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Abstract
This paper concerns with a complex system that comprises two subsystems in series configuration. First subsystem has n 
identical units that are working under k-out-of-n: G policy. All the units are connected in parallel through a switching device, 
which may be unreliable as and when required. Second subsystem has four identical units that are working under 2-out-of-4: 
G policy. Failure rates of all the units in both the subsystems are assumed to be constant and follow exponential distribution, 
while the repair supports general distribution and Goumbel–Hougard copula family distribution. There may be an unpredict-
able catastrophic failure of the system at any time (t). Failed components are replaced by the available warm standbys and 
hence are restored as good as new components after repair. A novel efficient technique is used to investigate the system and 
evaluate availability and reliability of the system, mean time to failure and profit analysis using the supplementary variable 
technique, Laplace transforms and copula methodology. For such a system, the evaluation of the reliability characteristics 
is quite complex due to availability of n − k + 1 states for first subsystem as well as a finite series developed during solution 
unlike as done in the past. Numerical examples are illustrated with graphs for various values of n and k. It can provide a 
reference for the decision-makers when developing maintenance policies.

Keywords  k-out-of-n system · Goumbel–Hougard copula repair · Catastrophic failure · Switching device · MTTF

1  Introduction

There are many aspects accountable to consider availability 
and reliability in product design, particularly product com-
plexity, addition of reliability-related sections in design pro-
visions, attractiveness, cognizance of cost value and failures 
from past. If we try to increase the product difficulty level 
for parts alone, we see prodigious growth of some products. 
For example, in 1950, an airplane was made of 1800 critical 

parts and now in 2020 the number is enlarged to about 3700. 
We can see complex systems all around. Telecommunication 
networks, Gaganyaan (Man on the moon) project, manned 
orbital laboratories, space shuttles, communication satel-
lites, a dishwasher, a hybrid car, a cargo ship, or a fighter 
plane, etc. are the well-known examples of complex systems. 
Determining availability and reliability of newly designed 
complex systems is a vital task for engineers as well as man-
agers, since both availability and reliability are in sturdy 
association with other concepts like quality and safety. 
Moreover, these tasks may be tremendously tough because 
existing methods may be very complicated, unproductive, 
and sometimes unsuitable while dealing with real-life com-
plex engineering systems. Regrettably, if we consider the 
system as extremely multifaceted, it is exceptionally difficult 
or sometimes even unmanageable to evaluate its reliability 
and availability. Every system assembled by human being is 
unpredictable in the perception that it demeans with age and 
practice, for example, every hardware suffers from degrada-
tion, not only due to passage of time, but also due to their 
rigorous usage. Furthermore, some failures are catastrophic 
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in nature such that they can make serious economic losses, 
shake humans and inflict grave damage to the environment. 
To overcome these difficulties or to improve system reli-
ability and availability, we generally add redundant compo-
nents in system design. Most commonly used redundancy 
that we practice nowadays is k-out-of-n, which is a popular 
redundancy among researchers and widely accepted by many 
industries and organizations. The term k-out-of-n frequently 
used to show either good (G) system or a failed (F) system 
or both. We consider k-out-of-n: G system is good if and 
only if minimum k out of its n components are working suc-
cessfully. It considered as failed if less than k out of its n 
components are working, i.e. if minimum n − k + 1 out of 
its n components are failed. We can find various uses of 
k-out-of-n warm standby system in numerous fields includ-
ing medical prognosis, redundant-system testing, network 
design, power generation and transmission system and so on.

