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Abstract
Most of the systems are treated as repairable in automobile, nuclear and aviation industries, and often subjected to imperfect 
maintenance. Reliability assessment of such systems is generally done by observing their failures which could be the conse-
quences of bad environmental conditions, and thus, the mathematical modeling of failure data along with other risk factors 
becomes essential. The available literature provides mainly two types of models to deal with such situations: (1) traditional 
imperfect maintenance (TIM) models, and (2) proportional hazard (PH) models (PHM). These are two major categories of 
models for reliability modelling and analysis of lifetime data and are treated separately. To model and analyze practical indus-
trial problems, at times it is unavoidable to use and combine TIM with PH models. Presently, the literature lacks in providing 
an organized literature survey on the development of both TIM and PH models together summarized at one place. Considering 
this as a research gap, we present an extensive literature survey, from 1965 to 2020, on the development of (1) TIM models, 
and (2) PH models. Through this work, our objective is to create a new paradigm for the academicians to appreciate overall 
development of above stated categorized models for future work. Most importantly, the yearwise organized framework of 
the presented paper will contribute as a ready reference for the researchers to appreciate the developments in both the fields.

Keywords Repairable systems · Proportional hazard models · Traditional models · Imperfect maintenance · Literature 
survey

1 Introduction

Reliability modeling and analysis of repairable systems 
(Ascher 1968) has always been a challenging task for the 
industries. Repairable systems are the systems which can 
be restored to an operating condition by some corrective 
maintenance (CM)/repair action after a failure occurs (Rig-
don and Basu 1989). Moreover, such systems also undergo 
preventive maintenance (PM) to prevent them from failures. 
These maintenance actions restore the life of the system to 
some extent and provide them a new virtual age. This vir-
tual age is dependent on the quality of maintenance actions 

done on the system. There are mainly three types of main-
tenance that could be performed on a system, namely: (1) 
Perfect maintenance; (2) Minimal Maintenance; (3) Imper-
fect Maintenance.

Perfect maintenance (Briš and Byczanski 2017) brings 
the systems to as good as new condition whereas minimal 
maintenance (Crow 1975), (Asher and Feingold 1984) 
restores the system to as bad as an old condition which 
means it brings the system at the same stage as it was before 
the failure. Imperfect maintenance renders the system’s age 
between as good as new and as bad as old conditions. Perfect 
and minimal maintenance can be considered as two special 
cases of imperfect maintenance (Pham and Wang 1996), 
(Rai and Sharma 2017). Reliability modelling of repairable 
systems considering imperfect maintenance theory is being 
very much appreciated by researchers (Sharma and Rai 
2018a), (Sharma and Rai 2020a) because of its applicabil-
ity in real-life situations.

Generally, for reliability assessment of repairable sys-
tems, its failure profile is observed, but these failures could 
be the consequences of some bad environmental conditions 
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(Rai and Sharma 2018), (Sharma and Rai 2020b). In this 
field, the development of literature has taken place in two 
different directions: (1) the development of traditional 
imperfect maintenance (TIM) models, and (2) development 
of proportional hazard (PH) models (PHM). The merits 
and demerits of these two categories are briefly discussed 
in the subsequent paragraphs.

Traditional imperfect maintenance models consider 
imperfect maintenance theory and cater only to failure data 
of the systems without considering effects of other risk fac-
tors. These TIM models have been categorized into two seg-
ments (de Toledo et al. 2015) namely: arithmetic reduction 
of age (ARA) models and, arithmetic reduction of intensity 
(ARI) models. Arithmetic reduction of age models (Doyen 
and Gaudoin 2004), assume that the repair action reduces 
the increment in system age, whereas according to ARI 
models (Doyen and Gaudoin 2004), repair actions not only 
reduces the virtual age but also the failure intensity function 
of the system. Both ARA and ARI models are widely used 
and cherished by academicians, but the presented work is 
inclined towards ARA-based TIM models (Sharma and Rai 
2020c; Rai and Bolia 2014a, b; Rai and Bolia 2014a, b).

As discussed previously, TIM models consider only time 
to failure data of a system for reliability analysis. Failure 
analysis merely based on failure times without considering 
other risk factors, because of which the failure has occurred, 
may not provide the accurate prediction of a system lifetime. 
In such cases, PH models play an imperative role by cater-
ing to the effects of risk factors, for example environmental 
condition, as covariates along with failure data for better 
prediction of system life (Cox 1972b; Kumar 1995a). Fur-
thermore, the ability of these models to incorporate con-
tinuous and categorical variables, which have more than 
one category without any intrinsic order, along with time-
dependent covariates makes it applicable for a more precise 
reliability analysis.

Both the categories (TIM and PH models) have their own 
advantages as discussed above. Thus, the combined study of 
both becomes an essential task to obtain realistic solutions. 
This approach of integrating models could be very helpful 
in portraying the overall failure/degradation profile of the 
system for more precise reliability modelling and analysis 
and hence can resolve a wider spectrum of real-life indus-
trial problems. Some authors have attempted to combine 
these fields but still there is a scope for further development. 
Presently, there is no summarized review available in the lit-
erature that will seek the attention of the research fraternity 
towards these two major fields and this could be considered 
as a major research gap. Unavailability of a summarized 
framework and work review in these two fields collectively 
is the prime motivation of the work presented in this paper.

Hence, to seek the attention of researchers towards 
clubbing both the major streams, it is vital to provide an 

organized literature survey on the development of both TIM 
and PH models together as summarized in Fig. 1. Thus, in 
this work, we present an extensive but general literature 
survey on (1) development of various TIM models (focus-
ing mainly on ARA models), and (2) development of PH 
models.

Our objective is to create a platform for researchers and 
academician to appreciate the overall development of TIM 
and PH models and encourage then to work further by com-
bining these two fields. As an outcome of this literature sur-
vey, we also highlight the shortcomings of present literature 
and future scope for the research fraternity working in this 
field.

The paper is organized as follows; “Development of TIM 
models” deals with the development of TIM models, “Devel-
opment of PH models” presents the development of PH 
models, “Observations and limitations” presents the obser-
vations and limitations and “Conclusion and future scope” 
concludes the paper. The development of TIM models from 
the year 1965 to 2020 is presented in the next section.

2  Development of TIM models

As discussed earlier, the TIM models consider only failure 
data without considering other risk factors on the system 
while performing reliability analysis. The models assume 
that any type of maintenance action (either PM or CM) 
restores the life of system and provides it with a new virtual 
age (Bolia and Rai 2013). This section is dedicated to the 
TIM models developed from 1965 to till date. The section 
has been divided into five subsections i.e. development of 
TIM models: (1) from 1965 to 1990, (2) from 1991 to 2000, 
(3) from 2001 to 2010, (4) from 2011 to 2020 and the last 
sub-section provides the details of some review papers in 
this field.

Fig. 1  Keywords cloud
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2.1  From 1965 to 1990

In the history of reliability modelling and analysis, a boom 
towards the reliability study of complex systems was essen-
tially observed after 1965 with the book written by Barlow 
and Proschan (Barlow and Proschan 1965). With this, the 
orientation of researchers shifted more towards modeling 
and analysis of complex repairable systems. In 1968, Ascher 
(Ascher 1968) came with the concept of “Bad-As-Old” 
which was also called time dependent (non-homogeneous) 
Poisson process. He described that after repair, the failure 
rate of a repairable system could not be considered as zero, 
rather it remains same as it was immediately before failure, 
and such repair is called minimal repair. He also proposed 
a mathematical model to address as bad as old condition. 
The same concept of Bad-As-Old dealt by L.H. Crow in 
1975 (Crow 1975) assuming that the failure process can be 
described by power-law process as shown in Eq. (1) and 
this was called non-homogeneous Poisson process (NHPP).

whereu(t) , a and � are the intensity function at time t , scale 
parameter and shape parameter of the model, respectively.

