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Abstract
The reliability features of a computer network system comprising four subsystems under the k-out-of-n: G operational scheme 
have been studied in this model. All four subsystems are organized in a series configuration and failure rates are assumed 
to follow exponential distribution. Repairs, on the other hand, follow two different distributions: general distribution and 
Gumbel–Hougaard family copula, employed to repair partially failed and completely failed states, respectively. Through the 
transition diagram, using supplementary variable methods, Laplace transforms, the system of first-order partial differential 
equations is derived and solved. The objective is to obtain the expressions for availability, (MTTF), and cost function. By 
evaluating the reliability, availability, MTTF, and cost analysis, computations for reliability measures are taken as the specific 
case. The computation’s results are shown in tables and graphs.

Keywords k-out-of-n: G operational scheme · Availability · Reliability · MTTF · Cost analysis · Gumbel–Hougaard family-
copula distribution

1 Introduction

Complex systems generally tend to be considered by high 
diversity and high interconnectedness. Multiple adaptive 
pathways (known as redundancies) are apportioned with 
high interconnectedness. This prevents flop from crushing 
the device. However, because of the high level of intercon-
nectedness, septicemia can spread more easily, ending in 

system collapse. How do naturally developed complex sys-
tems in nature (e.g. rainforests, ecologies, etc.) maintain high 
connectedness, but limit contagion and thereby prevent sys-
tem collapse?

In this fast-moving world, the roles of technology in our 
day-to-day operations, ranging from social, economic, and 
industrial technology or otherwise cannot be overstressed. 
The computer network system has become quite a necessity 
and a critical need of human life. The computer communica-
tion network system is made up of many comprehensive and 
local area computer network systems joined by peripherals. 
Because new computer network systems are being added at 
a quick pace, giving an accurate structure of the computer 
network system is a difficult undertaking. The performance 
of a computer network system can be predicted in a vari-
ety of ways, including transfer time, response time, and the 
number of users, as well as the transmission media, power 
supply, hardware, and software that make up the computer 
network system. Furthermore, the frequency of failure and 
the time it takes to recover from failure in the event of a 
disaster are used to assess computer network system reli-
ability. Over the decades, researchers have worked hard to 
develop an appropriate mechanism. Researchers have con-
centrated on creating structures that can be repaired due to 
various configurations, as well as assessing dependability, 
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availability, operating costs, and other factors, to satisfy 
manufacturing businesses' specific demands. Similarly, to 
come up with a system that has high system availability 
and low maintenance costs while satisfying the consumers, 
many researchers have investigated various aspects of the 
complicated repairable system's reliability for this aim. In 
1990, most of the researchers studied system performances 
of different types of repairable systems, and using one repair 
policy with general repair distribution. To explore the study 
of several investigators, Vanderperre (1990) premeditated 
on the reliability features of a parallel system and used gen-
eral repair distribution. Gupta and Sharma (1993) studied a 
model for a two-duplex unit standby system using a general 
repair policy. Singh et al. (2001) studied complex standby 
redundant systems involving multi-failure—human failure 
using general repair policy. Ram and Singh (2008) studied 
a complex system using (1-out-of-2: F) and (1-out-of-n: F) 
subsystems and using general repair distributions policy. 
Ram and Singh (2010) also studied mutually exclusive com-
plex systems and used a general repair policy. In a repairable 
system, two types of failures are observed i.e., partial failure 
and complete failure. As a due cause of complete failure, the 
entire system stops functioning, resulting in a huge loss of 
the output of the system. Consequently, it needs fast repair 
to get ready for work. In a realistic situation, a failed sys-
tem can be repaired in a couple of ways using multi-repair 
approach. Hence whenever the system experiences a com-
plete shutdown mode, it should be repaired using the copula 
repair approach.

Copulas are functions that connect the one-dimensional 
margins of multivariate distribution functions to their one-
dimensional margins. Copula research and its application in 
statistics are a relatively recent, yet rapidly expanding area. 
To explore the utility of copula in the study of repairabil-
ity, Singh and Rawal (2014) applied copula distribution, to 
examine the availability, MTTF, and cost analysis of a com-
plex system with a preemptive resume repair policy. Kumar 
et al. (2017) conducted studies on the availability and cost 
analysis of an engineering system containing series subsys-
tems. Ghosh et al. (2017) studied how to reduce the life cycle 
costs of a modern helicopter by improving the stability and 
maintainability variables. Gahlot et al. (2018) employed a 
copula linguistics approach, the premeditated performance 
of a repairable system under different types of failure, and 
two types of repair policies. Singh and Ayagi (2018) ana-
lyzed complex repairable systems using a preemptive resume 
repair policy together with a copula approach. Lado and 
Singh (2019) used Gumbel–Hougaard family copula distri-
bution, to evaluate the profit valuation of a complex repair-
able system comprising two subsystems in a series configu-
ration. Together with the series and parallel configuration, 
a specific type of configuration in which out-of-n identical k 
units are essential for functioning is defined as a k-out-of-n: 