During the past few decades, extensive research has been 
carried out regarding the design of warm standby redun-
dant system k-out-of-n. Several techniques and procedures 
had been developed. Various authors have studied k-out-
of-n system model, in particular warm standby system by 
She and Pecht (1992), transient analysis with and without 
repair with two failure mode by Moustafa (1996), three 
failure mode by Kumar and Sirohi (2011), multi states by 
Huang et al. (2000) and Tian and Zuo (2009), repair with 
T-policy by Krishnamoorthy and Rekha (2001), two-stage 
weighted by Chen and Yang (2005), repairable consecutive 
with r repairman by Wu and Guan (2005), developed exact 
reliability formula by Liang et al. (2010), shut-off rule by 
means of quasi-birth–death process for non-homogenous 
components by Moghaddass et al. (2011), block replace-
ment policy by Park and Pham (2012), helping unit by 
Kumar and Gupta (2007), waiting repair strategy by Ram 
et al. (2013), system equipped with a single warm standby 
by Eryilmaz (2013), load sharing system by Taghipour and 
Kassaei (2015), heterogeneous components with discrete 
lifetimes by Dembińska (2018) and many more. In all the 
above research articles, all the authors studied variety of fail-
ures and single type of repair. They forget to mention if we 
have more than one type of repair between two neighboring 
states that may be possible in several complex systems. If 
this is possible, then we evaluate the reliability characteris-
tics using Goumbel–Hougard Copula repair distribution for 
a completely failed state. Copulas permits us to segregate 
the dependency structure in a distribution where two or more 
variable quantities involved. Additionally, we can construct 
any multivariate distribution by separately identifying the 
marginal distributions and the copula, i.e. Copulas are func-
tions that amalgamate multivariate distribution functions to 
their static 1-D distribution functions. In addition, not all 
the above-mentioned authors paid attention to the systems 
that can have k-out-of-n system as a subsystem. Poonia and 

Sirohi (2020) considered a series configuration with three 
subsystems under k-out-of-n: G policy with three, two and 
one units, respectively. Authors have considered all failure 
rates constant and two repair policy viz. general repair and 
copula repair with deliberate failure of the system. Munjal 
and Singh (2014) studied a complex system that consists two 
subsystems with policy 2-out-of-3: G in parallel formation 
using supplementary variable technique, Laplace transforms 
and copula repair. Li et al. (2016) analyzed a non-repairable 
multi-state k-out-of-n system under dependent components 
using copula-based reliability modeling. Jia et al. (2016) 
performed reliability analysis for repairable multistate 
two-unit series systems when repair time can be neglected. 
Raghav et al. (2020) studied a series system that consists 
two subsystems of five and two units each. System will con-
tinue working until at least three units for first subsystem and 
one unit for second subsystem is in good working condition. 
Sensitivity and cost analysis has been done using copula 
repair. El-Damcese and Shama (2020) evaluated reliabil-
ity characteristics of k-out-of-n system having two types 
of failure via different methodology. Singh et al. (2020a) 
have carried out the reliability measures of two subsystems 
type complex system viz. subsystem-1 and subsystem-2 in a 
series configuration with switching device. The subsystem-1 
is in 2-out-of-5: G; policy, however the subsystem-2 has 
two identical units in parallel configuration working under 
1-out-of-2: G; policy. Furthermore, the switching device in 
the system is unreliable. To repair the system, the authors 
used general repair and copula repair for partially failed 
and totally failed states. Recently, Singh et al. (2020b) have 
conceded out reliability and other parameters of three com-
puter labs operational under 2-out-of-3: G policy connected 
through a server. In this, authors proved that copula repair is 
superior and more acceptable over general repair.

2 � Model description and notations

2.1 � System description

Satisfying societal needs for power, transmissions, trans-
portation, etc. needs complex inter-connected networks and 
systems that continually and speedily evolve as technology 
changes and improves. Apart from this, clients need greater 
levels of availability and reliability, but at the same moment, 
the difficulty level of these systems is swelling. Bearing in 
mind this complex and developing atmosphere, the usage 
and exercisability of some old-fashioned reliability models 
and procedures are limited nowadays since they do not come 
up with outcome for availability, reliability, mean time to 
failure and cost as they offer steady-state availability and 
other parameters. The gracefulness of simulation mod-
eling grows more apparently perceivable, widespread and 
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beneficial as the system grows and becomes more complex. 
Therefore, to solve grave problems, a more truthful mod-
eling methodology can be used. Though currently major 
research work mainly focused on transient analysis of reli-
ability under the assumption that behaviors of the units of 
the system themselves, the study of a system when switch 
fails or system has catastrophic failure was less studied. 
Therefore, we have considered a complex system that has 
two subsystems in series configuration. First subsystem 
(subsystem-1) has n identical units working under k-out-of-
n: G policy. All the units are connected in parallel through 
a switching device, which may be unreliable as and when 
required. Second subsystem (subsystem-2) has four identi-
cal units working under 2-out-of-4: G policy. Failure rates 
of all the units in both the subsystems are assumed to be 
constant and follow exponential distribution, while the repair 
supports two distributions, namely general distribution and 
Goumbel–Hougard copula family distribution. Failed com-
ponents are replaced by the available warm standbys and 
hence are restored as good as new components after repair. 
As we are aware in today’s complex conditions, we are not 
sure about environmental condition, fabricated disturbances, 
or some other wild disruption that can harm the operation 
of system; therefore, we also consider catastrophic failure in 
this model. A catastrophic failure renders the system non-
operable. We have studied the system using supplementary 
variable technique, Laplace transforms and copula method-
ology and discussed availability and reliability of the system, 
mean time to failure and profit analysis. The evaluation of 
the reliability characteristics of this model is quite complex 
due to availability of n − k + 1 states for first subsystem as 
well as a finite series developed during solution unlike as 
done in the past.

