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Abstract
The present paper study of the complex repairable system in combination with subsystems in series configuration each having 
four identical units and work policy as; the 2-out-of-4: G scheme. The entire system embraces exponential failure rates and 
variable repair rates. The system performance was evaluated employing a supplementary variable approach for different types 
of failure and two types of repairs under the concept of joint probability distribution Gumbel-Hougaard family copula. The 
traditional reliability measures have been computed with the implication of Maple 17 software. Tables and Graphs predict 
the behavior of the system for different values of the time variable.

Keywords Availability · Reliability · MTTF · Profit function · Gumbel-Hougaard family copula

1 Introduction

The design of complex engineering systems, particularly 
in the manufacturing industry, lacks the research commu-
nity for the prospect of developing new models and design-
ing uninterruptible systems capable of attaining high-level 
standards of availability and reliability. Any enhancement in 
system reliability is often tracked by the imposed cost; the 
improvement in trustworthiness is defensible to the degree 
that the cost of system non-approachability is greater than 
that of the standard service rendered. Customer satisfac-
tion is also a prime consideration, in combination with the 
financial dimension to preserve the truthfulness of every 

establishment. In maintaining integrity and customer loy-
alty, reliability controls for the program play a crucial role. 
Redundancy is a stratagem that is commonly used to boost 
measures of device solidity and benefit sustained. In addi-
tion, redundancy is particularly beneficial in maintaining a 
certain degree of system reliability. A special type of con-
figuration in which k units are necessary to be operative is 
known as the k-out-of-n: G type of configuration. To explore 
some examples of such a designed structure, a four-transmit-
ter telecommunications system can be modeled as a 2-out-
of-4: a G system, an aircraft having four engines with suc-
cessful operation with at least two engines can me present 
a system of 2-out-of-4: G system, an oil transferring system 
from one station to another station in which the k-stations 
out of n pumping stations are essential to be proper supply 
is the system of k-out-of-n. G, digital car parking system, 
etc. are good examples of presenting the effectiveness of 
the such type of configuration. In system reliability theory, 
a conclusively k-out-of-n system plays a very crucial role in 
proper system operation. The warm standby system model 
k-out-of-n has found numerous applications in real-world 
phenomena, especially in the fields of reliability including 
reduction system monitoring, network design, power genera-
tion, telecommunication systems, manufacturing systems, 
transmission systems, industrial systems, etc.

Initially, authors Kullstam (1981) and Zhao (1994) have 
made comprehensive efforts over the past decades to for-
mulate and solve the reliability characteristics of k-out-of-n 

 * V. V. Singh 
 singh_vijayvir@yahoo.com

 Umesh Chand 
 umathematics@gmail.com

 Rovin Kumar 
 rovinpradhan86@gmail.com

 D. K. Rawal 
 diliprawal5@gmail.com

1 Department of Mathematics, Maharaj Singh College, 
Saharanpur, UP, India

2 Department of Mathematics, IIMT College of Management, 
Greater Noida, India

3 Department of Mathematics, Yusuf Maitama Sule University, 
Kano, Nigeria

http://orcid.org/0000-0002-9613-0744
http://crossmark.crossref.org/dialog/?doi=10.1007/s41872-022-00202-6&domain=pdf