G/F type of configuration and is found in almost all indus-
trial systems. For the system to be operative, at least k of its 
units out of n need to be operational. The remaining (n−k) 
units are considered redundant units, while the first k units 
are known as fundamental units. Further, a k-out-of-n: G 
system is equivalent to (k + 1)-out-of-n: F, and the (n-out-
of-n: G) system has a purely parallel configuration, while 
(1-out-of-n: F) is a purely series system. To confine the 
study of the k-out-of-n: G/F types of configuration, Tamegai 
(1980) studied the k-out-of-n: F repairable systems that have 
one or two servers and constant failure rates and use general 
repair policy. Dhillon and Anude's (1994) dynamic struc-
ture was examined for the failure of a k-out-of-n: G sys-
tem.  Malik and Bhardwaj (2007) studied the reliability and 
cost of the 2-out-of-3 redundant system using general repair 
distribution and waiting time. Singh et al. (2012) studied a 
system consisting of two subsystems and using k-out of n: 
G policy and copula. Gulati et al. (2014) studied a reliabil-
ity system having two units in a parallel configuration and 
using repairs, general repair and Gumbel–Hougaard family 
copula distribution. Gahlot et al. (2020) analyzed a system 
consisting of three identical units under the k-out-of-n: G 
scheme with copula repair approach. Cost–benefit analysis 
of a k-out-of-n: G kind of warm standby system under cata-
strophic failure via copula repair approach was performed by 
Poonia and Sirohi (2020). A multi-state computer network 
with five web servers and three database servers system in 
a series configuration with the implication of copula repair 
approach was studied by Poonia (2021) via supplementary 
variable and Laplace transforms. Sirohi et al. (2021) used 
the Gumbel–Hougaard copula to estimate reliability indices 
for a complex repairable system in a series configuration 
with switch and catastrophic failure. A system concerning 
five clients and two servers as subsystem 1 and subsystem 
2 under the k-out-of-n: G scheme was analyzed by Yusuf 
et al. (2021) with implications of copula repair. Poonia et al. 
(2021) analyzed the performance of a warm standby k-out-
of-n: G, and 2-out-of-4: G system in a series configuration 
using copula repair strategy. The reliability performance pre-
diction of a solar photovoltaic system for rural consumption 
using Gumbel–Hougaard family copula has been addressed 
stochastically by Maihulla and Yusuf (2021). Recently, the 
performance of a complex system consisting of three subsys-
tems in series configuration has been stochastically analyzed 
by Jibril et al. (2022).

In the present model, system performance was evaluated 
through reliability measures; the system description con-
sisted of four subsystems in series arrangement. The first 
subsystem is the client's server which consists n clients and 
the work policy is the k-out-of-n: G to perform aptly. The 
second subsystem is a load balancer (LB) which balances 
the load to distributed servers DDS1 and DDS2 which are 
placed in a parallel configuration and at least one database 
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server is essential to be operative for the system operational 
mode. Subsystem 3 has two identical distributed database 
servers (DDS) I and II connected in a parallel configuration. 
In subsystem 4, CDDS is a centralized distributed database 
server that manages all of the application data in DDS. The 
system architecture and state transition diagram in Fig. 1a, b 
explain the system structure and state conversions from one 
state to another. The states S0, S1, S2, and S3 are the states 
for subsystem 1 operations, S4 is the state for load balance 
failure, S5, S6 represent states for DDS1 and DDS2 and S7 
indicates CDDS failure (Table 1).

2  Notations, expectations, and assumptions 
of the system

2.1  Notations

See Table 1.

2.2  Assumption

S0: Perfect working state, all subsystems are satisfactory.
S1: Minor degraded state due to failure of one client in 

subsystem 1. It is a working state as minor partial failure 
raised and working policy is k-out-of-n: G for subsystem 1.

S2: Major degraded state after failure of (n–k) clients in 
subsystem 1 and further failure of a single client would lead 
to state S3.

S3: Complete failed state due to the failure of (k + 1) cli-
ents in subsystem 1.

S4: Complete failed state due to the failure of load bal-
ancer (LB) system not working.

S5: Major degraded and working state due to the failure 
of DDS1 in subsystem 3.

S6: Complete failed state due to the failure of whole sub-
system 3.

S7: Complete failed state due to failure of database dis-
tributed centralized server CDDS server.

3  Formulation of the mathematical model

By a probability of considerations and continuity arguments, 
we can obtain the following set of differential equations gov-
erning the present mathematical model.