The paper is designed in several sections as follows: 
Sect.  2 describes the summary of system description 
together with assumptions and notations. Section 3 consists 
of state description including system configuration and tran-
sition diagram. In Sects. 4 and 5, we have developed differ-
ential equations with boundary conditions and then find the 
solution via Laplace transforms. The analytical results of the 
system performance like reliability, availability, MTTF and 
expected profit by considering different values of n and k are 
presented in Sect. 6. Concluding remarks on our findings 
with interpretations are offered in Sects. 7 and 8 with the 
help of graphs. All the explicit expressions and numerical 
evaluation for reliability physiognomies are acquired using 
MAPLE (software).

2.2 � Assumptions

We consider the following assumptions through this paper:

	 1.	 As the system starts, it is initially in state S0 , and all 
the units in both the subsystems are in good working 
conditions including switching device.

	 2.	 The subsystem-1 is in k-out-of-n: G; policy, however 
the subsystem-2 has four identical units in parallel con-
figuration working under 2-out-of-4: G; policy. Fur-
thermore, the subsystem-1 is controlled by a switching 
device.

	 3.	 The units in both the subsystems are in warm standby 
mode that may start within a negligible time after the 
failure of any unit in the subsystems.

	 4.	 One repairperson is full-time available to repair par-
tially or completely failed units.

	 5.	 A switching device is connected with subsystem-1, 
which may be defective as and when required.

	 6.	 For any two adjacent transition states, there will be 
only one transition.

	 7.	 As soon as repair of a unit in both the subsystems is 
completed, it again becomes operational. No malfunc-
tion reported due to maintenance of the machine.

	 8.	 There may be an unpredictable catastrophic failure to 
the system at any time (t) and the system is assumed 
to be in complete failure mode.

	 9.	 All failure rates are treated as constant that follows the 
exponential distribution.

	10.	 Partially failed states are repaired by employing gen-
eral repair, while Gumbel–Hougaard copula can be 
activated to reinstate the system in case of a complete 
failure.

2.3 � Notations

s, t : Laplace transform and time scale variable.
�1∕�2 : Failure rate of each unit in subsystem-1/

subsystem-2.
�SW∕�CF : Failure rate of switching device in subsystem-1 

/ catastrophic failure.
�1(x)∕�2(y) : Repair rate of each unit in subsystem-1 / 

subsystem-2.
P0,0(t):The state transition probability in S0,0 state at any 

instant t.
P(s) : Laplace transformation of the state transition prob-

ability P(t).
Pi,j(x, t) : The probability that the system is in state Si,j for 

i = 1, 2 and j represent the position of state and the system 
is under repair with elapsed repair time is x, t.