In this work, Crow proposed the maximum likelihood 
estimators, goodness to fit test, reliability growth concept 
and maintenance policies for repairable systems consider-
ing NHPP.

With the advancement of technology, academicians 
started providing more attention towards imperfect mainte-
nance models. The concept of imperfect PM and imperfect 
repair was introduced which was commonly called as imper-
fect maintenance.

With minimal repair, the concept of minimal PM was 
also developed in similar lines by assuming that the restora-
tion of the system depends on the resources available at the 
time of PM activity (KAY 1976), (Chan and Downs 1978). 
Nakagawa (1979) developed (p, q) rule in which he assumed 
that after PM, the system returns to as good as new condition 
with probability p and returns to as bad as old condition with 
probability q(q = 1 − p) . In 1979, Malik (1979) presented 
the idea of improvement factor in maintenance scheduling.

Later, Brown and Proschan (1983) developed a new 
model with similar concept as Nakagawa (1979) for repair 
activity. They proposed that if the life distribution of a 
system is F and failure rate is r , then distribution of time 
between failures (TBF) and correspondence failure rate will 
be Fp = 1 − (1 − F)p and rp = pr , respectively. Block et al. 
(Block et al. 1985) extended the concept of Brown and Pro-
schan (Brown and Proschan 1983) with the assumption that 
after repair the systems return to as good as new condition 
with probability p(t) and as bad as old condition with prob-
ability q(t)

[
q(t) = 1 − p(t)

]
 where t is the age of the system. 

(1)u(t) = a × 𝛽 × t𝛽−1; a > 0, 𝛽 > 0

Shaked and Shanthikumar (1986) introduced the concept 
of multivariate imperfect repair considering (p, q) rule for a 
system consist of n components.

Again, in 1986, two revolutionary virtual age models, 
for imperfect repair, was proposed by Kijima and Sumita. 
Kijima and Sumita (1986), (Kijima 1989) proposed two 
virtual age models called Kijima I (KI) and Kijima II (KII) 
models (as explained below) to define the imperfect repair by 
introducing a new factor in power-law process called repair 
effectiveness index (REI) ‘ qCM ’ representing repair quality. 
This process was called generalized renewal process (GRP) 
in which the repair time was assumed to be negligible.

KI model: This model assumes that the repair restores the 
accumulated damage during time between ith and (i−1)th 
failure as shown in Eq. (2).

KII model: This model assumes that the ith repair action 
at any point of time restores the entire accumulated age since 
new as shown in Eq. (3).

where Vi is virtual age after ith repair; yiis time between 
failures; ti is time of ith failure; p is number of failures and 
qCM is Repair Effectiveness Index (REI) and V0 = 0.

These Kijima models were very much appreciated by 
the research fraternity because of its applicability towards 
repairable systems and adaptability of perfect and minimal 
repair as its special cases (Yanez et al. 2002).

Thus, in this period, various new concepts of imperfect 
maintenance were introduced to deal with reliability analysis 
of repairable systems. After 1990, an exponential growth 
was observed in this area.

2.2  From 1991 to 2000

In this decade, various extensions of available imperfect main-
tenance models along with some new models were proposed, 
such as, in 1991, Kijima and Nakagawa (1991) proposed a 
shock model for imperfect periodic PM. According to this 
model, the occurrence of shock causes a system to experience 
a non-negative damage. Occurrence of each damage adds to 
the current level damage and the system fails when a cumula-
tive level of damage crosses a threshold level. Authors con-
sider imperfect PM in the sense that PM reduces the damage 
level by 100(1 − b)% , where 0 ≤ b ≤ 1 of total damage. b = 1 

(2)Vi = Vi−1 + qCMyi(i = 1, 2,… .p)

(3)Vi = qCM
(
Vi−1 + yi

)
(i = 1, 2,… .p)

(4)qCM =

⎧⎪⎨⎪⎩

0; for perfect repair

0 < qCM < 1; for imperfect repair

1; for minimal repair



90 Life Cycle Reliability and Safety Engineering (2022) 11:87–103

1 3

and 0 for minimal and perfect PM, respectively. In the same 
year, Festus O. Olorunniwo, Ariwodo Izuchukwu (Olorunniwo 
and Izuchukwu 1991) developed a mathematical model for 
preventive and overhaul maintenance activity by incorporating 
the concept of improvement factors. The improvement factor 
was used to indicate the quality of maintenance actions.

In 1992, Makis and Jardine (1992) proposed 
(p(n, t), q(n, t), s(n, t)) rule for imperfect maintenance, 
according to which, after repair, system returns to as 
good as new condition with probability p(n, t) , as bad as 
old condition with probability q(n, t) or with probability 
s(n, t) = 1 − p(n, t) − q(n, t) the repair is unsuccessful, where 
t and n is age of system and number of failures in system.

Later, Finkelstein (1993) developed a general imperfect 
repair model based on scale transformation. According to this 
model, if, before failure, the failure distribution of a repairable 
unit is F(x) , then, after repair, it would be F(ax) , where a is 
scale parameter. In 1997, Dagpunar (1997) developed a new 
model inspiring from KII model. The model assumes that the 
initial age of the systems is a specific value V0 = s rather than 
0 as assumed in KII model.

Considering three situations i.e. minimal repair, periodic 
overhaul and complete renewal, Zhang and Jardine (1998) 
presented a mathematical model to describe the improvement 
in system due to maintenance as shown in Eq. (5) The authors 
claim that the improvement due to overhaul does not follow 
virtual age approach. The authors consider a direct reduction 
in failure rate and determine the optimal intervals for overhaul 
by minimizing total cost.

where vk−1(t) and vk(t) are the failure rates of the system 
before and after overhaul, respectively. p is improvement fac-
tor and s is overhaul interval. For p = 0, vk(t) = (1 − p)vk−1(t) 
and for p = 1, vk(t) = pvk−1(t − s).

Jack (1998) provided two different age-based models as 
shown in Eqs. (6)–(9) along with its likelihood function con-
sidering CM and PM both as imperfect.

Model I

Model II

(5)vk(t) = pvk−1(t − s) + (1 − p)vk−1(t)

(6)vij = vi−1,j + �CM
(
tij − ti−1,j

)
,

(7)v0j = v0,j−1 + �PM

(
vnj−1,j−1 − v0,j−1 + t0j − tnj−1,j−1

)
,

(8)vij = �CM
(
vi−1,j + tij − ti−1,j

)
,

(9)v0j = �PM

(
vnj−1,j−1 + t0j − tnj−1,j−1

)

where tij = time of ith failure in the jth PM interval 
(j = 1, ..., k; i = 1… .nj), t0j = time of (j−1)th PM, vij = vir-
tual age following ith repair in the jth PM interval, v0j = 
virtual age following (j−1)th PM, with v01 = 0 , �CMand�PM 
are age-reduction factors.

In 1998, Lim et al. (1998) presented an extension of 
the model developed by Brown and Proschan (1983). The 
authors proposed a new Bayesian imperfect repair model 
assuming the probability of perfect repair p as a random var-
iable. Considering a prior distribution for p , they estimated 
the time between two perfect repairs and its failure rates.