324 Life Cycle Reliability and Safety Engineering (2022) 11:323–335

1 3

systems, such as availability, MTSF, and MTTR for a repair-
able system. Malinowski (2016) studied the efficiency of 
a series–parallel-reducible network of flows. Levitin et al. 
(2013) evacuation reliability of mixed configured series–par-
allel systems with propagation time for spontaneous fail-
ures. Liang et al. (2010) have demonstrated the exact reli-
ability formula for consecutive repairable k-out-of-n: type 
operating systems. Sharma and Kumar (2017) used standby 
with several working holidays to calculate the availability 
and other reliability measures of the successive k-out-of-n 
machining method. Eryilmaz (2010), developed formulas 
for a consecutive k-out-of-n: F system using lifetime dis-
tribution, reliability, and k-out-of-n system properties with 
arbitrarily dependent components and mixture representa-
tions to ensure the reliability of consecutive k-out-of-n: G/F 
systems. Kumar and Gupta (2007) evaluated the reliability 
characteristics of a 1-out-of-2 warm standby system consist-
ing of the main unit with a supporting unit, including a gen-
eral repair facility. Cha et al. (2014) introduced a competing 
risk model for evaluating the reliability of the device that is 
subject to both deterioration and catastrophic failures. They 
contrasted deterioration with catastrophic failure and dem-
onstrated a more serious catastrophic failure as the device 
could not perform its function once a catastrophic failure 
occurs. Authors Chander and Bhardwaj (2007) presented 
reliability and cost–benefit analysis of a system of 2-out-of-3 
redundant systems under a general repair and waiting time 
strategy. Munjal and Singh (2014) analyzed a complex sys-
tem composed of two 2-out-of-3: G subsystems in parallel 
configuration by use of a supplementary variable approach. 
It was noteworthy in this paper that both of the subsystems 
namely subsystems L& M were configured n units in par-
allel configuration but the special case was discussed for 
the 2-out-of- 3: G system. The authors Singh et al. (2021) 
examine some reliability measures of the repairable network 
system connecting three computer labs to a server in a 2-out-
of-3: G arrangement. Singh and Poonia (2019) have under 
inspection using regenerative point technique premeditated 
the system of two units under associated lifetimes. A system 
with (M + N) units under k-out-of-(M + N): G system was 
analyzed by Zhang et al. (2006), in which the M units were 
inactive in warm standby mode. Rawal et al. (2013) analyzed 
an Internet data center (IDC) model of a redundant server 
of main mail service trickling various forms of failure and 
two types of copula distribution in repair. Confirming the 
various operational possibilities in the network, some crucial 
research was performed to determine the network's different 
reliability features. Singh et al. (2013) under the principle 
of k-out-of-n, studied the cost analysis of an engineering 
system involving two subsystems in a series configuration 
with controllers and human failure: under the k-out-of-n: G 
operational directives. Remarkably, one can employ general 
repair if the device is in service and operating with a minor 

or major partial failure mode. Since the system is inoper-
able due to a complete shutdown mode, it must be repaired 
immediately. For this purpose, the copula repair, specifically 
[Gumbel-Hougaard family copula], must be implemented 
to restore the failed system by Copula, R. B. Nelson (2006). 
Singh et  al. (2013), Gulati et  al. (2016), Ibrahim et  al. 
(2017), Jia et al. (2016), and Kumar et al. (2017), among 
others, studied the reliability measures of systems compris-
ing subsystems in series configurations and k-out-of-n: G/F 
policy with implications of a joint probability distribution 
copula repair approach. Gokdere et al. (2016) developed a 
new technique for computing the reliability of consecutive 
k-out-of-n: F systems using a logical approach with comput-
ing several reliability measures. Authors Ram Niwas and 
Harish Garg (2018) have analyzed the reliability and profit 
function of the industrial system by the assumption of cost-
free repair during warranty policy under the Markov method 
and supplementary variable methodology. Singh et  al. 
(2020) examined a complex system with two subsystems 
in a series configuration with an imperfect switching device 
and concluded that copula repair predicts superior perfor-
mance to general repair. Recently, authors Poonia (2021), 
and Poonia et al. (2021) have examined system performances 
of complex repairable systems consisting of subsystems in 
series configuration employing supplementary variable and 
copula repair strategy and examined system performances of 
computer lab networking systems via evaluating availability, 
reliability, MTSF, sensitivity and profit function. The Exact 
reliability formula for the n-client’s computer network with 
catastrophic failure and copula repair have deliberated by 
P. K. Poonia (2022a). Authors P. K. Poonia, (2022b) have 
performed a sensitivity analysis of a system of computer lab 
networking system with copula repair and consideration of 
one important type of failure as a catastrophic failure.

2  Model description and notations

2.1  System description

Conferring to the mentioned reviewed literature in the 
introduction anyone among authors has not analyzed the 
system consisting of the k-out-of-n: G/F type operational 
policy with switching device and human failure which is 
usually needed to be considered as the important failures. To 
bridge this gap, we examined the performance of a repair-
able warm standby system with two subsystems in a series 
configuration working under the 2-out-of-4: G scheme in 
which both important types of failure have been treated as a 
cause of complete failure. The units of both subsystems are 
associated with switching devices to auto-changing load. If 
an operating unit fails, it is replaced by a standby unit right 
at once using the switch of the failed unit of the subsystem 
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to balance k units as an operative. Furthermore, the sys-
tem may face precipitate human failure due to the wrong 
operation. There may be four types of possible states for the 
system operation: perfect state, minor degraded state, major 
degraded state, and complete failure. Failure rates of both 
operational and standby units are constant and assumed to 
have negative exponential distributions. The repair in the 
system abundant two distributions general and Gumbel- 
Hougaard (GH) family copula distribution. The repair rate 
of each unit in subsystem-1 and subsystem-2 is preserved as 
alike, but different for each subsystem.