Ep(t) : Total estimated profit incurred in the interval [0, t).
K1,K2 : Revenue generated and service cost per unit time.
�0(x) : A term for joint probability from a complete 

failed state Si to good state S0 according to Gumbel–Hou-
gard family copula is given as �0(x) = C�

{
u1(x), u2(x)

}
 

= exp
[
x� + {log�(x)}�

]1∕�  w h e re  u1(x) = �(x)  a n d 
u2(x) = ex . Here � is the parameter 1 < 𝜃 < ∞.
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3 � State description including transition 
diagrams

In transition diagram, S0,0 is the perfect state, S1,1, S1,2, S1,3, 
…, S1,n−k, S2,1 and S2,2 are partial failed/degraded states 
while S1,n−k+1, SSW and SCF are completely failed states. If 
one or more but maximum upto k units failed in subsystem-1 
or maximum two units failed in subsystem-2, the transitions 
approach partially failed states S1,1, S1,2, S1,3, …, S1,n−k, S2,1 

and S2,2. The state S1,n−k+1 is complete failed state due to 
failure of more than k units in subsystem-1 or three units in 
subsystem-2. The states SSW and SCF are completely failed 
states due to failure of switching device or catastrophic fail-
ure, respectively. System configuration is shown in Fig. 1a 
while state transition diagram in Fig. 1b.

Fig. 1   a System configuration. b State transition diagram of the mathematical model
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4 � Formulation of mathematical model

The following sets of first-order partial differential equa-
tions linked with the state transition diagram 1(b) using the 
probability of considerations and continuity arguments can 
be obtained as follows:

Boundary conditions:

(1)

[
�

�t
+ n�1 + 4�2 + �CF + �SW

]
P0,0(t) =

∞

∫
0

�1(x)P1,1(x, t)dx

+

∞

∫
0

�2(x)P2,1(x, t)dx +

∞

∫
0

�0(x)P1,n−k+1(x, t)dx

+

∞

∫
0

�0(x)PSW(x, t)dx +

∞

∫
0

�0(x)PCF(x, t)dx,

(2)

[
�

�t
+

�

�x
+ (n − j)�1 + �SW + �CF + �1(x)

]
P1,j(x, t) = 0;

j = 1, 2, 3…(k + 1), k,

(3)

[
�

�t
+

�

�x
+ �0(x)

]
Pj(x, t) = 0; j = (1, n − k + 1), CF, SW,

(4)
[
�

�t
+

�

�x
+ 3�2 + �CF + �2(x)

]
P2,1(x, t) = 0,

(5)
[
�

�t
+

�

�x
+ 2�2 + �CF + �2(x)

]
P2,2(x, t) = 0.

(6)P1,1(0, t) = n�1P0,0(t),

(7)P1,2(0, t) = (n − 1)�1P1,1(0, t) = n(n − 1)�2
1
P0,0(t),

(8)
P1,3(0, t) = (n − 2)�2P1,2(0, t) = n(n − 1)(n − 2)�3

1
P0,0(t),

(9)
P1,n−k−1(0, t) = (k + 2)�1P1,n−k−2(0, t) = n(n − 1)(n − 2)...(k + 2)�n−k−1

1
P0,0(t),

(10)P1,n−k(0, t) = (k + 1)�1P1,n−k−1(0, t) = n(n − 1)(n − 2)...(k + 2)(k + 1)�n−k
1

P0,0(t),

(11)P1,n−k+1(0, t) = k�1P1,n−k(0, t) = n(n − 1)(n − 2)...(k + 1)(k)�n−k+1
1

P0,0(t),

(12)P2,1(0, t) = 4�2P0,0(t),

Initial conditions
P0(0) = 1 , and other state probabilities are zero at

5 � Solution of the mathematical model

Let us take Laplace transformation of Eqs. (1) to (15) and 
using Eq. (16);we obtain

(13)P2,2(0, t) = 3�2P2,1(0, t) = 12�2
2
P0,0(t),

(14)

P
SW

(0, t) = �SWP0,0(t) + �SWP1,1(t) + �SWP1,2(t)

+ �SWP1,3(t) +⋯ + �SWP1,n−k−1(t)

+ �SWP1,n−k(t)

P
CF
(0, t) = �CFP0,0(t) + �CFP1,1(t) + �CFP1,2(t)

+ �CFP1,3(t) +⋯ + �CFP1,n−k−1(t)

�CFP1,n−k(t)

(15)+�CFP2,1(t) + �CFP2,2(t)

(16)t = 0

(17)

[
s + n�1 + 4�2 + �CF + �SW

]
P0,0(s) = 1 +

∞

∫
0

�1(x)P1,1(x, s)dx

+

∞

∫
0

�2(x)P2,1(x, s)dx +

∞

∫
0

�0(x)P1,n−k+1(x, s)dx

+

∞

∫
0

�0(x)PSW
(x, s)dx +

∞

∫
0

�0(x)PCF
(x, s)dx,

(18)