In the year 2000, Marco Scarsini and Moshe Shaked 
(2000) introduced a model to express the monetary value 
of an item. The study essentially uses the concept of Kijima 
models (Kijima 1989) and Kijima and Nakagawa shock 
model (Kijima and Nakagawa 1991) for the development of 
the proposed model. The proposed model considers the rate 
of benefit derived over time wherein the system undergoes 
repair and PM.

Although, based on the concept of GRP, various mod-
els were developed in this period, but the concept of GRP 
grabbed the attention of researchers in the next decades.

2.3  From 2001 to 2010

The research carried out in this decade was mainly oriented 
towards exploring the concept of GRP. In 2002, Yan˜ez et al. 
(2002) discussed the GRP in depth and developed likeli-
hood and maximum likelihood estimators (MLEs) for using 
KI (GRP) model. Also, they proved that RP and NHPP are 
the special cases of GRP. To analyze the impact of repair 
on intensity function, Gasmi et al. in 2003 (Gasmi et al. 
2003) proposed a statistical model considering two situa-
tions: (1) the system is loaded with the operation, (2) system 
is in unloaded state wherein system is operating mechani-
cally but failure intensity is lower due to less operating 
intensity. Three types of repair were considered in mod-
elling: minimal, minor and major where minor and major 
repairs follow KII model. For the first and second situation, 
authors assumed KII model and PH models as base models, 
respectively.

Seo and Bai (2004), proposed a model for the systems 
which undergo periodic overhauls considering the repair 
as minimal. The paper uses a fixed multiplier ϴ in Kijima 
model to capture the effectiveness of the overhaul process 
and provides cost models when maintenance time is (1) neg-
ligible (2) non-negligible. Based on the proposed model, 
optimal number of overhauls and interval between overhauls 
are determined.

Cassady et al. (2005), presented a simulation modelling 
and analysis using the concept of KI and KII models. They 
proposed a generic availability function and determine cost-
based optimal replacement interval for repairable systems. 
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Again, in 2005, Mettas and Zhao (2005) explored the GRP 
model to analyze complex multiple repairable systems. They 
proposed GRP general likelihood function for single and 
multiple repairable systems and developed fisher informa-
tion matrix-based confidence bounds for the same.

Pedro Jimenez and Rau'l Villalon (2006), demonstrated 
that GRP has a property of adaptability and suggested to 
model GRP as three0-parameter Weibull distribution using 
the least square method. The authors developed MAPLE 
language code for the same. Kaminskiy and Krivtsov (2006) 
proposed Monte Carlo approach for parameter estimation of 
GRP in 2006. Pascuala and Ortega (2006) proposed a failure 
rate model as given in Eq. (10), based on an improvement 
factor P considering three actions i.e. repair, overhaul and 
replacement, wherein repair and overhaul are considered 
as minimal and imperfect maintenance, respectively. The 
authors also determined optimal life-cycle duration and 
interval for overhauls.

where �k(t) is failure rate after kth overhaul, p is improve-
ment factor p ∈ (0, 1) , Ts interval time between overhauls 
(constant).

A new model for general repair was presented by Guo 
et al. (2007) which considers the repair history of the system 
into account. The paper provides the closed-form solution 
for the proposed model. Maxim Finkelstein (2007) discussed 
some ageing properties of general repair considering the 
assumptions of KII model. The author proved that the expec-
tation of age at the starting of the next cycle is less than 
the initial age of the last cycle. Sevˇc´ık (2007) discussed 
the impact of repair in repairable systems considering that: 
(1) repair affect the intensity function according to Kijima's 
models, (2) repair as time-dependent scale transformation.

In 2008, Veber et al. (2008), argued that, in GRP, a finite 
Weibull distribution with component’s weight should be 
used as a time to first failure distribution instead of normal 
Weibull distribution and applied EM algorithm for GRP 
parameter estimation. Later, Yu et al. (2008) developed a 
KI-based virtual age model for both imperfect CM and PM 
(Eq. (11)). The paper uses Bayesian method for GRP param-
eter estimation.

where Vi is virtual age after ith maintenance action, Xi is 
time between two failures, ar and ap are the maintainability 
characteristics of a repairable system.

Moreover, in 2009, Yann Dijoux (2009) developed 
a reliability model by combining bath tub-shaped age-
ing with imperfect maintenance (repair). Laurent Doyen 

(10)�k(t) = p�k−1
(
t − Ts

)
+ (1 − p)�k−1(t)

(11)Vi =

{
arXi if CM is performed

apXi if PM is performed

(2010) discussed the asymptotic properties of imperfect 
repair models. Also, with the help of Bayesian approach, 
Shey-Huei Sheu and Chin-Chih Chang (2010) generalized 
the multivariate imperfect repair models.

In the next decade also the orientation of research was 
mainly slanted towards extensions of Kijima models.

2.4  From 2011 to 2020

Development of models in this period was also influenced 
by GRP models because of its applicability in real world 
industrial problems. In 2011, Syamsundar et al. (Syam-
sundar and Naikan 2011) developed ARA and ARI models 
by combining imperfect repair models and proportional 
intensity models to obtain more practical results for repair-
able systems. In 2012, Yuan Fuqing and Uday Kumar 
(2012) proposed KI and KII models based a new virtual 
age model (Eq…) which considers REI as a function of 
time instead of a constant value.

where vi is virtual age after ith repair, xi is time between fail-
ures 

(
ti − ti−1

)
 and z(t) = exp(−etc) a time-dependent func-

tion confined to [0,1]. When e = 0, the model is RP model; 
When c = 0, it becomes KII model; When e → ∞, c → ∞ , 
the model is NHPP model.

Olexandr Yevkin and Vasiliy Krivtsov (2012) provided 
an approximate solution for GRP which was simpler than 
monte carlo simulation technique. Corset et al. (2012) 
presented Bayesian analysis solution technique for imper-
fect repair ARA models. Zhi-Ming Wanga and Jian-Guo 
Yang (2012) developed a nonlinear programing approach 
for GRP parameter estimation by considering likelihood 
function as an objective function.

Yu et al. (2013) developed an analytical method for 
GRP parameters estimation which does not rely on sim-
ulation since simulation-based method could be time-
consuming method. Based on the developed method, the 
authors estimated the mean residual life after each repair 
and calculated the time to the next failure. Moreover, in 
2013, Nasr et al. (2013) extended the Kijima virtual age 
models considering both CM and PM as imperfect and 
provided the likelihood function and MLEs for both the 
proposed models and compare the results with Yu et al. 
work (Yu et al. 2008).

Modified KI model

Modified KII model

(12)vi =
(
1 − z

(
ti
))(

vi−1 + xi
)

(13)Vi =

i∑
j=1

a
�j
r a

1−�j
p xj
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where δi =
{

1 ifCM

0 ifSPM

}
 , xi is time between maintenance 

(i = 1, 2,… , n) and n is number of interventions.
Later, for PM interval estimation for deteriorating sys-

tems, Harish Garg et al. (2013) provided a cost-based 
maintenanace model by considering three actions i.e. 
mechanical service, repair and replacement for a multi-
components system. The applicability of the proposed 
model is nicely explained considering pulping unit of a 
paper mill as a case.