The paper is organized as follows is as described below. 
In Sect. 1, we examined the relevant research presented 
in several articles. Section 2 provides an overview of the 
system description along with assumptions and notations; 
Sect. 3 provides a state description, and Sect. 4 presents 
the system configuration and transition diagram. In Sect. 5, 
mathematical modeling using differential equations is pre-
sented. Analytical results of system performance such as 
reliability, availability, mean time to failure (MTTF), and 
expected profit are presented in Sect. 6. We provided an 
overview of our findings in Sect. 7. With the aid of MAPLE, 
explicit expressions for reliability characteristics are 

obtained (software). Table 1 describes the investigated sys-
tem's state, and Fig. 1 depicts the system's transitional state.

2.2  Assumptions

The following assumptions are made in this paper:

1. The subsystem-1 / subsystem-2 works successfully until 
at least two units are in good working condition, i.e., 
2-out-of-4: G operation policy is satisfied.

2. Both the subsystems have a switching device, and switch 
failure is treated as the complete damage state.

3. Human failure may occur at any time due to mishandling 
and human failure is also tracked as a completed failed 
state.

4. The entire system has four types of states: Good, minor 
partially failed, major partially failed, and utterly failed.

5. The units in both the subsystems are in active mode as a 
hot standby mode which is always ready to start within a 
slight time after the failure of any unit in the subsystems.

6. The repairman is available full-time and ready to restore 
minor and major faults.

Table 1  State Description

State Description

S0 This is a perfect state, in which units of both subsystems are in good working condition
S1 The indicated state is an operative state with minor degraded mode after the failure of any one unit in subsystem 1
S2 The indicated state is a major degraded and operational state after the failure of any two units in subsystem-1, but both units of subsys-

tem-2 are in a good functional state. The system is under repair
S3 This state is a complete failed state due to failing more than two units in subsystem1 however all units of subsystem 2 are in good 

condition. The system is under repair
S4 The indicated state is the minor degraded state but is operative nature due to the failure of any one unit in subsystem-2, but all the units 

of subsystem-1 are in a good operational state. The system is under repair
S5 This is a major degraded state due to the failure of two units in subsystem 2
S6 The state  S6 is a complete failed state due to failing more than two units in subsystem 2
S7 This state represents a complete failed state due to human failure
S8/  S9 These states are complete failed states due cause of switch failure in subsystems 1/ subsystem 2

Fig. 1  (a) System configuration
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7. All failure rates are constant and follow the negative 
exponential distribution.

8. In a complete failed situation system restore using a joint 
probability distribution copula.

9. The repaired unit is trickled as new and it is ready to 
perform the task as required.

2.3  Notations

s∕t : Laplace transforms / Time scale variable.
�1∕�2 : The failure rate of each unit in subsystem-1/

subsystem-2.
�s1∕�s2 : The failure rate of a switch for subsystem-1/

subsystem-2.
�h : Human failure due to mishandling or wrongly acting 

by the operator.
�1(x)∕�2(x) ∶ Repair rate of units in subsystem-1/

subsystem-2.
P(t)/P(s) ∶ State transition probability/ Laplace transform 

of state transition probability.
Pi(x, t) : The probability that the system is in the state Si 

for i = 1, 2, …8 and the system is under repair with elapsed 
repair time is (x, t) where x is a repaired variable and t is the 
time variable.

Ep(t) ∶ Expected profit in the interval [0, t).
K1∕K2 ∶ Revenue generation/ service cost per unit time, 

respectively.
�0(x) : An expression of the joint probability from failed 

state  Si to good state  S0 according to the Gumbel-Hougaard 
family copula is given as

here.
u1(x) = �(x) and u2(x) = e�x here � is the parameter 

1 < 𝜃 < ∞.

3  System configuration and state transition 
diagram

The system configuration is shown in Fig. 1a while the state 
transition diagram is in Fig. 1b. In the transition diagram, 
 S0 is the perfect state,  S1 and  S4 are minor partially failed, 
 S2 and  S5 are major partially failed, and  S3,  S6,  S7, and  S8are 
failed states. Due to the failure of a maximum of one unit 
from subsystem-1 or 2, the transitions approach minors par-
tially failed states  S1 and  S4, and if two units failed in subsys-
tem-1 or 2, the transitions approach to major partially failed 
states  S2 and  S5. The state  S3 is a complete failed state due 
to the failure of any three units in either of the subsystems. 
The states  S6,  S7, and  S8 are completely failed states due to 
controllers or catastrophic failure.