[
s +

�

�x
+ (n − j)�1 + �SW + �CF + �1(x)

]
P1,j(x, s) = 0;

j = 1, 2, 3...(k + 1), k,

(19)

[
s +

�

�x
+ �0(x)

]
Pj(x, s) = 0; j = (1, n − k + 1), CF, SW,
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Boundary conditions:

Solving all the equations with the boundary conditions, 
one may get

(20)
[
s +

�

�x
+ 3�2 + �CF + �2(x)

]
P2,1(x, s) = 0,

(21)
[
s +

�

�x
+ 2�2 + �CF + �2(x)

]
P2,2(x, s) = 0.

(22)P1,1(0, s) = n�1P0,0(s),

(23)P1,2(0, s) = (n − 1)�1P1,1(0, s) = n(n − 1)�2
1
P0,0(s),

(24)
P1,3(0, s) = (n − 2)�2P1,2(0, s) = n(n − 1)(n − 2)�3

1
P0,0(s),

(25)

P1,n−k−1(0, s) = (k + 2)�1P1,n−k−2(0, s)

= n(n − 1)(n − 2)...(k + 2)�n−k−1
1

P0,0(s),

(26)

P1,n−k(0, s) = (k + 1)�1P1,n−k−1(0, s)

= n(n − 1)(n − 2)...(k + 2)(k + 1)�n−k
1

P0,0(s),

(27)

P1,n−k+1(0, s) = k�1P1,n−k(0, s)

= n(n − 1)(n − 2)...(k + 1)(k)�n−k+1
1

P0,0(s),

(28)P2,1(0, s) = 4�2P0,0(s),

(29)P2,2(0, s) = 3�2P2,1(0, s) = 12�2
2
P0,0(s),

(30)PSW(0, s) = �SW

n−k∑
m=0

(
n

m

)
m!�m

1
P0,0(s),

(31)PCF(0, s) = �CF

(
n−k∑
m=0

(
n

m

)
m!�m

1
+ 4�2 + 12�2

2

)
P0,0(s),

(32)P0,0(s) =
1

D(s)
,

(33)P1,1(s) =
n�1

D(s)

1

s + (n − 1)�1 + �SW + �CF + �1(x)
,

where

Sum of Laplace transformations in which the system is in 
operational mode is assumed by Pup(s) , while sum of failed 
state by Pdown(s) ; therefore

(34)

P1,2(s) =
n(n − 1)�2

1

D(s)

1

s + (n − 2)�1 + �SW + �CF + �1(x)
,

(35)

P1,3(s) =
n(n − 1)(n − 2)�3

1

D(s)

1

s + (n − 3)�1 + �SW + �CF + �1(x)
,

(36)
P1,n−k−1(s) =

n(n − 1)(n − 2)...(k + 2)�n−k−1
1

D(s)

1

s + (k + 1)�1 + �SW + �CF + �1(x)
,

(37)
P1,n−k(s) =

n(n − 1)(n − 2)...(k + 2)(k + 1)�n−k
1

D(s)

1

s + k�1 + �SW + �CF + �1(x)
,

(38)

P1,n−k+1(s) =
n(n − 1)(n − 2)...(k + 1)(k)�n−k+1

1

D(s)

1

s + �0(x)
,

(39)P2,1(s) =
4�2

D(s)

1

s + 3�2 + �CF + �2(x)
,

(40)P2,2(s) =
12�2

2

D(s)

1

s + 2�2 + �CF + �2(x)
,

(41)PSW (s) =

n−k∑
m=0

(
n

m

)
m!�m

1

�SW

D(s)

1

s + �0(x)
,

(42)

PCF(s) =

(
n−k∑
m=0

(
n

m

)
m!�m

1
+ 4�2 + 12�2

2

)
�CF

D(s)

1

s + �0(x)
,

D(s) =s − S�0
(s)

{
n!