Peng Wang and Yisha Xiang (2014) presented a new 
general repair model which incorporates the virtual age 
concept and repair effectiveness parameters to reflect 
repair quality. Authors assume the REI as a function of 
repair quality rather than assuming it as a constant.

In 2015, Rai and Bolia (2015) proposed a failure modes 
and effect analysis (FMEA) model by replacing occurrence 
( O ) in risk priority number (RPN) with REI and showed 
that the failure probability of a system gets affected by 
REI. Later, in 2018, considering Kijima model, Sharma 
and Rai (2018b) proposed a model to estimate RPN con-
sidering REI a function of various subjective factors 
such as environment, resources, procedure and skill. The 
authors described the proposed model by taking space 
station environmental control and life support system 
(ECLSS) as a case.

Recently, Liu et al. (2020) discussed the asymptotic prop-
erties for steady-state virtual age processes. The paper shows 
that limiting distributions of age, residual life and spread can 
be generalized to a stable virtual process which is generally 
described as the ordinary renewal process. The asymptotic 
distributions are derived mainly for ARA and Brown and 
Proschan models. Syamsundar et al. (2020b) developed a 
new alternative scale for reliability analysis considering the 
throughput or usage of the repairable systems rather than 
time. Moreover, Syamsundar et al. (2020a) proposed accel-
erated failure time models to quantify the effects of different 
factors such as temperature, stress, and pressure on repair 
process. Sharma and Rai extensively studied the factors 
which affect REI the most and modeled their inter-depend-
ability using Bayesian networks (Sharma and Rai 2020c), 
(Sharma and Rai 2020b). Sharma and Rai (2020d), proposed 
KI based new virtual age model as shown in Eq. (15) and 
likelihood function which is able to consider each interven-
tion done on the system i.e. CM, scheduled PM and overhaul 
as imperfect at the same time. The authors divided PM activ-
ity into two category: (1) scheduled preventive maintenance 
(SPM), and (2) Overhaul, and treated them separately while 
estimating the model parameters.

(14)Vi =

i∑
j=1

a
(i−j+1)δj
r a

(i−j+1)1−δj
p xj

where Vi and Vm are virtual age at any ith intervention 
with V0 = 0 and virtual age at mth overhaul, respectively; 
xi = ti − ti−1 ( ti is time to ith intervention whether SPM or 
CM) and Xm = time between mth and (m−1)th overhauls ( tm 
is time to mth overhaul); qCM, qSPM, qO are restoration factor 
for CM, SPM, Overhaul, respectively.

Vijay kumar et al. (2021) proposed a novice methodology 
to select best software reliability growth models by consider-
ing the technique for Order Preference by Similarity to an 
Ideal Solution (TOPSIS) approach. The proposed method-
oligy identifies the relative importance criteria and helps 
the decision makers to select the suitable reliability growth 
model for a particular application.

In addition, to deal with failure modes-wise censored data 
in the repairable systems, Sharma and Rai (2021a) proposed 
a methodology and virtual age models that are based on the 
concept of Kijima models and demostrated their applica-
bility with the help of data set obtained from the aviation 
industry. The authors also proposed a progreesive mainte-
nance policy (Sharma and Rai 2021b) considering imper-
fect maintenance in repairable systems. According to the 
proposed policy age-based maintenance time (Sharma and 
Rai 2021c), SPM intervals and overhaul time of a systems 
should be revised after each service activity.

With the development of various imperfect maintenance 
models, researchers also paid attention on summarizing the 
literature in the form of some review papers. The next sec-
tion summarizes the details of some important review papers 
available in this field.

2.5  Some review papers in this field

There are some important review papers available in the 
literature which could be very helpful in understanding the 
development of model and policies related to imperfect 
maintenance in repairable systems. For example, a detailed 
review on early evolution of imperfect maintenance models 
and maintenance policies were presented by Pham and Wang 
(1996) and Guo et.al. (2000). Later in 2008, Muralidharan 
(2008) presented a review on repairable systems and point 
process models available in the literature. Hussain and Nai-
kan (2010) studied point process maintenance models used 
for repairable systems. Tanwar et al. (2014) presented an 
exhaustive literature survey on the ARA and ARI methods 
available in the literature with a main focus on Kijima type 
GRP. Yuan and Lu (2015) presented a review on the imper-
fect repair model for repairable systems.

In the subsequent sections, the development of PH mod-
els is presented from the year it was introduced.

(15)
Vi =

(
Vi−1 + qCMxi

)δi[(Vi−1 + qSPMxi
)1−hi(Vm−1 + qOXm

)hi]1−δi
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3  Development of PH models

Along with the development of TIM models, the researcher 
realized the need to develop a survival model by considering 
the effect of various external or internal factors that affect the 
failure process. In the TIM models, the lifetime of a system is 
estimated by time to failure data. However, in real-life appli-
cations, various other risk factors influence the failure data 
and are named as covariates. In this section, we present the 
development of PH models since it was introduced. This sec-
tion has been divided into four subsections, i.e., development 
of PH models: (1) from 1972 to 1990, (2) from 1991 to 2000, 
(3) from 2001 to 2010, and (4) from 2011 to 2020.

3.1  From 1972 to 1990

In this decade, researchers understood the need to consider 
various risk factors that influence the hazard rate. Cox in 1972 
(Cox 1972b) developed a survival model known as propor-
tional hazard model (PHM), which explains that the hazard 
is a function of the known variables and unknown regression 
coefficients multiplied by an arbitrary and unknown function 
of time. Mathematically, the Cox PHM model for a static 
explanatory variable (time-independent) can be expressed as:

(16)�(t;Z) = �o(t)� (Z�)

where,�(t;Z) is a hazard rate function of time (t) and covari-
ates (Z) and �o(t) is a baseline hazard function of time. It 
provides the hazard rate function of equipment if the effect 
of covariates is considered to be zero (Z = 0) . Z is a covari-
ate in a row vector form, and � is a regression parameter in a 
column vector form. The effect of covariates on the observed 
failure time is defined by the unknown regression parameter 
vector �. Covariates of a system have a significant impact 
on hazard function, which influences the time to failure of a 
system, as shown in Fig. 2.

However, if two or more explanatory variables do not seem 
to have a multiplicative effect on the hazard rate, PHM is not 
applicable. To overcome this, Prentice et al. in 1981 (Prentice 
et al. 1981), introduced the Stratified PHM, which was based 
on stratifying the data into levels corresponding to the various 
inter-failure times in the life cycle for each component. They 
also proposed the two general classes of models, based on two-
time scales; global time t and the time from the immediately 
preceding failure t − tn(t), respectively:

where, N(t) is a random variable for the number of 
failures in (0, t] , and Z(t) denotes the time-dependent 

(17)�(t;Z) = �o(t) exp (Z�)

(18)h(t∕N(t); Z(t)) = h0j(t) exp
(
Z(t)�j

)

(19)h(t∕N(t); Z(t)) = h0j
(
t − tn(t)

)
exp

(
Z(t)�j

)

Fig. 2  Effect of covariates on hazard rates
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covariates.h(t∕N(t);Z(t)) and h0j are the intensity functions 
and the baseline intensity function, respectively, and �j is the 
regression coefficient for the jth stratum.