�0(x) = C�

{

u1(x), u2(x)
}

= ���
[

x� + {����(x)}�
]

1

�

3.1  State description

The state explanation of the model is that  S0 is a state where 
both the subsystems are in good working condition.  S1 and 
 S4 are the states where the system is in minor partially fail-
ure mode, while  S2 and  S5 are indicating that the system is in 
major partially failure mode, and the repair is employed, states 
 S3,  S6,  S7 and  S8 are the total failure mode. Repair is being 
employed using the Gumbel-Hougaard (GH)family copula.

4  Formulation of the mathematical model

By a probability of considerations and permanency stochastic 
theory arguments, one can obtain the undermentioned set of dif-
ferential equations allied with the present mathematical model.

Boundary conditions

(1)

[

�

�t
+ 4�1 + 4�2 + �s1 + �s2 + �h

]

P0(t)

=

[

P1(x, t)dx + ∫
∞

0

�2(x)P4(x, t)dx

+∫
∞

0

�0(x)Pj(x, t)dx

]

, j = 3, 6, 7, 8, 9

(2)
[

�

�t
+

�

�x
+ 3�1 + �s1 + +�1(x)

]

P1(x, t) = 0

(3)
[

�

�t
+

�

�x
+ 2�1 + �s1 + �h + �1(x)

]

P2(x, t) = 0

(4)
[

�

�t
+

�

�x
+ �0(x)

]

P3(x, t) = 0

(5)
[

�

�t
+

�

�x
+ 3�2 + �s2 + �h + �2(x)

]

P4(x, t) = 0

(6)
[

�

�t
+

�

�x
+ 2�2 + �s2 + �h + �2(x)

]

P5(x, t) = 0

(7)
[

�

�t
+

�

�x
+ �0(x)

]

P6(x, t) = 0

(8)
[

�

�t
+

�

�x
+ �0(x)

]

P7(x, t) = 0

(9)
[

�

�t
+

�

�x
+ �0(x)

]

P8(x, t) = 0

(10)
[

�

�t
+

�

�x
+ �0(x)

]

P9(x, t) = 0
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Initials conditions.

Laplace transformation of Eqs.  (1) to (17) and using 
Eq. (18), one may obtain 

(11)P1(0, t) = 4�1P0(t)

(12)P2(0, t) = 3�1P1(0, t) = 12�2
1
P0(t)

(13)P3(0, t) = 24�3
1
P0(t)

(14)P4(0, t) = 4�2P0(t)

(15)P5(0, t) = 12�2
2
P0(t)

(16)P6(0, t) = 24�3
2
P0(t)

(17)
P7(0, t) = �h

[

P0(t) + P1(0, t) + P4(0, t) + P2(0, t) + P5(0, t)
]

(18)P8(0, t) = �s1

[

P0(t) + P1(0, t) + P2(0, t)
]

(19)P9(0, t) = �s2

[

P0(t) + P1(0, t) + P2(0, t)
]

(20)P0(0) = 1, andPj(x, 0) = o, i = 1, 2, 3, 4… 9

[

s + 4𝜆1 + 4𝜆2 + 𝜆
s1
+ 𝜆

s2
+ 𝜆

h

]

P̄0(s)

= 1 + ∫
∞

0

𝜑1(x)P̄1(x, s)dx + ∫
∞

0

𝜑2(x)P̄4(x, s)dx+

(21)∫
∞

0

𝜇0(x)P̄j(x, s)dx, j = 3, 6, 7, 8, 9

(22)
[

s +
�

�x
+ 3�1 + �s1 + �h + �1(x)

]

P1(x, s) = 0

(23)
[

s +
�

�x
+ 2�1 + �s1 + �h + �1(x)

]

P2(x, s) = 0

(24)
[

s +
�

�x
+ �0(x)

]

P3(x, s) = 0

(25)
[

s +
�

�x
+ 3�2 + �s2 + �h + �2(x)

]

P4(x, s) = 0

(26)
[

s +
�

�x
+ 2�2 + �s2 + �h + �2(x)

]

P5(x, s) = 0

Laplace Transform of Boundary conditions:

Initials conditions

Now solving the Eqs. (19) (27) with the boundary con-
ditions, (28)- (35) one may get the solution of Eq. (21) as; 
D(s)P0(s) = 1 , and consequently, the solutions of successive 
equations are given as;

(27)
[

s +
�

�x
+ �0(x)

]

P6(x, s) = 0

(28)
[

s +
�

�x
+ �0(x)

]

P7(x, s) = 0

(29)
[

s +
�

�x
+ �0(x)

]

P8(x, s) = 0

(30)
[

s +
�

�x
+ �0(x)

]

P9(x, s) = 0

(31)P1(0, s) = 4�1P0(s)