Boundary conditions

(1)

�
�

�t
+ n�1 + �2 + 2�3 + �4

�
P0(t)

=

⎡⎢⎢⎣

∞

∫
0

�1(x)P1(x, t)dx +

∞

∫
0

�(y)P5(y, t)dy

+

∞

∫
0

�0(x) P4(x, t)dx

+

∞

∫
0

�0(x) P3(x, t)dx

+

∞

∫
0

�0(z) P7(z, t)dz

+

∞

∫
0

�0(y) P6(y, t)dy,

(2)

[
�

�t
+

�

�x
+ (n − k)�1 + �2 + �4 + 2�3 + �1(x)

]
P1(x, t) = 0,

(3)

[
�

�t
+

�

�x
+ (n − k − 1)�1 + �2 + �4 + �1(x)

]
P2(x, t) = 0,

(4)
[
�

�t
+

�

�x
+ �0(x)

]
P3(x, t) = 0,

(5)
[
�

�t
+

�

�x
+ �0(x)

]
P4(x, t) = 0,

(6)
[
�

�t
+

�

�y
+ �3 + �2 + �4 + �(y)

]
P5(y, t) = 0,

(7)
[
�

�t
+

�

�y
+ �0(y)

]
P6(y, t) = 0,

(8)
[
�

�t
+

�

�z
+ �0(z)

]
P7(z, t) = 0.
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(9)P1(0, t) = n�1P0(t),

(10)P2(0, t) = n(n − k)�2
1
P0(t),

(11)P3(0, t) = n(n − k)(n − k − 1)�3
1
P0(t),

(12)
P4(0, t) = �2

[
1 + n�1 + n(n − k)�2

1
+ 2�3(1 + n�1)

]
P0(t),

Fig. 1  a System architecture of the model. b State transition diagram of the model from (a)
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Initials conditions

4  Solution of the model

Taking Laplace transformation of Eqs. (1)–(15) and using 
Eq. (16), we obtain

(13)P5(0, t) = 2�3(1 + n�1)P0(t),

(14)P6(0, t) = 2�2
3
(1 + n�1)P0(t),

(15)
P7(0, t) = �4

[
1 + n�1 + n(n − k)�2

1
+ 2�2

3
(1 + n�1)

]
P0(t).

(16)P0(0) = 1 and other state probabilities are zero at t = 0

(17)

�
s + n�1 + �2 + 2�3 + �4

�
P0(s)

=

⎡⎢⎢⎣

∞

∫
0

�1(x)P1(x, s)dx +

∞

∫
0

�(y)P5(y, s)dy

+

∞

∫
0

�0(x) P4(x, s)dx +

∞

∫
0

�0(x) P3(x, s)dx

+

∞

∫
0

�0(z) P7(z, s)dz +

∞

∫
0

�0(y) P6(y, s)dy,

(18)

[
s +

�

�x
+ (n − k)�1 + �2 + �4 + 2�3 + �1(x)

]
P1(x, s) = 0,

(19)

[
s +

�

�x
+ (n − k − 1)�1 + �2 + �4 + �1(x)

]
P2(x, s) = 0,

(20)
[
s +

�

�x
+ �0(x)

]
P3(x, s) = 0,

(21)
[
s +

�

�x
+ �0(x)

]
P4(x, s) = 0,

(22)
[
s +

�

�y
+ �3 + �2 + �4 + �(y)

]
P5(y, s) = 0,

(23)
[
s +

�

�y
+ �0(y)

]
P6(y, s) = 0,

(24)
[
s +

�

�z
+ �0(z)

]
P7(z, s) = 0,

(25)P1(0, s) = n�1P0(s),

(26)P2(0, s) = n(n − k)�2
1
P0(s),

Table 1  Nomenclature of symbolic terminology

t Time variable on the time axis.
s Laplace transform variable for all proclamations in the mathematical equations.
�1∕�2∕�3∕�4 The failure rate of clients (subsystem 1)/failure rate of load balancer (subsystem 2)/Failure rate of distributed database server 

(subsystem 3)/failure rate centralized server (subsystem 4)
�1(x)∕�(y) Repair rate of the unit of subsystem 1/repair rate of a unit of subsystem 2.
�0(x)∕�0(y)∕�0(z) Repair rates for complete failed states. S3 and S4/S6/S7, respectively
Pi(t) The probability that the system is in Si state at instants for i = 0, 1, 2…7

Pi(s), Laplace transformation of state transition probability Pi(t)

Pi(x, t) For the probability that a system is in state Si for i = 1…, 7, the system under repair and elapse repair time is (x, t) with x the 
repair variable and t the time variable

Pi(y, t) For the probability that a system is in state Si for i = 1…, 7, the system under repair and elapse repair time is (y, t) with y the 
repair variable and t the time variable

Pi(z, t) For the probability that a system is in state Si for i = 1…, the system under repair and elapse repair time is (z, t) with z the 
repair variable and t the time variable

Ep (t) Expected profit during the time interval [0, t)
�0(x) The expression of joint probability (failed state Si to good state S0) according to the Gumbel–Hougaard family copula defini-

tion, 
�0(x) = exp

[
x� + {log�(x)}�

]1∕� , 1 ≤ � ≤ ∞
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Solving (25)–(36) with the help of (37)–(46), one may get

The Laplace transformations of the probabilities that the 
system is in up (i.e., either good or degraded state) and failed 
state at any time are as follows:

(27)P3(0, s) = n(n − k)(n − k − 1)�3
1
P0(s),

(28)
P4(0, s) = �2

[
1 + n�1 + n(n − k)�2

1
+ 2�3(1 + n�1)

]
p0(s),

(29)P5(0, s) = 2�3(1 + n�1)P0(s),

(30)P6(0, s) = 2�2
3
(1 + n�1)P0(s),

(31)
P7(0, s) = �4

[
1 + n�1 + n(n − k)�2

1
+ 2�2

3
(1 + n�1)

]
P0(s).