Furthermore, Steve Bennett et al. (1983) developed a 
proportional odd model that is widely used in the medi-
cal field for survival analysis. In PHM, the ratio of haz-
ard rate is constant with respect to time, thus ruling out 
the situation in which the hazard rate converges to 0 as t 
tends to infinity. The assumption of PHM becomes unrea-
sonable when the initial effect diminishes with time. The 
POM property of being convergent hazard function is suit-
able for survival analysis modeling with time-dependent 
explanatory variables. Mathematically, it can be expressed 
as

where, �i(t;Z) is the odd function, which is the survival prob-
ability of ith unit beyond time t with a vector of covariates Z 
( Zi1, Zi2, Zi3 …………Zip)t.

In 1985, Bendell (1985) applied the PHM for reliability 
assessment. He explained the need for PHM for a repair-
able or non-repairable system with the help of censored or 
uncensored data and concluded that PHM has enormous 
potential and can give invaluable information about the 
system condition.

Later, Jardine et  al. in 1985 (Jardine and Anderson 
1985) proposed a special case of PHM known as Weibull 
PHM. In their model, the failure times are assumed to 
follow a Weibull distribution. The work reviewed by the 
authors applies the PHM with the baseline hazard func-
tion as a Weibull distribution. This method allows the 
developed model to estimate the Weibull scale and shape 
parameters, which further implies that the same Weibull 
parameters are applicable for the two or more covariate 
levels. The proposed Weibull PHM is expressed as:

where �&� represents the shape and scale parameter of 
Weibull distribution, respectively.

In 1986, Bendell et al. (1986) studied the reliability analy-
sis of brake discs of high-speed trains using PHM. Brake 
discs are considered as a non-repairable system that elimi-
nates the complexity associated with repairable systems. 
They implemented this technique and explained the need for 
PHM in its simplest form for the system's reliability aspect.

(20)�(t) =
F(t)

1 − F(t)

(21)�i(t; Z) = �0(t)exp

(
p∑
j=1

�jZij

)

(22)�(t; Z) = �o(t) exp (Z�) =
�

�

(
t

�

)�−1

exp

(
q∑
j=1

�jZj

)

In 1987, Jardine et al. (1987) analyzed the failure data of 
aircraft and marine engines using Weibull PHM. The authors 
investigated the effect of concomitant variable as a covariate 
such as metal particle present in the engine oil. The work 
showed that the fully parametric model provides informa-
tion about the equipment age and the concomitant variable's 
influence on failure time.

In the next decade, researchers mainly concentrated on 
applying and developing PHM for repairable system reli-
ability analysis.

3.2  From 1991 to 2000

In this decade, various extension models were developed 
in which PHM was used for reliability analysis for repair-
able systems and to schedule preventive maintenance for 
the system.

In 1992, Guo and Love (1992) proposed an imperfect 
repair proportional intensity model for repairable system 
reliability assessment. Mathematically, it can be expressed 
as

where, �
(
t∕Ht−

)
 is the conditional intensity process condi-

tioned on the past history of the process, Ht− is the history 
of the process or available data just prior to time t or the col-
lection of all events observed on [0, t] and VNt−

 is the virtual 
age of a system.

In 1995, Kumar (1995a) studied the PHM and its exten-
sion model for repairable system reliability assessment. 
The authors explained the reliability model considering 
the covariate as explained in the subsequent paragraph. Let 
H(t;z1) and H(t;z2) be the hazard rates associated with the 
covariate sets z1 and z2, respectively, for any observed time 
‘ t ’. Then the ratio of the hazard rates is assumed to be con-
stant with respect to time ‘ t ’ and proportional to each other. 
Due to this proportionality, the model is known as the pro-
portional hazard model as shown in Eq. (24) below.

After discussing Cox PHM for the static explanatory vari-
able, Cox PHM for the dynamic explanatory variable (time-
dependent) can be expressed as:

where, Z(t) represents the row vector consisting of the covar-
iates, which is time-dependent. If the functional form of 
H(t;z) is not specified. Then, the likelihood function cannot 
be derived. Hence, the maximum likelihood equation cannot 
be formed for regression parameter estimation. Therefore, 

(23)�
(
t∕Ht−

)
= �

(
x + VNt−

)
exp (�Z)

(24)
H
(
t; Z1

)

H
(
t; Z2

) =
Ho(t) exp

(
Z1�

)

Ho(t) exp
(
Z2�

) = exp
[
�
(
Z1 − Z2

)]

(25)�(t;Z) = �o(t) exp (Z(t)�)
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to estimate the regression parameter ( �) , cox developed a 
non-parametric partial likelihood method explained in the 
subsequent paragraph.

The partial or conditional likelihood is defined as the 
product of the conditional probabilities of occurrences of a 
failure event at a time ‘ xi ’, over all such failure events. Let Fxi

 
be the risk set of the failure events and let there be l failure 
events (censored or uncensored) that have not occurred prior 
to the failure event at time ‘ xi ’. Then, mathematically it can 
be expressed as:

where, Li(�) is the conditional probability that a failure 
occurred at the time ti and di is the number of tied failures at 
each point. An approximation of the above partial likelihood 
function is given by

The basic and PHM reliability equations are given below 
as Eq. (29) and Eq. (30):

where, R0(t) is the baseline reliability function depend-
ent only on time,H0(t) is the cumulative hazard rate, and 
R(t, x) is the total reliability function dependent on time and 
covariates.

In 1996, Huamin Liu et al. (Liu and Makis 1996) applied 
AFTM for reliability analysis of cutting tools under vari-
ous conditions, representing the cutting tool failure time 
distribution. They obtained the unknown parameters of the 
cutting tool either in fixed conditions or variable conditions 
using the maximum likelihood method. In 1997, Eliashberg 
et al. (1997) considered purchase time and used mileage as 
an explanatory variable for PHM for automobile warranty 
analysis.

In 1997, kobbacy et al. (1997) applied PHM for schedul-
ing preventive maintenance based on the equipment’s full 
condition history. They explained the proposed approach 
by considering four pumps historical data working in a 

(26)
�
�
ti; Z

�
∑

l∈F(xi)
�
�
ti; Zl

� =
exp

�
Zi�

�
∑

l∈F(xi)
exp

�
Zi�

�

(27)L(�) =

k�
i=1

Li(�) =

k�
i=1

exp(Zi�)∑
l∈F(xi)

exp(Zi�)

(28)L(�) =

k�
i=1

exp(Zi�)

[
∑

l∈F(xi)
exp(Zi�)]

di

(29)R0(t) = exp

(
−

t∫
0

�o(x

)
dx) = exp

(
−H0(t)

)

(30)R(t, x) = exp
(
−H0(t)

)
exp

(
q∑
j=1

�jxj

)

continuous process industry. They fitted two PHMs, one for 
life following Preventive Maintenance and another correc-
tive work with suitable explanatory variables.

Percy et al. in 1998 (Percy et al. 1998) introduced the 
applications of PIM incorporated with various repair history 
data considered as an explanatory variable. They performed 
a Bayesian approach to estimate the regression coefficient. 
The repair data considered as an explanatory variable fol-
lows; system age, times since last preventive maintenance 
(PM) and corrective operation (CO), the total number of 
PMs and COs, downtime, and severity measure of failure. 
In their paper, PIM with repair data had a significant role 
in reliability analysis to schedule PM in a cost-effective 
manner.

In the next decade, PHM has been applied extensively 
for the mechanical system under operational, environmental, 
and maintenance factors as a covariates.

3.3  From 2001 to 2010

During this period, most of the paper focused on select-
ing appropriate covariate that affects the failure process. 
Although, few developments were also made in this duration.