(32)P2(0, s) = 12�2
1
P0(s)

(33)P3(0, s) = 24�3
1
P0(s)

(34)P4(0, s) = 4�2P0(s)

(35)P5(0, s) = 12�2
2
P0(s)

(36)P6(0, s) = 24�3
2
P0(s)

(37)P7(0, s) = �h

[

P0(s) + P1(0, s) + P4(0, s) + P5(0, s) + P2(0, s)

]

(38)P8(0, s) = �s1

[

P0(s) + P1(0, s) + P2(0, s)
]

(39)P9(0, s) = �s2

[

P0(s) + P1(0, s) + P2(0, s)
]

P0(0) = 1, andPj(x, 0) = 0, j = 1, 2, 3, 4… 9

(40)P̄0(s) =
1

D(s)

(41)P̄1(s) =
4𝜆1

D(s)

1
(

s + 3𝜆1 + 𝜆s1 + 𝜆h + ∅1

)

(42)P̄2(s) =
12𝜆2

1

D(s)

1
(

s + 2𝜆1 + 𝜆s1 + 𝜆h + ∅1

)
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Here,

P =
'1

s+3�1+�s1
+�h+'1

 , Q =
�2

s+3�2+�s2
+�

h
+�2

,   R =
�0

s+�0

The Sum of Laplace transformations of the state transitions, 
for operative states and failed states at any time, is given as.

(43)P̄3(s) =
24𝜆3

1

D(s)

1

s + 𝜇0

(40)P̄4(s) =
4𝜆2

D(s)

1
(

s + 3𝜆2 + 𝜆s2 + 𝜆h + 𝜑2

)

(41)P̄5(s) =
12𝜆2

2

D(s)

1
(

s + 2𝜆2 + 𝜆s2 + 𝜆h + 𝜑2

)

(42)P̄6(s) =
24𝜆3

2

D(s)

1

s + 𝜇0

(43)P̄7(s) =
𝜆h(1 + 4(𝜆1 + 𝜆2)+12(𝜆

2

1
+ 𝜆2

2
))

D(s)

(44)P̄8(s) =
𝜆s1(1 + 4𝜆1 + 12𝜆2

1
)

D(s)

(45)P̄9(s) =
𝜆s2(1 + 4𝜆1 + 12𝜆2

1
)

D(s)

D(s) =s + 4�1 + 4�2 + �
s1
+ �

s2
+ �

h
− 4�1P − 4�2Q − �

s1

(

1 + 4�1 + 12�2
1

)

R + �
s2

(

1 + 4�2 + 12�2
2

)

R + �
h
(1 + 4(�1 + �2) + 12(�2

1
+ �2))R

(46)P̄up(s) = P̄0(s) + P̄1(s) + P̄2(s) + P̄4(s) + P̄5(s)

5  Analytical study

5.1  System availability analysis for copula repair 
approach

1. Repair follows two types of distributions general and 
(GH) family copula distribution, we have

S̄𝜇0
(s) =

𝜇0

s+𝜇0

 , S̄𝜑i(s) =
𝜑i

s+𝜑i
, i = 1, 2

Setting the failure and repair rates as the specific val-
ues �1 = 0.02, �2 = 0.02, �

s1
= 0.03, �

s2
= 0.025, �

h
= 0.04,

� = 1, x = 1,�
i
= 1, i = 1, 2 in (46), for performance 

outcomes of the repairable system and computing inverse 
Laplace transform, with Maple 17 software one can obtain 
the following availability expression of the system. Here we 
have considered the following particular cases:

Case I: System availability for given set of failure rates,

Case II: System availability expression for failure rates,

�1 = 0.02, �2 = 0.02, �
s1
= 0.03, �

s2

= 0.025, �
h
= 0.04, � = 1,�

i
(x) = 1, i = 1, 2

(47a)(a) ∶ Pup(t) = − o.00058464798e−1.1050000t + 0.03637264e−2.8227094t − 0.0249363528e−1.262571253t

− 0.0000204294e−1.127459589t + 0.98963260e−o.01555974t − 0.000463817e−1.1100000t

�1 = 0.02, �2 = 0.02, �s1 = 0.03, �s2 = 0.025, �h = 0, � = 1,�i(x) = 1, i = 1, 2

(47b)(b ∶)Pup(t) =0.0215065444e
−2.77884738t − 0.019770593e−1.2308643t − 0.0000176710e−1.087462347t

+ 0.999338522e−0.01112595t − 0.00058964950e−1.06500000t − 0.00046696982e−1.0700000t