(k − 1)!
�n−k+1
1

+
(
�SW+�CF

) n−k∑
m=0

(
n

m

)
m!�m

1
+ �CF

(
4�2 + 12�2

2

)}

− 4�2S�2

(
s + 3�2 + �

C

)
− n�1S�1

(
s + �CF + �SW

+(n − 1)�1
)
+ n�1 + 4�2 + �SW + �CF

(43)
Pup(s) =

1

D(s)

⎡⎢⎢⎢⎢⎢⎣

1 +

n−k�
m=1

�
n

m

�
m!�m

1

s + (n − m)�1 + �SW + �CF + �1

+
4�2

s + 3�2 + �CF + �2

+
12�2

2

s + 2�2 + �CF + �2

⎤⎥⎥⎥⎥⎥⎦

,
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6 � Numerical computations

6.1 � Availability analysis

If repair follows both general and Gumbel–Hougaard family 
copula distribution, then we use

Take the values of various parameters used in 
t h e  m o d e l  a s  �1 = 0.030, �2 = 0.035, �CF = 0.020, 
�SW = 0.021,�i = 1(i = 1, 2) and x = 1 in (43). In this, we 
have considered both the cases like repair follow Gum-
bel–Hougaard family copula distribution and repair follows 
general distribution. After taking inverse Laplace trans-
form, we get the availability of the system under copula for 
n = 4, k = 1 as follows:

Similar expressions for availability of the system 
can be obtained for other values of n and k. By putting 
t = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 units of time in 

(44)Pdown(s) =
1

D(s)

1{
s + �0(x)

}
[

n∏
m=k

m�n−k+1
1

+
(
�SW + �CF

) n−k∑
m=0

(
n

m

)
m!�m

1
+ �CF

(
4�2 + 12�2

2

)]
.

S�0
(s) = S

exp
[
x�+{log�(x)}�

]1∕�
(s) =

exp
[
x� + {log�(x)}�

]1∕�

s + exp
[
x� + {log�(x)}�

]1∕�

(45)

Pup(t) =0.020157e
−2.7761t − 0.041880e−1.3536t + 0.000131e−1.1282t

+ 1.023477e−0.0171t − 0.001885e−1.0900t

(45), we may acquire different values of Pup(t) as presented in 
Tables 1 and 2 and corresponding from Figs. 2, 3, 4, 5, 6 and 7.

6.2 � Reliability of the system

Let us fix all repair rates to zero and obtain inverse 
Laplace transform in (43),\; we get the following expres-
sion for the reliability after taking the failure rates as 
�1 = 0.030, �2 = 0.035, �CF = 0.020, �SW = 0.021 . Now for 
n = 4, k = 2, we have

Similar expressions for reliability of the system 
can be obtained for other values of n and k. By putting 
t = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 units of time in 
(46), we may acquire different values of Ri(t) as presented 
in Table 3 and corresponding Fig. 8.

6.3 � Mean time to ailure (MTTF)

Taking all repair rates and Laplace parameter s equal to zero 
in (43) for the exponential distribution, we get mean time to 
failure as follows:

(46)

R
i
(t) =1.133788e−0.1250t + 0.092349e−0.0900t + 0.884014e−0.1010t

− 1.939170 10−31e−1.5095t
(
5.925578 1030 sinh (1.263588t)

+5.724877 1030 cosh (1.263588t)
)