In 2001, Rao and Prasad (2001) analyzed the failure 
data and planned maintenance interval for material han-
dling equipment used in the mining industry, such as load-
ers, trucks, dozers, and dumpers,. Here, PHM is utilized to 
study the performance of the repairable system affected by 
its concomitant variables. The maintenance interval of the 
equipment is evaluated using the Graphical method.

In 2002, Krivtsov et al. (2002) studied the automobile 
tire's reliability using a cox survival model. The tire geom-
etry and physical properties are considered an explanatory 
variable that potentially affects the life of the tire on test. It 
also explains the application of the linear regression model 
for failure initiation and propagation modelling. They con-
cluded that the result should be focused on comparing the 
tire's design based on a reliability point of view rather than 
predicting a tire's actual field reliability.

In 2002, Prasad and Rao (2002) considered the effect of 
operating conditions as a covariate for the reliability mode-
ling of a repairable system. They applied the PHM technique 
to study the failure behavior of electro-mechanical equip-
ment and small DC motor used in underground coal mines 
at different operating conditions. They performed graphical 
and analytical methods to determine the optimal preventive 
maintenance interval with minimal repair and illustrated this 
model by taking another example of a thermal power unit. 
Failure due to boiler, electrical, and turbines is selected as 
covariates.

In 2002, Vlok et al. (2002) considered the vibration moni-
toring data to determine the optimal replacement policy for a 
critical item. The authors illustrated the model by choosing 
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circulating pumps used in a coal wash plant. The failure data 
was collected for two years time period. The study shows 
that the proportional hazards modeling can be integrated 
with vibration measurements to obtain a useful decision 
policy.

Gasmi et al. in 2003 (Gasmi et al. 2003) analyzed the 
complex repairable system performance operated in loaded 
and unloaded mode using PHM. They explained the model 
with the help of hydro power turbine data. The model con-
sists of failure data incorporating both operating condi-
tions and repair effects for maintenance planning. Data are 
collected for a period of one year. Altogether 466 events 
are recorded, in which 142 failures, 60 major repairs, 88 
minor repairs, and remaining are minimal repair. In their 
research, the system's failure intensity due to the switching 
of operating models was analyzed. This model's main aim 
is to measure the system's failure intensities under various 
repair actions.

Sun et al. in 2006 (Sun et al. 2006) proposed a new model 
named as Proportional Covariate Model (PCM) to estimate 
the hazards of mechanical systems. It assumes that covari-
ates of a system are proportional to the hazard of the system. 
In this model, covariates are considered as response vari-
ables and hazard as an explanatory variable. Mathematically, 
it can be expressed as;

where, Zr(t) represents the time-dependent covariate func-
tion, c(t) is the baseline covariate function, which is also 
time-dependent and h(t) is the hazard function of a system. 
Covariate function (t) considers both historical failures and 
historical condition monitoring data. However, this model 
is not sensitive to operating environmental data.

Elsayed et al. in 2006 (Elsayed et al. 2006) proposed a 
new model called the extended linear hazard regression 
model by generalizing the EHL and PH model. The authors 
considered the effect of proportional-hazards, the time-scale 
changing as well as the time-varying coefficients to develop 
this model. In this model, the coefficients are varying lin-
early with time. Mathematically, it can be expressed as:

where, �, � are the unknown regression coefficient and �0(t) 
is the unspecified baseline hazard function. The covariate z 
is considered both the time-scale changing effect and haz-
ard multiplicative effect. They analyze the laboratory data 
of n-type 6H-SiC to explain the time-dependent dielectric 
breakdown of thermal oxides. The model shows the satisfac-
tory result for long-term operations, when the oxide field is 
kept below 5 MV/cm at temperatures up to 150 °C.

In 2006, Lin et al. (2006) proposed the application of 
principal components proportional hazards regression model 

(31)Zr(t) = c(t)h(t)

(32)�(t; z) = �0(texp
((
�0 + �1t

)
z
)
exp

((
�0 + �1t

)
z
)

in condition-based maintenance (CBM) optimization. They 
considered the principal component (PC) to reduce the num-
ber of covariates and eliminate the collinearity among them 
and demonstrated the model's application by considering the 
CBM data set for two real data sets obtained from industry: 
oil analysis and vibration analysis data.

Carr and Wang in 2007 (2008) presented a comparative 
study of PHM and probabilistic filter approach to evaluate 
the remaining useful life (RUL) of the system. In their paper, 
PHM with Markov covariate process is used in which prin-
cipal component covariates are divided into discrete states. 
The mid-range value of PC is selected as input to PHM. In 
the stochastic filter approach, a recursive Bayesian algorithm 
is used to estimate the RUL based on the condition monitor-
ing information. Finally, the mean square error method is 
used to compare the accuracy of the two techniques.

In 2007, Huairui R. Guo et al. (2007) proposed a new 
general repair model which considered the effect of repair 
such as the expected number of cumulative repair as an 
explanatory variable. Mathematically, can be given as:

where, �o(t) is the baseline failure intensity func-
tion,exp(�m(t)) represents the repair effect with parameter 
� and m(t) is the expected number of cumulative repairs.

In 2008, Syamsundar and Naikan (2008) developed a seg-
mented proportional intensity model (PIM) for a maintained 
system. A segmented model is used when sudden changes 
in the maintained system are observed. In their work, a fail-
ure time was divided into various sub-domain based on the 
change point. Then, PIM is modelled for each sub-domain. 
Finally, all subdomain models are combined to represent the 
segmented model for the maintained system to predict the 
system failure more precisely.

In 2010, Li and Kott (2010) studied the failure data with 
heavy-tailed behavior and predicted the RUL using PHM. 
Two data were selected for analysis; time to failure data and 
condition monitoring data to analyze the impact of heavy-
tailed behavior on RUL prediction. They validate the model 
by taking a real-world example of printer photoreceptors 
data.

In 2010, Ming-Yi You et al. (2010) proposed a two-zone 
PHM by dividing the system into two states. One is the sta-
ble zone in which there is a slight variation in the condi-
tion monitoring data around its mean value. Another is the 
degradation zone in which the machine behavior deviates 
significantly from the normal behavior. The state of the sys-
tems is separated by a threshold point T  , which is necessary 
to carry out the analysis in the degradation zone. This model 
performs a specific analysis when the system enters into the 
degradation zone. Mathematically it can be expressed as 
follows:

(33)�(t;Z) = �o(t) exp (�m(t))
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where �j and Zj are the hazard function and covariates of unit 
j respectively, and Tj is the threshold point for unit.

In this next decade, PHM is applied extensively to the 
real-time world problem. Various optimization tools and 
CBM techniques are combined to increase the PHM com-
putational efficiency and precise reliability analysis.

3.4  From 2011 to 2020

Several other reliability models are developed during this 
decade, incorporating the covariates considering the vir-
tual age model, Arithmetic reduction age model, arithmetic 
reduction intensity model, repair effect, etc.

In 2011, E. Lorna Wong et al. (2011) considered the vir-
tual age Vn as a condition monitoring covariate incorporated 
with Weibull PHM. The result shows a promising effect by 
incorporating these covariates, which include only regular 
age and condition monitoring information. The nth repair 
does not cure the damages that occurred before (n − 1)th 
repair, i.e. damage is cumulative.