Table 2  Computation of MTTF corresponding to the failure rates

Failure 
rates

�1 �2 �
s1

�
s2

�
h

0.01 7.865 9.740 10.165 12.294 10.180
0.02 6.716 9.195 9.495 11.060 9.356
0.03 5.925 8.541 8.916 10.044 8.651
0.04 5.354 7.929 8.409 9.195 8.041
0.05 4.923 7.390 7.962 8.475 7.508
0.06 4.588 6.921 7.563 7.856 7.039
0.07 4.320 6.514 7.205 7.319 6.623
0.08 4.102 6.161 6.882 6.849 6.252
0.09 3.920 5.851 6.588 6.435 5.918
0.10 3.767 5.579 6.320 6.066 5.617
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Case III: Availability function for system parameters;

Case IV: Availability function for given set of parameters,

F o r  d i f fe r e n t  va l u e s  o f  t i m e  va r i a b l e 
t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 units of time, one may get 

�1 = 0.02, �2 = 0.02, �s1 = 0.03, �s2 = 0, �h = 0.04, � = 1,�i(x) = 1, i = 1, 2

(47c)(c) ∶ Pup(t) =0.02714588327e
−2.7953333t − 0.0226415899e−1.255114724t − 0.0020210092e−1.11360291t

+ 0.9966486380e−0.014248853t − 0.00073102249e−1.0800000t + 0.0015991002e−1.110000t

�1 = 0.02, �2 = 0.02, �s1 = 0, �s2 = 0.025, �h = 0.04, � = 1,�i(x) = 1, i = 1, 2

(47d)(d) ∶ Pup(t) = − 0.0009411773e−1.3300000t − 0.000887660e−1.0800000t + 0.101231084e−3.03421041t

− 0.026974992e−1.41119842t − 0.0069049887e−1.149925006t + 0.934477735e−0.022966108t

Fig. 2  (b) State transition dia-
gram of the model

different values Pup(t) with the help of (47a-47d), as pre-
sented in Table 2 and the corresponding Fig. 2.
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5.2  System availability analysis for general repair 
approach

1. Repair follows two types of distributions general distribu-
tion, we have

Setting the failure and repair rates as the specific values 
�1 = 0.02, �2 = 0.02, �

s1
= 0.03, �

s2
= 0.025, �

h
= 0.04, �

= 1, x = 1,�
i
= �0 = 1, in (46), for performance outcomes 

of the repairable system and computing inverse Laplace 
transform, with Maple 17 software one can obtain the fol-
lowing availability expression of the system. Here we have 
considered the following particular cases:

Case I: System availability for given set of failure rates,

Case II: System availability expression for failure rates,

S̄𝜇0
(s) =

𝜇0

s + 𝜇0

, S̄𝜑i(s) =
𝜑i

s + 𝜑i
, i = 1, 2

�1 = 0.02, �2 = 0.02, �s1 = 0.03, �s2 = 0.025, �h = 0.04,�i(x) = 1, i = 1, 2

(48a)
(a) ∶ Pup(t) = − 00051476204e−1.1100000t + 0.029347910e−1.330541744t + 0.00001503048e−1.12749503t

+ 0.032553559e−1.03718134t + 0.93927004e−0.014781891t − 0.00067177607e−1.05000000t+

�1 = 0.02, �2 = 0.02, �s1 = 0.03, �s2 = 0.025, �h = 0,�i(x) = 1, i = 1, 2

(48b)
(b) ∶ Pup(t) = − 0.00066631073e−1.0650000t + 0.0150362399e−1.2739677323t + 0.01672525504e−1.087490475t

+ 0.96940483e−0.01079707t − 0.000510496e−1.0700000t

Table 3  availability variation with respect to time

Time (t) a b c d

0 1.000 1.000 1.000 1.000
1 0.969 0.983 0.977 0.979
2 0.957 0.976 0.967 0.969
3 0.944 0.966 0.954 0.956
4 0.930 0.956 0.941 0.943
5 0.920 0.945 0.928 0.930
6 0.901 0.935 0.915 0.918
7 0.888 0.924 0.902 0.905
8 0.874 0.914 0.889 0.892
9 0.860 0.904 0.877 0.880
10 0.847 0.894 0.864 0.868

Fig. 3  Availability as a function 
of time
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Case III: Availability function for system parameters;

Case IV: Availability function for given set of parameters,

�1 = 0.02, �2 = 0.02, �s1 = 0.03, �s2 = 0, �h = 0.04,�i(x) = 1, i = 1, 2

(48c)(c) ∶ Pup(t) =0.0012778316e
−1.1100000t + 0.017289155e−1.305302694t − 0.0006296254e−1.11461512t