(32)P0(s) =
1

D(s)
,

(33)

P1(s) =
n�1

D(s)

(1 − S�1
(s + (n − k)�1 + �2 + �4 + 2�3))

(s + (n − k)�1 + �2 + �4 + 2�3)
,

(34)

P2(s) =
n(n − k)�2

1

D(s)

(1 − S�1
(s + (n − k − 1)�1 + �2 + �4))

(s + (n − k − 1)�1 + �2 + �4)
,

(35)P3(s) =
n(n − k)(n − k − 1)�3

1

D(s)

(1 − S�0
(s))

(s)
,

(36)

P4(s) =
�2
[
1 + n�1 + n(n − k)�2

1
+ 2�3(1 + n�1)

]
D(s)

(1 − S�0
(s))

(s)
,

(37)P5(s) =
2�3(1 + n�1)

D(s)

(1 − S�(s + �3 + �2 + �4))

s + �3 + �2 + �4
,

(38)P6(s) =
2�2

3
(1 + n�1)

D(s)

(1 − S�0
(s))

s
,

(39)

P7(s) =
�4
[
1 + n�1 + n(n − k)�2

1
+ 2�2

3
(1 + n�1)

]
D(s)

(1 − S�0
(s))

s
,

(40)

D(s) = s + n𝜆1 + 𝜆2 + 2𝜆3 + 𝜆4

− {n𝜆1S̄𝜑1
(s + (n − k)𝜆1 + 𝜆2 + 𝜆4 + 2𝜆3)

+ 2𝜆3
(
1 + n𝜆1

)
S𝜑(s + 𝜆3 + 𝜆2 + 𝜆4)

+ 𝜆2
[
1 + n𝜆1 + n(n − k)𝜆2

1
+ 2𝜆3(1 + n𝜆1)

]
S𝜇0

(s).

5  Analytical study of model

5.1  Availability analysis

When repair follows exponential and general distribution.
Set t ing S�0 (s) =

�0(x)

s+�0(x)
, �0(x) = exp

[
x� + {log�(x)}�

]1∕� ,
S�1

(s) =
�1

s+�1

 in Eq. (42) and setting the values of different 
parameters as �1 = 0.002, �2 = 0.02, �3 = 0.01, �4 = 0.022, 
� = 1, θ = 1, x = 1, n = 50, k = 30 and then taking inverse 
Laplace transform, one can obtain

(41)Pup(s) = P0(s) + P1(s) + P2(s) + P5(s)

(42)=
1

D(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + n�1

(1 − S�1
(s + (n − k)�1 + �2 + �4 + 2�3))

(s + (n − k)�1 + �2 + �4 + 2�3)

+n(n − k)�2
1

(1 − S�(s + (n − k − 1)�1 + �4 + �2))

(s + (n − k − 1)�1 + �4 + �2)

+2�3(1 + n�1)
(1 − S�(s + �3 + �2 + �4))

(s + �3 + �2 + �4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(43)Pfailed(s) = P3(s) + P4(s) + P6(s) + P7(s).

(a) = −0.004370691056e−1.080000000t

+ 0.01834516992e−2.769791233t

− 0.1610502486e−1.234748565t

+ 0.003732471750e−1.075979702t

n = 50, k = 30,

(b) = −0.002698837430e−1.100000000t

+ 0.01841727178e−2.770103895t

− 0.01828462046e−1.250152916t

+ 0.001753932297e−1.079128739t

+ 1.000812254e−0.002914450451t

n = 50, k = 20,

(c) = 0.01851717582e−2.770502055t

− 0.02034819216e−1.266111943t

+ 0.001759207778e−1.081751282t

+ 1.003097449e−0.003934719794t

− 0.003025640352e−1.120000000t

n = 50, k = 10,
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For, t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 units 
of time, one may get different values of Pup(t) as shown in 
Table 2. If there are n identical units in subsystem 1 in a 
parallel configuration, then the computations for different 

(d) = 0.01857747171e−2.770733200t

− 0.02133520386e−1.274265936t

+ 0.001817831986e−1.082898227t

+ 1.004193103e−0.004402637530t

− 0.003253202999e−1.130000000t

n = 50, k = 5.

values of k, n, are presented in Table 2 and the graphical 
representation of the availability is given in Fig. 2.

