIqn] Jo Yo -jeayroao pue dn Jurzrog asearour paads Moy JIea0) UONIRIS[AIOY
JINOIIO Y} Ul JINOIIO JINOIIO
ojoooussaxd oy ooyd $7 € + ¢ [ensip Suneay Jmox) 9} UT 10 JO 90UASqQY andse 3, uoq Y3 oJuI T10 9y} 309Uy dwind vonoasfug
IOSU9s sonfeA uors TeuSts Teorn
amssaxd [rooypooedey 81 € € T [ensIA 3001100UT Jo Aerdsiq QUINQJI] POPAIXH -IOAUOD PBQ JO 0UASQY  -09[0 0) 2Inssaid 110AU0D) Josuas anssaxd [10
sgnid mo[3 ooerdoy /7 ¢ ¢ ¢ [ensIA uonsnquod 10od 10 ON s3njd yreds aAnoojoq [osa1p jeayaxd Jou sa0( [9sa1p JBAYRIg s3nid morH
3100110 Y ur senrndur
adid oy Sooun [ensIp sadid jo Sunsing Jo 9ouasard QAISSRIXH payoorg
Sumn[3 10 [onJ [9sa1p
Suiprom Aq yeoropareday 91 7 ¥ T [ensTA SSO[ [on] Suie [erojeN Yeo]  Jo uome[nor ay) mo[y Surdid uonenoid [osarq
odid uwnjax JINOIIO UINJOI Y} Juey
oarea oy Soppunojued) 9 7 € [ensIA [9sa1p 2y} Jo uoneImes Ul sanunduwr Jo 90uasAld POYoO[d 9y} 0} UINIAI [SAP MO[[Y SOATRA [SQIP SSOIXH
QA[eA UOT) JINOII5 Ay} Joquueyo ay) ojul
-ooluroyy Sopoun oy ued)) g € ¥ ¢ [ensip uonsnquiod peqg  ur sepunduwr Jo oouasard payoorg uonoAur [SAp MO[[Y soA[eA uonoafuy
dwind oy switig [ensip pawrid jou sy SULIE JOY0I
Py v2 T b€ [ensipA  suLIe 193001 0] Jamod oN [ony oN andsejuo@ oY) oul [ony [3sarp 102(ug dwnd uonoafuy
93pinres 19y ooe[doy sonrduwr oY) 9ABYT 93pLnIes 1y uIo],
ABpId WY AP URD $T T b € [ensip 19)[ 10U $20( payoorg 9y ouse0q  sonundul [asaIp ureloy I9)[Y [9sa1g
dwnd ayy swg pawid jou sy omssoxd
Py v2 T b€ [ensip [onj oN [ony oN andse ) uoq Iopun [as31p Surduing duind pasg
Suinis 10 uonejraed dwnd [os
Surpfom Aqeoropiredoy 8§ 7 ¥ I [enstp  -a1p ‘paryddns jou ymom) Suide [erojeN Po[[LIp/3uryea| [9sa1p FuLI0)S ue} [9s9Iq
DN DA

e} 0} UONOY

Apms a4} Jo NSy

Aneoni) uonodeleq

NEJOp JO 10oRH

aInyrey jo asne)

opour aIn[reJ

uonoung

ue3iQ

JnsLIdeIeyd aInjre

JINOIID UOTJBOTIqN] [I0) ([eLISTRIA

YINOII> UOHRILIQN] 3Y) Jo VAN Z 3]qel

pringer

As



196

Life Cycle Reliability and Safety Engineering (2024) 13:189-206

Table 3 FMEA of the air cooling circuit
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Result of the study

Failure characteristic

Material: Air cooling circuit

Action to take

Detection Criticality

Cause of failure  Effect of default

Failure mode

Function

Organ

F G N C

12 Repair by waterproof welding

1 43

Visual

Material aging Absence or poor

Leak/pierced

Channel the oil circulation

Engine oil pipe-exhaust

of perforated surfaces

cooling, oil

thermostat

contamination

12 Repair by waterproof welding

1 43

Visual

Absence or poor

Material aging

Leak/pierced

Channel airflow

Exhaust thermostat air

of perforated surfaces

cooling

piping
Exhaust thermostat

12 Check and replace thermostat

2.3 2

Visual

Faulty thermostat Temperature rise

Does not

Controls and

regulate

regulates outlet
temperature

temperature

Replace the broken belt with

8

2 4 1

Visual

Broken drive belt Abnormal motor

Don’t spin

Blows air to cool

Fan

a new one of the same

characteristics

overheating

the motor

3.3 Application of the maximum likelihood method
to weibull’s law of operational safety

Relation (15) assumes knowledge of the probability density
function, which is defined as the time derivative of the depend-
ability function. Starting from relation (12) we can deduce the
Weibull operational safety law given in relation (21) below:

0-1 ;.0 )
I(t;.1,) =4 —Q<ti) (%) <e‘<f> _1> "
a\a 1)
I:ae_a(lr_u)e_e—a(u—xt) (1 _ e )}

The application of relation (15) for the likelihood on the
probability density function given in relation (21) leads to
the following relation:

L(ty by ti0) = [ 150 0.0) = T (550 1o 0. )
N\ 0-1 e\ 0 e\ 0
= (4)nH:L=1 —g(%) e_(f) <1 —e_<£) ) *

H?:l [ae‘“(’r—")e“'_ﬂ(["_“) (1 —e )] 22)

By introducing the natural logarithm in each member of
the relation (22), we obtain the following relation:

lnL(tl, Ly, ..., tn;H) = niln4d + nind — nina

n tﬁ n B IL 0
+(0 - 1);1;1(;) +;ln<1—e (%) )

+ nlna + zn: [_a(tri - u)] _ Z [_e—a(t”-—u)] (23)
i=1 i=1
+ ;ln(l - e‘ﬂ("*")>

By performing the member-to-member partial derivatives
of expression (23) with respect to the scale parameter & and
the shape parameter 6, we successively obtain the following
relations:

) 2 () () (5)
alan_ﬁ*'zw;LeH(tﬁ)e_Z;% (24)
= —e

9
oo 04 =l <l _ %.)0>
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Fig.2 View of fire pump unit No. 2

Table 5 TBF and TTR readings
for each module

@ Springer

(25)

The estimators of the scale parameters a and form 6 are
those, which maximize the likelihood function in its form in
relation (23). This means that they are the solutions of the
system of equations below:

gL _
# o
00

By carrying the expressions (24) and (25) in the system of
Egs. (26), the latter takes the following form:

(26)

-

w00 0w (E)(E)e )
- +i=21(a)9+1(tﬁ) igl [1_8_<Z>s]
b,
: (

@7

The system of Eqgs. (27) can be solved by successive
approximations following indications with starting values
(Lannoy 1994; Lloyd and Lipow 1962).

TBF/FPU No.1 TTR/FPU No.1 TBF/FPUNo.2 TTR/FPU No.2 TBF/FPU No.3 TTR/
(hours) (hours) (hours) (hours) (hours) FPU No. 3
(hours)
43.5 2.1 27.3 1.4 19.5 1.20
27.2 1.15 39.7 1.15 31.2 0.5
98.3 2.5 18.2 2 78.3 3.1
21.1 0.8 57.7 0.5 51.1 1.25
14.1 5.5 96.3 0.6 94.1 1
194 1.75 88.4 1 194 1.1
28.8 0.5 123.9 0.5 26.8 2
25.9 0.5 75.3 1.5 103.1 1.25
214 1.5 83.8 7 8.4 1
12.7 1.2 64.7 0.9 48.1 0.7
29.3 0.6 71.7 1.5 72.9 1.2
56.7 0.75 25.7 0.5 36.2 3.6
335 1 42.8 0.7 17.9 14
64.4 2 56.4 14 45.6 24




Life Cycle Reliability and Safety Engineering (2024) 13:189-206

199

Table 6 Different parameters for each FPU

Fire pump unit (FPU) Parameters

a % a u
FPU No. 1 35.344429 1.312945 0.6833333 1
FPU No. 2 62.10244  1.64276  0.725 0.825
FPU No. 3 46.695112 1.233374 0.79333333 1.07

4 Results and discussion: application
to the equipment of the CCPD in garoua

The FMEA studies of the equipment of the CCPD of Garoua
given in Tables 1, 2, 3 and 4 show that the feed pump, the fuel

and oil filter, the injection pump, all the bearings of the diesel
and gasoline engines have criticalities greater than 12. They
are therefore considered critical according to the company.

Also, the criticality values observed in the FMEA tables
allow us to note that diesel and gasoline engine assemblies
are critical equipment for the fire protection room; pumps and
its various auxiliaries in general are critical equipment for the
pump; and the diesel engine of the emergency generator is the
critical equipment of this room. Figures 1 and 2 give a view
of the different fire pump unit.

Table 5 provides information on the time between failures
and technical times to repair for its equipment over a two-
year period.