+ 0.024258108e−1.026367342t + 0.958665517e−0.013714847t − 0.0008609865e−1.0800000t

�1 = 0.02, �2 = 0.02, �s1 = 0, �s2 = 0.025, �h = 0.04,�i(x) = 1, i = 1, 2

(48d)(d) ∶ Pup(t) = − 0.0013138497e−1.330000t − 0.0036886295e−1.0800000t + 0.090899984e−1.55116394t

+ 0.07727621563e−1.25535526t + 0.298658745e−1.073581672t + 0.8069604050e−0.019899121t

F o r  d i f fe r e n t  va l u e s  o f  t i m e  va r i a b l e 
t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 units of time, one may 
get different values  Pup(t) for general repair with the help 
of (48a-48d), as presented in Table 3 and the corresponding 
Fig. 3.

5.3  System reliability analysis

Reliability is the probabilistic measure of a non-
repairable system. Therefore, by treating all repair 
rates equal to zero and obtaining the inverse Laplace 
transform in (45), we get an expression for the reli-
ability of the system after taking the failure rates as 
�1 = 0.02, �2 = 0.03, �s1 = 0.03, �s2 = 0.025, �h = 0.04 con-
sidered the same cases like availability, we have.

Fig. 4  Availability variation as a 
function of time for the general 
repair strategy

Table 4  availability variation with respect to time

Time (t) a b c d

0 1.000 1.000 1.000 1.000
1 0.944 0.969 0.959 0.962
2 0.918 0.952 0.937 0.941
3 0.900 0.940 0.921 0.926
4 0.886 0.929 0.908 0.912
5 0.873 0.918 0.895 0.990
6 0.860 0.909 0.883 0.888
7 0.847 0.899 0.871 0.876
8 0.835 0.889 0.859 0.864
9 0.822 0.880 0.847 0.852
10 0.810 0.870 0.836 0.841
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Case I: Reliability function when the failure rates fixed 
as; �1 = 0.02, �2 = 0.03, �s1 = 0.03, �s2 = 0.025, �h = 0.04 
one can obtain,

(49a)
(a) ∶ R(t) =0.03310344828e−0.1100000t + 0.6400000e

−0.1300000t + 0.6153846154e
−0.12500000t

+ 0.032000e
−0.1050000t − 0.32488063e

−0.25500000t

Case II: Reliability function when the failure rates fixed 
as; �1 = 0.02, �2 = 0.03, �s1 = 0.03, �s2 = 0.025, �h = 0 one 
can obtain,

Fig. 5  Reliability as a function 
of time

Table 5  Computed values of reliability corresponding to the different 
cases

Time (t) a b c d

0 1.000 1.000 1.000 1.000
1 0.915 0.953 0.937 0.942
2 0.833 0.902 0.872 0.880
3 0.754 0.850 0.807 0.818
4 0.681 0.800 0.743 0.756
5 0.612 0.747 0.681 0.696
6 0.549 0.698 0.622 0.638
7 0.491 0.650 0.567 0.583
8 0.438 0.604 0.515 0.532
9 0.391 0.560 0.467 0.484
10 0.348 0.519 0.423 0.439

Table 6  Profit computation for different values of time

Time t K1 = 1, K2 = 0.3 K1 = 1, K2 = 0.4 K1 = 1, K2 = 0.5 K1 = 1, 
K2 = 0.6

0 0 0 0 0
1 0.686 0.586 0.486 0.387
2 1.360 1.161 0.961 0.761
3 2.023 1.723 1.423 1.123
4 2.673 2.273 1.873 1.473
5 3.310 2.810 2.310 1.810
6 3.934 3.334 2.734 2.134
7 4.546 3.846 3.146 2.446
8 5.144 4.344 3.544 2.744
9 5.731 4.831 3.931 3.031
10 6.304 5.304 4.304 3.304

(49b)(b) ∶ R(t) =0.64000000e−0.09000000t + 0.0320000e
−0.06500000t − 0.320488063e

−0.21500000t

+ 0.615384615e
−0.0850000t + 0.033103448e

−0.0700000t
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Case III: Reliability function when the failure rates fixed 
as; �1 = 0.02, �2 = 0.03, �s1 = 0.03, �s2 = 0, �h = 0.04 , we 
obtain.

Case IV: Reliability expression for given failure rates 
�1 = 0.02, �2 = 0.03, �s1 = 0, �s2 = 0.025, �h = 0.04 obtain 
as;

F o r  d i f fe r e n t  va l u e s  o f  t i m e  va r i a b l e 
t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 units of time, one may get 
different values of reliability R(t) with the help of (49a-49d), 
as shown in Table 4 and the corresponding Fig. 4.