Figure  2 provides the material of availability of the 
system changes (when repair follows copula distribution) 
concerning the time when failure rates are fixed at different 
values. We have analyzed four cases for different values n 
and k as:

(a) n = 50, k = 30, (b) n = 50, k = 20, (c) n = 50, k = 10 
and (d) n = 50, k = 5. It can be noticed that the availability 
decreases; hence, it can be concluded that the availability 
of the system (when repair follows copula distribution) 
decreases as the value of the parameters increases, and after 
a sufficiently long time it converges to zero.

Table 2  Availability analysis for 
copula repair

Time (t) Availability (a) 
(n = 50, k = 30)

Availability (b) 
(n = 50, k = 20)

Availability (c) 
(n = 50, k = 10)

Availability (d) 
(n = 50, k = 5)

0 1.0000 1.0000 1.0000 1.0000
10 0.9808 0.9720 0.9644 0.9610
20 0.9635 0.9441 0.9272 0.9196
30 0.9465 0.9170 0.8914 0.8799
40 0.9298 0.8907 0.8570 0.8420
50 0.9133 0.8651 0.8239 0.8058
60 0.8972 0.8403 0.7922 0.7711
70 0.8814 0.8161 0.7616 0.7379
80 0.8659 0.7927 0.7322 0.7061
90 0.8506 0.7699 0.7039 0.6757
100 0.8356 0.7478 0.6768 0.6466

Fig. 2  Variation of availability 
when repair follows copula 
distribution
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5.2  Availability analysis when the system follows 
general repair

When the repair follows general distribution, for differ-
ent values of time variable t = 0, 10, 20, 30, 40, 50, 60, 
70, 80, 90, and 100 units of time and �1(x) = �(y) = 1 and 

µ0(x) = 1, we get different values of Pup(t) after taking 
inverse Laplace transform, as shown in Table 3 and cor-
responding Fig. 3. For similar configuration, (a) n = 50, 
k = 30, (b) n = 50, k = 20, (c) n = 50, k = 10 and (d) n = 50, 
k = 5, the given expressions are obtained as in (a), (b), (c) 
and (d).

(a) = −0.01640918357e−1.080000000t + 0.009339395761e−1.266318299t + 0.01898355262e−1.078833057t

+ 0.01546340219e−1.017114012t + 0.9726228329e−0.001734632698t n = 50, k = 30,

(b) = −0.003601302136e−1.100000000t + 0.004807265361e−1.279593433t + 0.007820210534e−1.083536788t

+ 0.01627627655e−1.018031108t + 0.9746975497e−0.002838670822t n = 50, k = 20,

Table 3  Time vs. availability Time (t) Availability (a) 
(n = 50, k = 30)

Availability (b) 
(n = 50, k = 15)

Availability (c) 
(n = 50, k = 10)

Availability (d) 
(n = 30, k = 5)

0 1.0000 1.0000 1.0000 1.0000
10 0.9559 0.9474 0.9399 0.9365
20 0.9395 0.9209 0.9046 0.8972
30 0.9233 0.8951 0.8706 0.8596
40 0.9074 0.8701 0.8378 0.8235
50 0.8918 0.8457 0.8063 0.7889
60 0.8765 0.8220 0.7760 0.7558
70 0.8614 0.7990 0.7469 0.7241
80 0.8466 0.7767 0.7188 0.6937
90 0.8320 0.7549 0.6918 0.6646
100 0.8177 0.7338 0.6658 0.6368

Fig. 3  Variation of availability 
when repair follows the general 
distribution
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For different values of time variable t = 0, 10, 20, 30, 40, 
50, 60, 70, 80, 90, and 100 units of time, we get different 
values of Pup (t) as shown in Table 2 and Fig. 3

Figure 3 presents the availability variation (when repair 
follows general distribution) for the time when failure rates 
are fixed at different values. We have analyzed four cases for 
different values of n and k,

(a) n = 50, k = 30, (b) n = 50, k = 20, (c) n = 50, k = 10 and 
(d) n = 50, k = 5. It can be seen that the availability decreases; 
hence, it can be concluded that the availability of the system 
(when repair follows general distribution) decreases as the 
value of the parameters increases, and after a sufficiently 
long time converges to zero.

(c) = −0.003700556475e−1.120000000t + 0.0004924485519e−1.293593998t + 0.009690064558e−1.087770412t

+ 0.01690739010e−1.018804271t + 0.9766106536e−0.003831320084t n = 50, k = 10.