Table 7 Kolmogorov—Smirnov

i dered TBF. — =03 (4’ F =1-R F.(t)—-F
test for FPG No. 1 1 Ordere S F() = N704 R =e () r(t) () | (D) th(t)l
1 12.7 0.048611 0.941387 0.058613 0.010002
2 14.1 0.118056 0.921209 0.078791 0.03926
3 19.4 0.1875 0.811289 0.188711 0.001211
4 21.1 0.256944 0.765274 0.234726 0.02222
5 21.4 0.326389 0.756672 0.243328 0.08306
6 25.9 0.395833 0.613932 0.386068 0.00976
7 27.3 0.465278 0.565933 0.434067 0.03121
8 28.8 0.534722 0.5138 0.4862 0.04852
9 29.3 0.604167 0.496396 0.503604 0.10056
10 33.5 0.673611 0.354434 0.645566 0.02805
11 43.5 0.743056 0.10746 0.89254 0.149484
12 56.7 0.8125 0.007822 0.992178 0.179678
13 64.4 0.881944 0.000871 0.999129 0.117185
14 98.3 0.951389 2.68E-11 1 0.048611
1 0.995
1~
4 0.99
0.99 —
4 0.985
0.98 —|
("") 0.98
Q
O 0.97
0.975
0.96 —|
0.97
095
100 i 0.965
- N
5.5
0.96
0 T oy e 25
S il 0.955
Tf1 10 0.5

Fig.3 Operational safety curve for FPU No. 1
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25
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T 10 o5 T
Fig.4 Probability density curve for FPU No. 1
10
55
x1073 5
6 —
145
) |
4 -
35
3
25
2
15
1
05
T 10 o5 ! ™
Fig.5 Risk rate curve for FPU No. 1
The following expression is used to estimate the initial ¥ 10 :
values of  (Niwas and Garg 2018). The mean of each sam- <—’> =36.70261 30)
ple considered as the initial value for a. n
1
) (AN 1
X _ (XY *r<1+l) (28) F(1+—>=O.9664 31
n n 0 0
For the fire pump unit No.1, we have: And,
t to\?
25 3545 (29) <2—> « r(l + %) = 35.4694 (32)
n n

For 6 = 1.2 we have:
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Fig.6 Confidence rate curve for FPU No. 1
-
0.99
0.985
0.98
N
a2 0.975
o
0.97
0.965
0.96

Tf2 0 0

Fig.7 Operational safety curve for FPU No. 2

The values given by the expressions (29) and (32) being
close, we can take 1.2 as the initial value for FPU No. 1.
For the FPUs No. 2 and 3, we obtain as initial values 1.5
and 1.2 respectively. With R under calculator by successive
approximations, we obtain the values of Table 6 for 8 and a.

The different 6 values obtained for each FPU allow us to
realize that its equipment is already in the aging phase of its
life cycles (8 > 1), with a slightly advanced state compared
to the others for FPU n°2. However, it is more difficult to
predict a failure at this stage of a system’s life cycle because

0.955

0.95

failures are random, hence the need to pay more attention to
them to ensure better maintenance.

According to Table 7, we have: D, , = D, o5 = 0.3489
et D, =0.179. Since D, <Dj4qos, the hypothesis
of a Weibull distribution with a 5% risk of being wrong
is therefore accepted. D,,,, = 0.154 For FPU No. 2 and
D,,... = 0.065 for the FPU No. 3, which also makes it pos-
sible to validate for its two other FPUs the hypothesis of a
Weibull distribution with a risk of error of 5%. Therefore,
we can write the following expressions for each FPU. We
can therefore have the expressions of OpS (tf, tr),(p (tf, t,) and

@ Springer
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<10°
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3 25
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15
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Fig. 8 Probability density curve for FPU No. 2
107
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3.5 —
3 25
2.5 -
2 TR 2
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15
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Fig.9 Risk rate curve for FPU No. 2
w (t;,1,) for each FPU. Their different curves are given in 0 037( ; )0'312{(35%)]312 (e_(gsfﬁ)"m B 1)
Figs. 3,4,5,6,7,8,9,10, 11 and 12. ' 35.344
Py (tf’ tr) =—4 ( y )1_312 2 *
—( L ——0.683(1,—1)
NERGE e 2 1— [(e EeEm _ 1) (1 _ "™ )]
OPS1(ff,fr)=1— [(6 (35.344) _1><1_e—e (ir ))]
(33) —0.683(t _1) _e0.683(t—1) —o-0.683(,=1)
t 0312 g\ g\ [06836 ' € (1 —€ )] (35)
L(tt,) = —4[0.037<35 ’3”44) (=) <e_(35-3“4) - 1)]
' (34)
[0.683¢ 00D 0 (| et 0.037( e )O‘Sue‘(”lg“) <e_(351€44) - 1)
v (1.1,) = 1+4 *