5.4  Mean time to failure (MTTF)

Taking all repair rates to zero and the limit as s tends to zero 
in (46) for the exponential distribution; we can obtain the 
MTTF as:

where A = 4�1 + 4�2 + �s1 + �s2 + �h
Now taking the values of different parameters as 

�1 = 0.02, �2 = 0.02, �
s1
= 0.03, �

s2
= 0.025, and �

h
= 0.04 

and varying �1, �2, �s1 , �s2 and �h one by one respectively as 

(49c)(c) ∶ R(t) = 0.0400000e
−0.1100000t + 0.03200000e

−0.080000t + 0.80000000e
−0.1300000t + 0.615384615e

−0.1000000t − 04873846154e
−0.2300000t

(54)

(d) ∶ Ri(t) = 0.03310344828e
−0.080000t + 0.800000e

−0.1250000t

+ 0.6400000e
−0.100000t − 0.5131034483e

−0.22500000t + 0.0400000e
−0.10500000t

(50)MTTF =
1

A

[

1 +
4�1

3�1 + �s1+�h

+
12�2

1

2�1 + �s1+�h

+
4�2

3�2 + �s2+�h

+
12�2

2

2�2 + �s2+�h

]

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 in (50), 
the variation of MTTF, for failure rates, can be obtained as 
given Table 2 and Fig. 5.

5.5  Cost analysis

Let the service facility be always available, then the expected 
profit during the interval [0, t) is

For the same set of parameters defined in (46), one can 
obtain (52) (Table 5).

Therefore

Setting K1 = 1 and K2 = 0.3, 0.4, 0.5, 0.6 respectively, 

and varying t = 0,1,2,3…0.10 units of time, the results for 
expected profit can be obtained as per Table 6 and Fig. 6.

(51)Ep(t) = K1∫
t

0

Pup(t)dt − K2t

(52)

Ep(t) = K1

{

0.00065935177e−1.080000t − 0.0090586482e−2.789849966t

+0.01773655598e−1.25292472t + 0.00076159421e−1.111532685t

−71.32848258e−0.0139926289t − 0.0003945233e−1.105000t + 71.319
}

− K2t

Fig. 6  MTTF as a function of 
failure rates



334 Life Cycle Reliability and Safety Engineering (2022) 11:323–335

1 3

6  Conclusion via result analysis

The probabilistic measures of a repairable system with two 
subsystems in series, switching, and human failure are inves-
tigated in this study. Each subsystem is composed of the fol-
lowing identical units which run simultaneously and follow 
the 2-out-of-4: G strategy. Copula repair is a better and more 
performable repair policy, according to the model's analy-
sis with the help of supplementary variables. The following 
conclusions have been drawn from the research presented 
in this paper:

1. Table 2 and Fig. 2 show a study of the system's avail-
ability in four different scenarios (Gumbel-Houggard 
family copula and general repair strategy). It is evident 
that as time t increases, the availability decreases. When 
a copula repair approach is used, system performance 
improves (see Table 3, Fig. 2 and Table 4, Fig. 3 for 
evidence).

2. Table 5 and Fig. 4 show the system's reliability at vari-
ous time intervals. The graph showed lower reliability 
and performance values when comparing availability for 
the same time variables. Four different study situations 
have been highlighted as examples of similar availability 
analyses.

3. Table 5 and Fig. 5 yield the MTTF of the system con-
cerning variation �1, �2, �s1 , �s2 , and �h . It can see that 
the MTTF of the system reduces with the increasing 
values of all the failure rates. MTTF was found to be 
the highest for �s2 but the deviation rate is very high 
for others. The MTTF corresponding failure rate �1 is 

lower than others but the tendency of MTTF concern-
ing failure rate �s1 is growing. The MTTF of the system 
for failure rates �s1&�s2 become the same at failure rates 
0.07, 0.08].

4. A detailed analysis in Table 6 and Fig. 6 reveals that 
forecasted profit increases when service cost  K2 
decreases, while revenue cost per unit time remains con-
stant at  K1 = 1.  K2 = 0.3 has the highest expected profit, 
while  K2 = 0.6 has the lowest. Over time, we notice that 
as service costs reduce, profit rises. In general, the pre-
dicted profit is high with the high service cost for low 
service charges.

5. The model created in this research was proven to be 
quite useful in proper maintenance analysis, decision-
making, and performance evaluation. Another possible 
future project is to assess the researched system's maxi-
mum dependability and availability (Fig. 7).
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