6  Reliability analysis

The system performance of a non-repairable system is 
known as reliability. Therefore, treating all repairs of the 
system to zero in (43) and the inverse Laplace transform of 
the resulting expression give us the reliability of the system, 
and one can obtain the expression (a), (b), (c), and (d) given 
as (Table 4):

(a) = 1.724137931e−0.1220000000t

− 1.137019287e−0.1800000000t

+ 0.04000000000e−0.08000000000t

+ 0.3728813559e−0.06200000000t

n = 50, k = 30,

(b) = 0.07500000000e−0.1000000000t + 2.631578947e−0.14200000000t

− 2.079460303e−0.18000000000t

+ 0.3728813559e−0.06200000000t n = 50, k = 20,

(c) = −5.061770245e−0.1800000000t + 5.555555556e−0.1620000000t

+ 0.3728813559e−0.06200000000t

+ 0.1333333333e−0.12000000000t n = 50, k = 10,

Figure 4 as indicated shows the reliability of the system 
when the repair is not present. By taking all the repairs in an 
expression of availability as zero, we obtained the expression 
(a), (b), (c), and (d) of reliability as a function of time and 
it can be seen that the reliability of the system decreases.

7  Mean time to failure (MTTF) analysis

Setting �1(x), �(y) and �0(x) to zero , Eq. (42) and taking the 
limit of the expression, as s tends to zero one can achieve the 
MTTF expression as:

Setting �2 = 0.02, �3 = 0.02, �4 = 0.022 and varying 
λ1 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 
0.10 in (44), one may obtain Table 5 whose column 2 dem-
onstrates variation of MTTF with respect to λ1.

Setting �1 = 0.002, �3 = 0.02, �4 = 0.022 and varying 
λ2 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09 
in (44), one may obtain Table 5 whose column 3 demon-
strates variation of MTTF with respect to λ2.

Setting �1 = 0.002, �2 = 0.02, �4 = 0.022 and varying 
λ3 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09 
in (44), one may obtain Table 5, whose column 4 shows 
variation of MTTF with respect to λ3.

Setting �1 = 0.002, �2 = 0.02, �3 = 0.02 and varying 
λ4 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09 
in (44), one may obtain Table 5, which reveals variation of 
MTTF with respect to λ4.

Figure  5 provides the mean time to system failure 
(MTTF) of the system concerning variations in λ1, λ2, λ3, 
and λ4, respectively, when the other parameters have been 
taken as constants. The variation in MTTF corresponding to 
failure rate λ1 decreases slowly, but the variation correspond-
ing to λ2, λ3, and λ4 decreases faster, while the variation of 

(d) = −12.05288136e−0.1800000000t + 12.50000000e−0.1720000000t

+ 0.18000000000e−0.13000000000t

+ 0.3728813559e−0.06200000000t n = 50, k = 5.

(44)
M.T.T.F. = lim

s→0
Pup(s) =

1 +
n�1

(n−k)�1+�2+�4+2�3
+

n(n−k)�2
1
(1+�1)

(n−k−1)�1+�4+�2
+

2�3(n�1+1)

(2�3+�2+�4)(
n�1 + �2 + 2�3 + �4

) .
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Fig. 4  Variation of reliability 
for different configurations

Table 4  Time vs. reliability for different configurations

Time t (a) (b) (c) (d)

0 1 1 1 1
10 0.5396 0.5205 0.5035 0.4956
20 0.2352 0.2150 0.1992 0.1927
30 0.1009 0.0896 0.0819 0.0790
40 0.0451 0.0400 0.0370 0.0360
50 0.0212 0.0192 0.0182 0.0179
60 0.0105 0.0097 0.0094 0.0093
70 0.0053 0.0050 0.0049 0.0049
80 0.0028 0.0027 0.0026 0.0026
90 0.0015 0.0014 0.0014 0.0014
100 0.0008 0.0008 0.0008 0.0008

Table 5  Failure rate vs. MTTF

Failure rate MTTF (λ1) MTTF (λ2) MTTF (λ3) MTTF (λ4)

0.01 7.1680 16.2567 15.1449 16.7524
0.02 4.9102 14.1722 14.1723 14.5441
0.03 3.9715 12.5684 13.2222 12.8592
0.04 3.4573 11.2911 12.3444 11.5255
0.05 3.1328 10.2477 11.5500 10.4409
0.06 2.9093 9.3783 10.8365 9.5404
0.07 2.7064 8.6423 10.1966 8.7804
0.08 2.6216 8.0110 9.6220 8.1300
0.09 2.5235 7.4636 9.1046 7.5672
0.10 2.4443 6.9844 8.6371 7.0753

Fig. 5  Failure rate vs. MTTF
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MTTF concerning λ1, λ2, λ3 and λ4 seem to be closely related 
and decreasing slowly.

8  Cost/profit analysis

Let the failure rates of the system be λ1 = 0.002, λ2 = 0.02, 
λ3 = 0.02, and λ4 = 0.022, mean time to repair be �(x) = 1 
and x = 1, � = 1, �(x) = 1 setting in Eq. (42) and taking 
inverse Laplace transform, one can obtain the availability 
expression.

Let the service facility be always available, then the 
expected profit during the interval [0, t) is

(45)Ep(t) = K1

t

∫
0

Pup(t)dt − K2t,

where K1 and K2 are revenue service costs per unit time. 
Hence,

Setting K1 = 1 and K2 = 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1, 
respectively, and varying t = 0, 10, 20, 30, 40, 50, 60, 70, 
80, 90, and 100 units of time, one gets Table 6.