Syamsundar and Achutha Naikan in 2011 (Syamsundar 
and Naikan 2011) proposed PIM for imperfect repair, which 
includes ARA and ARI model with minimal repair baseline 
intensity. They illustrated the model by taking an example 
of crane wheel failure data. The crane wheel failure mainly 
occurs due to the wear of wheel flanges and this failure fac-
tor is considered as covariates. Proportional intensity model 
with ARA and ARI model are as explained below:

For memory 1 , the failure intensity model considers only 
previous failure data only. Therefore, ARA 1 Proportional 
intensity model is given by

The proportional intensity process of  ARI1 is given by

Where, �
(
t − TNt−

)
 is a baseline hazard function with maxi-

mal repair and �(t) is a baseline hazard function with mini-
mal repair.

In 2012, Shyur et al. (2012) applied the Extended Hazard 
Regression (EHR) model for a case study of aviation events. 
The airline’s safety performance was analyzed by accident 
data incorporated with safety data. The parameters of this 
model are estimated by a genetic algorithm. The model 
shows promising potential in practical application for avia-
tion risk analysis.
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En-shun et al. in 2012 (En-shun et al. 2012) studied 
the proportional hazard model for estimating the RUL of 
a component based on which maintenance activities are 
carried out. They developed a Monte-Carlo simulation 
and particle swarm optimization (PSO) model to estimate 
maintenance rate and the minimized long-running cost rate 
by joint optimization of the CBM and spare ordering.

In 2012, Alexandre Mendes and Fard (2012) studied the 
PHM for time-dependent covariates with repeated events 
by conducting experiments on various small appliances 
and tested for a certain period of time. The main aim was 
to identify the significant variable affecting reliability by 
analyzing the repeated failure for a single event.

In 2012, Junhong Zhang et al. (2012) explained the 
uses of PHM to study the effect of different covariates and 
analyzed the reliability of the aero-engine. They studied 
the life prediction model based on the continuum damage 
model (CDM) developed by Chaboche, which is neces-
sary for high cycle fatigue analysis of aero-engine blade. 
The fatigue limit and material properties are investigated 
by conducting unsymmetrical fatigue tests of TC4 alloy. 
The finite element method was carried out for blade stress 
analysis, which shows that the root has the largest damage 
during the entire process. Finally, the Cox PHM is used 
to study the effect of different covariates and analyze the 
reliability of the aero-engine.

Estelle Deloux et al. in 2012 (Deloux et al. 2012) pro-
posed a generalized PHM for maintenance modelling and 
optimization to reduce the total maintenance cost of the 
deteriorating system. In their paper, the Markov chain is 
used to model the sequence type of maintenance. The sys-
tem condition is defined based on its previous maintenance 
activities. Finally, system maintenance efficiency is meas-
ured, and its optimal PM policy is formed.

In 2013, Yuan Fuqing and Uday Kumar (2013) studied 
the effect of repair in the baseline intensity function. They 
considered both Kijimi I and Kijima II model to accommo-
date the effectiveness of the repair. Based on these models, 
the intensity function is described as:

For Kijima I, the PIM model is expressed as:

For kijima II, the PIM model is expressed as:

They applied the Bayesian approach for parameter esti-
mation. When the number of parameters is larger, one can 
employ Bayesian inference to estimate the parameters.
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In 2013, Rahamat Mohammad et al. (2013) proposed a 
new model for load-sharing systems using k-out-of-n struc-
ture subject to a proportional hazard model. They considered 
the current load on the component as the multiplicative fac-
tor for PHM.

In 2013, Lin Li et al. (2013) developed a multi-zone pro-
portional hazard model. The authors divided the system into 
different degradation stages. At each degradation stage, a 
specific baseline hazard rate function was observed based on 
its condition-monitoring information in the corresponding 
stage only. For example, in stage 0 , the condition-monitoring 
information is collected for all the samples before stage 1 . 
According to this model, an event can be treated as a failure 
event when it enters into the degradation process in the cor-
responding stages, and then traditional PHM modelling can 
be utilized. Mathematically, it can be expressed as:

where, tk is the survival time in stage k . In zone or stage 
k(0 ≤ k ≤ n − 1) , PHM can be used to estimate the degrada-
tion time and the remaining useful time of equipment in that 
particular zone before entering into the next zone. The over-
all remaining useful life of the equipment can be estimated 
by applying PHM for the nth zone.

Qing Zhang et al. in 2014 (Zhang et al. 2014) proposed 
a mixture weibull PHM to predict the failure of mechanical 
systems with multiple failures mode. They implemented this 
technique on high-pressure water descaling pump, which has 
two failure modes, and compare the proposed model with 
the traditional Weibull PHM.

In 2014, Tang et al. (2014) analyzed the failure data of 
power cable (high and medium voltage) using Cox PHM 
approach. Two covariates are selected for high voltage cable 
as an installer and joint manufacturer; three covariates are 
chosen for medium voltage cables such as the method of 
installation, manufacturer, and cable length, respectively. 
This model helps to measure the effect of selected covari-
ates on cable and cable joint failures.

In 2016, Lucas Equeter et al. (2016) studied the Cox pro-
portional hazard model for estimation of cutting tool lifes-
pan using cutting speeds as a covariate. They considered the 
gamma process for tool wear simulation to provide the tool 
life span at various cutting speeds. The experiment shows 
that lack of accuracy in some PH fit portions to be related to 
the irregular spread of fitting data.

In 2017, Wang et al. (2017) analyzed the reliability of 
roller bearing using Weibull PHM integrated with Principal 
component analysis (PCA). PCA is used to eliminate the 
dependency among the variable and reflect the system's per-
formance degradation process. In this paper, PCA is applied 
to vibration monitoring data for performance analysis. After 
PCA, three principal components are selected as covariates 
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and integrated with WPHM for reliability assessment. The 
results show strong stability and practicability for real-time 
application.

Yuan et al. in 2017 (Yuan et al. 2017) analyzed the accu-
racy of PHM and compare it with the physical model. They 
derived the failure model for typical failure mechanisms of 
engineering systems. The physical model is then converted 
into a statistical model which is incorporated into the PHM. 
The results show that the model will become more convict-
ing when the physical model is incorporated into the PHM.

Leila Jafari et al. (2017) proposed a new optimization 
method to minimize the long-run expected average cost per 
unit time of the whole system using a PHM integrated with 
CBM and age information. Authors illustrated the applica-
tion of the model by considering oil data from the mining 
industry. In this model, opportunistic maintenance policies 
are formed using PHM and compared with another model. 
Thus, the proposed method confirms the superiority among 
other models.

In 2018, Chrianna I Bharat et al. (2018) validated the Cox 
PHM model to build trust in its ability to predict failure. 
They considered graphical methods such as forest plots and 
nomograms for validation with the help of Kaplan–Meier, 
and calibration plots. The wastewater pipe data is collected 
for seven and half years to illustrate data splitting, discrimi-
nation and model fit of the Cox PHM model. The result 
shows that graphical methods improve the ease of interpreta-
tion of the model compared to the output obtained in tabular 
form.

In 2018, Narayanaswamy Balakrishnan et al. (2018) pro-
posed two new models based on Marshall–Olkin distribution 
are as: modified proportional hazard rates (MPHR) and mod-
ified proportional reversed hazard rates (MPRHR) models.