P 1312 2
1- [([( ww) 1) (1 et )]
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0.9995
1
0.9995 —|
0.999
0.999 |
o 0.9985 | p—
> 0.998
0.9975 | 0.908
0.9975
0.997
Tf2 0 o T2
Fig. 10 Confidence rate curve for FPU No. 2
T3 0 05 T3
Fig. 11 Operating safety curve for FPU No. 3
. _ _,—0.683(1,—1 _,—0.683(t,—1) 0.643 o\ 168 o\ LoB
[O.683e 0.683(t,=1) gme )<1 — e )] (36) 0.026( 5 ) () (a(ﬁ) _ 1)
62.102
@ (1p.1,) = —4 2|

1643 _ _(sz_ﬁ)l.643 _ > e 0725(1=0.825) ]
OpSZ(tf,t,) =1- [(e_(m) _ 1) (1 _ e_e-ovvzs(f,-o.szS))]Z 37 1 [(e 1 (1 e )

t 0.643 B _tL 1.643 B L 1.643
hL(t.1,) =—4[0.026(T{m) &) <e (&) -1>] 38)

[ 0.725¢-0725(1,~0.825) ,—e~0725(1,=0:525) ( | = g 0TS -0829 )]

[0.7256—0.725(@—0.825)e—e’°‘725("'°'825) (1 _ e_e-o.725(z,—0.825> )] (39)
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Fig. 12 Probability density curve for FPU No. 3
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Fig. 13 Risk rate curve for FPU No. 3
0643 _( 7 1643 _(_r 1.643 t 0.223 B 1223 . 1223
0.026( szfgoz) &%) <e (#%) - 1) L(1,1,) = —4[0.026  —~ ) B O ) B
B 46.695
waltpt,) = 1+4 — 5| * 42)
- [(e_(m) _ 1) (1 _ e_e_oﬂs(,'_aszs) )] [0.7936_0'793(t'_1‘07)8_(0'793(1’71'07) (1 _ e_e-u.793u,-1.a7) )]
1 1.223 1, 1.223
~0.725(1,~0.825) _¢0725(1,~0.825) e 0T0,0829) ( i )0-223 _(ﬁ) _(ﬁ) _
|0.725 e 1-e (40) 0026( ) e e I
(p3(tf, t,) = —4 | *

- 4(:295 1.223 ~ _ _e_ojgs(lr_]m)
OpS ( ) 1 [ _(45295 )1.223 1)(1 £~0.793(5,-1.07) 2 1- [(6 ( ) 1) (1 e )]
pos\ly 1) = 1= (e : — )( —e” )]

(41) [0.793e_0.793(tr_1_07)8_2—0.793(1r—1.07) (1 _ e_e—0.793(tr—1.07) )] (43)
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Fig. 14 Confidence rate curve for FPU No. 3

46.695

0.026(L)0,2238_(46%95>1'223[e_<46ff695)1,223 _1]

w3(tf,tr)=1+4 = |

- ’7[8_<46f€95)1'223 ) 1](1 B e_e_0,793(rr—1»07) )“

[0.7936_0‘793(%_1.07)e_e—0.793(1,—1,07) (1 B e_e-o.793(r,—1.07) )] (44)

By observing the different curves obtained, we can see
that the different operational safety curves all have the
same look. The same applies to probability densities, risk
rates and confidence rates. For operational safety curves,
we have an area where the probability that the system is
safe presents uncertainties, relatively between 0.93 and
0.98 with repair times between 0.5 and 2 h, and operat-
ing times greater than or equal to 45. The other part of
the different operational safety curves gives probabilities
relatively close to 1. It can also be seen that for the dif-
ferent safety curves, in the area where the probability of
the system being safe is low, the probability density and
the rate of risk of non-security are significantly greater,
and the confidence rate is greater. The reverse also occurs
when we are in the zone where this probability is close to
1. It is practically zero for FPUs No. 2 and 3, with values
close to 1073, The fact that the different FPUs have an
overall probability of being 1 and therefore 100% safe is
also indicative of a good design of its equipment, guaran-
teeing good reliability and maintainability. This fact can
be perceived by observing the confidence rate curves,
which have values that oscillate around 99.65% and 100%
(see Figs. 13 and 14).

[ 713,713

0.9995
0.999
0.9985
0.998
0.9975
0.997
0.9965
0.996

0.9955

Tr3

5 Conclusion

Setting up a functioning production system is the chal-
lenge of any designer. In this document, our concern was
to propose a probabilistic model for assessing operational
safety and to show how it can be exploited, supported by
the practical case of the equipment of the CCPD of Gar-
oua. The exploitation of probability distributions allowed
us to implement a model. The equations and curves
obtained for each pumping unit considered in the practical
case allow us to consider this model in a very positive way,
insofar as they sufficiently describe what is real. Although
it is not easily exploitable and requires knowledge of the
times between failure and technical times to repair of the
system, we propose in perspective, the implementation of
techniques allowing the exploitation of the model at the
design stage.
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