Figure 6 finally shows the expected profit increases con-
cerning the time when the service cost K2 = 0.6, 0.5, 0.4, 0.3, 
0.2, and 0.1, respectively; one can see that as the service cost 
decreases, the profit increases. Finally, one can observe that 
when the service cost is low, the expected profit is increased.

(46)

Ep(t) = 0.006861404561e−1.245189414t

− 0.4251585799e−0.3127453416t

− 560.3151582e−0.001563144460t

− 0.004272451862e−1.076332100t

+ 0.004513638618e−1.080000000t

+ 560.7332140 n = 50, k = 30.

Table 6  Time vs. expected 
profit copula repair approach for 
n = 50, k = 30

Time t K2 = 0.6 K2 = 0.5 K2 = 0.40 K2 = 0.3 K2 = 0.20 K2 = 0.1

0 0 0 0 0 0 0
10 3.090 4.0898 5.090 6.0898 7.0898 8.0898
20 5.6633 7.6633 9.6633 11.6633 13.6633 15.6633
30 8.0870 11.0870 14.0870 17.0870 20.0870 23.0870
40 10.3794 14.3794 18.3794 22.3794 26.3794 30.3794
50 12.5431 17.5431 22.5431 27.5431 32.5431 37.5431
60 14.5801 20.5801 26.5801 32.5801 38.5801 44.5801
70 16.4926 23.4926 30.4926 37.4926 44.4926 51.4926
80 18.2823 26.2823 34.2823 42.2823 50.2823 58.2823
90 19.9512 28.9512 37.9512 46.9512 55.9512 64.9512
100 21.5011 31.5011 41.5011 51.5011 61.5011 71.5011

Fig. 6  Time vs. expected profit 
copula repair approach n = 40, 
k = 30
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9  Result and conclusion

Tables 2 and 3 and Figs. 2 and 3 provide information on how 
the availability of the complex repairable system changes 
with regard to the time when failure rates are fixed at differ-
ent values. Fixing the failure rates as λ1 = 0.002, λ2 = 0.02, 
λ3 = 0.02, λ4 = 0.022, the system availability decreases and 
the probability of failure increases, with varying time t and 
ultimately becomes steady to the value zero after a suffi-
ciently long interval of time. As a result, one may confidently 
forecast the future behavior of a complex system at any time 
for any given set of parametric values, as evidenced by the 
model's graphical representation. It has also been found for 
a fixed value of n, the system availability decreases for lower 
values of k = 20, 10, and 5. Table 3 and the corresponding 
figure present that general repair was not recommendable 
when the system was in a complete failed state.

Table 4 presents the reliability of the system for different 
values of time t. It is clear from Table 4 and Fig. 4 that the 
system efficiency of the non-repairable system is very low, 
compared to the repairable one. As higher values of time t 
are approached, the reliability approaches zero. It has also 
been seen that for reliability computations for fixed values 
of n and varying k, there is not much variation.

Table 5 yields the mean time to failure (MTTF) of the 
system for variation in λ1, λ2, λ3, and λ4, respectively, when 
the other parameters have been taken as constant.

When revenue cost per unit time K1 is fixed at 1, service 
costs K2 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.01, profit was calculated 
and the results are demonstrated by graphs in Fig. 6. One can 
observe that as service costs decrease, the profit increases. 
Whenever the service cost increases the net profit starts 
decreasing for a high value of time.

The present study is focused on performance evaluations 
for four state repairable systems. The study can also be 
extended for the k state working system under (k − 1) minor 
degraded and kth major degraded state. Another interesting 
model can be also developed with more than two DDS serv-
ers and switching devices and another essential component 
of networking.

References

Dhillon BS, Anude OC (1994) Common cause failure analysis of a 
k-out-of-n: G system with the repairable unit. Microelectron 
Reliab 34(3):429–442

Gahlot M, Singh VV, Ayagi H, Goel CK (2018) Performance assess-
ment of repairable system in the series configuration under dif-
ferent types of failure and repair policies using copula linguistics. 
Int J Reliab Saf 12(4):348–374

Gahlot M, Singh VV, Ayagi H, Abdullahi I (2020) Stochastic anal-
ysis of a two units complex repairable system with switch and 

human failure using copula approach. Life Cycle Reliab Saf Eng 
9(1):1–11

Ghosh C, Maiti J, Shafee M, Kumaraswamy KG (2017) Reduction 
of life cycle costs for a contemporary helicopter through the 
improvement of reliability and maintainability parameters. Int J 
Qual Reliab Manag 35(2):545–567

Gulati J, Singh VV, Rawal DK, Babagana M (2014) Availability analy-
sis of systems with involvement of two subsystems using copula 
distribution, IEEE, www. IEEE Explore.org. https:// doi. org/ 10. 
1109/ ICRITO. 70146 68