(47)MTTF =
1

n�1 + 4�2 + �SW + �CF

⎡⎢⎢⎢⎢⎢⎣

1 +

n−k�
m=1

�
n

m

�
m!�m

1

(n − m)�1 + �SW + �CF
+

4�2

3�2 + �CF
+

12�2
2

2�2 + �CF

⎤⎥⎥⎥⎥⎥⎦

Table 1   Variation in availability 
for various t under copula repair

Time n = 4 n = 8 n = 12

k = 1 k = 2 k = 3 k = 2 k = 4 k = 6 k = 4 k = 7 k = 10

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9395 0.9437 0.9747 0.8898 0.8987 0.9306 0.8355 0.8547 0.9570
10 0.8626 0.8686 0.9335 0.7384 0.7463 0.7988 0.6016 0.6166 0.7821
15 0.7920 0.7995 0.8939 0.6127 0.6197 0.6855 0.4331 0.4447 0.6388
20 0.7271 0.7358 0.8560 0.5084 0.5145 0.5882 0.3118 0.3207 0.5218
25 0.6675 0.6772 0.8197 0.4218 0.4272 0.5047 0.2245 0.2313 0.4262
30 0.6129 0.6232 0.7850 0.3500 0.3547 0.4331 0.1616 0.1668 0.3481
35 0.5627 0.5736 0.7517 0.2904 0.2945 0.3716 0.1163 0.1203 0.2843
40 0.5166 0.5279 0.7198 0.2410 0.2445 0.3189 0.0837 0.0867 0.2322
45 0.4743 0.4859 0.6893 0.2001 0.2030 0.2737 0.0603 0.0625 0.1897
50 0.4354 0.4472 0.6601 0.1659 0.1685 0.2348 0.0434 0.0451 0.1549
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Table 2   Variation in availability 
for various t under general 
repair

Time n = 4 n = 8 n = 12

k = 1 k = 2 k = 3 k = 2 k = 4 k = 6 k = 4 k = 7 k = 10

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9173 0.9211 0.9464 0.8684 0.8771 0.9045 0.8151 0.8337 0.9193
10 0.8439 0.8495 0.9074 0.7243 0.7320 0.7800 0.5930 0.6077 0.7581
15 0.7765 0.7835 0.8701 0.6041 0.6110 0.6726 0.4315 0.4430 0.6250
20 0.7144 0.7226 0.8343 0.5039 0.5099 0.5800 0.3140 0.3229 0.5153
25 0.6573 0.6665 0.8000 0.4203 0.4256 0.5001 0.2289 0.2353 0.4249
30 0.6048 0.6147 0.7670 0.3506 0.3552 0.4312 0.1662 0.1715 0.3503
35 0.5565 0.5670 0.7355 0.2924 0.2965 0.3718 0.1209 0.1250 0.2888
40 0.5120 0.5229 0.7052 0.2439 0.2474 0.3206 0.0880 0.0911 0.2381
45 0.4711 0.4823 0.6762 0.2035 0.2065 0.2765 0.0640 0.0664 0.1963
50 0.4334 0.4448 0.6484 0.1697 0.1723 0.2384 0.0466 0.0484 0.1619
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Fig. 2   Availability under copula repair when n = 4

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
va

ila
bi
lit
y

Time (t)

k=2
k=4
k=6

n=8

Fig. 3   Availability under copula repair when n = 8
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Fig. 4   Availability under copula repair when n = 12
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Fig. 5   Availability under general repair when n = 4
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Now taking the values of different parameters as 
�1 = 0.030, �2 = 0.035, �CF = 0.020, �SW = 0.021 and vary-
ing �1, �2, �CF and �SW one by one from 0.01 to 0.10 in (47), 
the variation of MTTF, with respect to failure rates can be 
obtained as given Table 4 and Fig. 9.

6.4 � Cost analysis

Expected profit has been evaluated during the interval [0, t) 
by assuming same failure and repair rates as per Sect. 5.1 for 
various values of n and k in both the cases. Let the service 
facility be available full time; then we have

where K1 and K2 are the revenue generation and service cost 
in unit time. For same set of parameters defined in (45), the 
incurred profit as a function of time for n = 4, k = 2 can be 
obtained as follows:

(48)Ep(t) = K1

t

∫
0

Pup(t)dt − K2t,

(49)

Ep(t) =K1

{
−0.007357e−2.7767t + 0.022322e−1.3535t

+0.001467e−1.3736t − 61.785229e−0.0166t

+ 0.011084e−1.1010t+0.001729e−1.0900t+61.755983} − K2t.
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Fig. 6   Availability under general repair when n = 8