In MPHR, the survival function Fi

(
x;�i

)
 is given by

where, F− represents the baseline survival function and 
x1 ……… ..xn are the independent lifetime of n com-
ponents of a system with respective survival functions 
F1

− ……… ..Fn
− and α is the tilt parameter. Where 

𝛼 > 0, 𝛼− = 1 − 𝛼 and 𝜆i > 0 , i = 1……n . For a special 
case, when α = 0, the model simply reduces to the PHR 
model. In MPRHR, the distribution function Fi

(
x;�i

)
 is 

given by

where,F(x) represents the baseline distribution func-
tion and x1 ……… ..xn are the independent lifetime of 
n components of a system with respective distribution 

(40)Fi

(
x; �i

)
=

1 − (F−
(x)
)�i

1 − �−(F−
(x)
)�i

for i = 1…… n,

(41)Fi

(
x; �i

)
=

�(F(x))�i

1 − �−(F(x))�i
for i = 1……… n,
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functions F1 ……… ..Fn and � is the tilt parameter. Where, 
𝛼 > 0, 𝛼− = 1 − 𝛼 and 𝛽i > 0, i = 1…… n . For special case, 
when � = 0 , model simply reduces to PRHR model.

In 2018, Wim J.C. Verhagen and De Boer (2018) 
improved the aircraft's statistical reliability assessment using 
PHM incorporated with operational factors. The authors 
identified the operational factors that affect the maintenance 
event based on historical data. They performed extreme 
value analysis and maximum difference analysis techniques 
to determine the operational factors that are likely to be the 
root cause of the failures. Finally, both time-independent and 
dependent PHM were used for reliability analysis.

In 2019, Aiping Jiang et al. (2019) proposed a decision 
model for a redundant system. They considered k out of n 
system and PHM with environmental factor as a covari-
ate for reliability assessment of a redundant system. Based 
on the reliability analysis, the authors identify the optimal 
maintenance interval that minimizes the average mainte-
nance cost per unit time for a redundant system.

Recently, in 2020, Rui Zheng and Makis (2020) devel-
oped condition-based maintenance (CBM) policy for a 
system subjected to periodic inspection with dynamic 
thresholds and multiple maintenance actions. The authors 
considered both aging and continuous state covariate pro-
cesses to explains the practical deterioration process. They 
selected an appropriate maintenance action such as no main-
tenance, imperfect maintenance, and preventive replacement 
based on two dynamic thresholds for the covariate at every 
inspection period. Two failure types are considered as cata-
strophic failure and minor failure. Finally, the optimization 
problem is formulated based on the semi-Markov decision 
process (SMDP) to determine the optimal thresholds that 
minimize the long-run average cost rate.

Lea Breniere et al. in 2020 (Brenière et al. 2020) pro-
posed an approach that includes time-dependent covariate 
in the generic virtual age model. They formed a simulation 
model based on two assumptions: in the first assumption, the 
covariate is considered as a stepwise constant for analysis, 
where as in the second assumption, system failure probabil-
ity is assumed to face failure at each node to form a fine 
time grid.

In 2020 Chong Chen et  al. (2020) proposed a new 
approach known as Cox proportional hazard deep learning 
to overcome the data sparsity and data censoring problem 
in the operational maintenance data analysis. The authors 
adopted an autoencoder approach for robust representation 
of nominal data for cox PHM and LSTM (Long Short Term 
Memory) to predict the time between failure (TBF) based 
on historical maintenance data. They utilized cox PHM for 
labeling of censored data. Finally, the TBF prediction model 
is formed based on LSTM.

Yan-Feng Li et al. in 2020 (Li et al. 2020) proposed a new 
method for reliability assessment of systems experiencing 

common cause failure (CCF) in a dynamic environment. 
They used a Bayesian network for the characterization of 
CCF in the system. The authors utilized PHM to capture 
the system's degradation process working under a dynamic 
environment, and the lifetime distribution and reliability 
functions are obtained.

Researchers must pay attention to the review papers to 
comprehend the development and application of PHM for 
reliability assessment. The review papers available in the 
literature in this field are mentioned in the next section.

3.5  Some review papers in this field

A few essential review papers are available in the literature 
that could help the researcher to understand PHM develop-
ment. In 1994, Dhananjay Kumar and Bengt Klefsjo (1994) 
presented a review on PHM and its extension model and 
application for reliability assessment. Later in 2009, Sam-
rout et al. (2009) presented a review on PHM for optimiza-
tion of maintenance policy. In 2010, Gorjian et al. (2010) 
presented a collaborative review on covariates for non-par-
ametric and semi-perimetric models applied in the medical 
and reliability fields. Recently, Alaswad and Xiang in 2017 
(Alaswad and Xiang 2017) presented a CBM model review 
for deterioration processes and PHM for single and multiple 
systems.

4  Observations and limitations

From the literature survey, a considerable growth is observed 
in both the fields from 1965 to 2010 as shown in Fig. 3, but 
both the fields were treated separately. From the year 1965 
to 2010, numerous models were developed to deal with com-
plex systems but more orientation was given towards TIM. 
Moreover, during the period from 2011 to 2020, it can be 
observed that, though various imperfect maintenance models 
have been developed, but PH models got much appreciation 
in terms of industrial applications. However, at the same 
time, we found that the assumption of imperfect mainte-
nance was neglected by most of the researchers while apply-
ing PH models in real-life industrial problems.

Some authors attempted to combine both types of models. 
For example, the model proposed by (Guo and Love 1992), 
Syamsundar et al. (Syamsundar and Naikan 2011), Yuan 
Fuqing and Uday kumar (Fuqing and Kumar 2013) and Lea 
Breniere et al. in 2020 (Brenière et al. 2020) attempted to 
combine PH models with virtual age models by considering 
only CM as imperfect whereas in a practical scenario, for 
mechanical systems, PM and CM both should be treated as 
imperfect. On the other hand, Sharma and Rai ( 2020d), Yu 
et al. (2008) and Nasr et al. (2013) proposed a virtual age 
model by treating different interventions as imperfect but did 
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not include PHM in the developed model. Some consider PH 
models with CBM techniques but lacks in combining them 
with imperfect maintenance models. Moreover, artificial 
intelligence (AI) algorithm is also widely used for data pre-
processing in this decade, it can be incorporated with PIM to 
improve the data sparsity and data censoring problem in the 
operational maintenance data analysis for accurate reliability 
assessment for the repairable systems.

Thus, observing the overall development in these two 
fields, it could be concluded that the available literature still 
lacks in combining TIM with PH models effectively which 
could be considered a big gap in this area as a future scope.

5  Conclusion and future scope

Traditional imperfect maintenance and proportional hazard 
models are two major and important streams in the reliability 
analysis of complex systems. Having observed that these 
two fields are treated separately in the literature, this paper 
presents an extensive literature survey on the development 
of TIM and PH models. The aim of this literature survey is 
to attract the researchers towards combining these two fields. 
We have mainly considered ARA-based TIM models and 
PH models developed by various researchers, from the year 
1965 to 2020 for reliability assessment.

As a major finding from this survey, a boom in the models 
development is observed in the decade of 2011–2020 in both 
the fields. The authors considered alternative scales for reli-
ability estimation, introduced imperfect maintenance activi-
ties such as overhaul, assumed various factors that affect 
the performability of systems in TIM models. At the same 
time, authors used combined CBM with PH models and 

used various AI techniques for data processing. Although, 
these models (TIM and PH models) are more or less treated 
separately. Thus, as a future scope, more attention might be 
given towards combining these two major streams so that 
more reliable and practical results could be obtained for the 
industries dealing with large, complex and critical mechani-
cal systems.

Hence, this literature survey could be very helpful as it 
provides a ready reference for academicians who are work-
ing or willing to work in this field of imperfect proportional 
hazard maintenance (IPHM).
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