Gupta PP, Sharma MK (1993) Reliability and M.T.T.F. evaluation of a 
two duplex-unit standby system with two types of repair. Micro-
electron Reliab 33(3):291–295

Jibril A, Singh VV, Rawal DK (2022) Probabilistic assessment of com-
plex system consisting three subsystems multi-failure threats and 
copula repair approach. Int J Qual Reliab Manag. https:// doi. org/ 
10. 1108/ IJQRM- 03- 2021- 0061

Kumar A, Pant S, Singh SB (2017) Availability and cost analysis of an 
engineering system involving subsystems in a series configuration. 
Int J Qual Reliab Manag 34(6):879–894

Lado A, Singh VV (2019) Cost assessment of complex repairable 
system consisting of two subsystems in the series configuration 
using Gumbel–Hougaard family copula. Int J Qual Reliab Manag 
36(10):1683–1698

Maihulla AS, Yusuf I (2021) Reliability and performance prediction 
of a small serial solar photovoltaic system for rural consumption 
using the Gumbel–Hougaard family copula. Life Cycle Reliab Saf 
Eng 10(4):347–354

Malik SC, Bhardwaj RK (2007) Reliability and cost-benefit analysis 
of the 2-out-of-3 redundant system with the general distribu-
tion of repair and waiting time. DIAS Technol Rev Int J Bus IT 
4(1):28–35

Poonia PK (2021) Performance assessment of multi-state computer 
network system in the series configuration using copula repair. 
Int J Reliab Saf 12(1/2):68–88

Poonia PK, Sirohi A (2020) Cost-benefit analysis of a k-out-of-n: 
G type of warm standby series system under catastrophic fail-
ure using copula linguistic. Int J Reliab Risk Saf Theory Appl 
3(1):35–44

Poonia PK, Sirohi A, Kumar A (2021) Cost analysis of a reparable 
warm standby k-out-of-n: G and 2-out-of-4: G system in the series 
configuration under catastrophic failure using copula repair. Life 
Cycle Reliab Saf Eng 10(2):121–133

Ram M, Singh SB (2008) Availability and cost analysis of a paral-
lel redundant complex system with two types of failure under 
preemptive-resume repair discipline using Gumbel–Hougaard 
family copula in repair. Int J Reliab Qual Saf Eng 15(4):341–365

Ram M, Singh SB (2010) Analysis of a complex system with common 
cause failure and two types of repair facilities with different dis-
tributions in failure. Int J Reliab Saf 4(4):381–392

Singh VV, Ayagi HI (2018) Stochastic analysis of a complex system 
under preemptive resume repair policy using Gumbel–Hougaard 
family of the copula. Int J Math Oper Res 12(2):273–292

Singh VV, Rawal DK (2014) Availability, MTTF, and cost analysis of 
the complex system under preemptive resume repair policy using 
copula distribution. Pak J Stat Oper Res 10(3):299–321

Singh SB, Gupta PP, Goel CK (2001) Analytical study of a complex 
stands by redundant systems involving the concept of multi fail-
ure-human failure under head-of-line repair policy. Bull Pure Appl 
Sci 20E(2):345–351

Singh VV, Singh SB, Ram M, Goel CK (2012) Availability MTTF and 
cost analysis of a system having two units in series configuration 
with controller. Int J Syst Assur Eng Manag 4(4):341–352

Sirohi A, Poonia PK, Raghav D (2021) Reliability analysis of a com-
plex repairable system in a series configuration with switch and 

https://doi.org/10.1109/ICRITO.7014668
https://doi.org/10.1109/ICRITO.7014668
https://doi.org/10.1108/IJQRM-03-2021-0061
https://doi.org/10.1108/IJQRM-03-2021-0061


175Life Cycle Reliability and Safety Engineering (2022) 11:163–175 

1 3

catastrophic failure using copula repair. J Math Comput Sci 
11(2):2403–2425

Tamegai N (1980) Availability of two k-server k-out-of-n: F Systems. 
IEEE Trans Reliab 29(1):91–90

Vanderperre EJ (1990) Reliability analysis of a two-unit parallel sys-
tem with dissimilar units and general distributions. Microelectron 
Reliab 30:491–501

Yusuf I, Ismail Lado A, Lawan MA, Ali UA, Sufi N (2021) Reliability 
modeling and analysis of client-server using Gumbel–Hougaard 
family copula. Life Cycle Reliab Saf Eng 10(4):225–248

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Reliability assessment of multi-computer system consisting n clients and the k-out-of-n: G operation scheme with copula repair policy
	Abstract
	1 Introduction
	2 Notations, expectations, and assumptions of the system
	2.1 Notations
	2.2 Assumption

	3 Formulation of the mathematical model
	4 Solution of the model
	5 Analytical study of model
	5.1 Availability analysis
	5.2 Availability analysis when the system follows general repair

	6 Reliability analysis
	7 Mean time to failure (MTTF) analysis
	8 Costprofit analysis
	9 Result and conclusion
	References