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

.0

A
va

ila
bi
lit
y

Time (t)

k=4
k=7
k=10

n=12

Fig. 7   Availability under general repair when n = 12

Table 3   Variation in reliability for various t 

Time (t) n = 4, k = 2 n = 8, k = 6 n = 12, k = 10

0 1.0000 1.0000 1.0000
5 0.8689 0.9091 0.9372
10 0.5877 0.5912 0.6497
15 0.3638 0.3569 0.3906
20 0.2173 0.2114 0.2322
25 0.1279 0.1248 0.1379
30 0.0748 0.0737 0.0820
35 0.0437 0.0436 0.0489
40 0.0256 0.0259 0.0291
45 0.0150 0.0154 0.0174
50 0.0088 0.0091 0.0104
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Fig. 8   Reliability as a function of time when n = 4, k = 2; n = 8, k = 
6; n = 12, k = 10
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Similar expressions can be obtained for various val-
ues of n and k using maple software. Setting K1 = 1 and 
K2 = 0.1, 0.2 and 0.3 and putting t = 0, 5, 10, 15, 20, 25,

30, 35, 40, 45 and 50 units of time, the results for expected 

profit is given as per Tables 5 and 6 and Figs. 10, 11, 12, 
13, 14 and 15.

7 � Discussion of results

The aim of this paper is to examine a multifaceted system 
that has two subsystems in series formation with switch 
over device to first subsystem only with catastrophic failure. 
Through this study we proved that copula repair is superior 
and hence preferred over general repair in case of repairable 
systems. Conclusion has highlighted the variation in avail-
ability and other characteristics under both types of repair 
for various n and k. Table 1 and Figs. 2, 3 and 4 present the 
availability of various values of n and k for different failure 
rate and copula repair in fully failed states. From Fig. 2, 
we can conclude that availability is more when n = 4 and 
k = 3. Similarlys Figs. 3 and 4 reveal that availability is more 
for n = 8, k = 6 and n = 12, k = 10, respectively. Table 2 and 
Figs. 5, 6 and 7 provide information on availability while 
repair follows the general distribution. From Tables 1 and 
2, it is visible that availability is greater when repair fol-
lows Gumbel–Hougaard family copula distribution. Fur-
thermore, availability changes with time for different failure 
rates �1 = 0.030, �2 = 0.035, �CF = 0.020 and�SW = 0.021 . 
It shrinks as t rises and ultimately becomes zero after a suf-
ficiently long interval of time. Thus, availability of the sys-
tem decreases as the value of time t increases in all possible 
values of n and k.

Table 3 and Fig. 8 yield the reliability of the system when 
n = 4, k = 2; n = 8, k = 6 and n = 12, k = 10, while repair is put 
to zero. It can be seen that reliability is higher for n = 12, 
k = 10 as compared to other cases. Therefore, we can with-
out harm forecast future performance of the system for 
any t, n and k, as is clear by the graphs of the model. It 
is also clear from Tables 1, 2 and 3 that values of avail-
ability are bigger than the reliability, which points out the 

Table 4   Variation in MTTF for �′s

Failure rates �1 �2 �SW �CF

0.01 13.3879 15.5475 13.1907 12.8850
0.02 12.7595 14.0043 11.8883 11.9711
0.03 11.8883 12.5301 10.8116 11.2013
0.04 11.0390 11.3081 9.9069 10.5416
0.05 10.2743 10.3089 9.1365 9.9681
0.06 9.6017 9.4853 8.4727 9.4635
0.07 9.0133 8.7980 7.8952 9.0152
0.08 8.4979 8.2172 7.3883 8.6134
0.09 8.0445 7.7205 6.9399 8.2506
0.10 7.6437 7.2914 6.5408 7.9210

Fig. 9   Variation in MTTF for�′s

Table 5   Profit computation 
under Copula repair

Time n = 4, k = 2 n = 8, k = 6 n = 12, k = 10

K2 = 0.1 K2 = 0.2 K2 = 0.3 K2 = 0.1 K2 = 0.2 K2 = 0.3 K2 = 0.1 K2 = 0.2 K2 = 0.3

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 4.3914 3.8914 3.3914 4.4447 3.9447 3.4447 4.6419 4.1419 3.6419
10 8.4201 7.4201 6.4201 8.2606 7.2606 6.2606 8.4761 7.4761 6.4761
15 12.0881 10.5881 9.0881 11.4643 9.9643 8.4643 11.5167 10.0167 8.5167
20 15.4243 13.4243 11.4243 14.1425 12.1425 10.1425 13.9086 11.9086 9.9086
25 18.4549 15.9549 13.4549 16.3697 13.8697 11.3697 15.7707 13.2707 10.7707
30 21.2043 18.2043 15.2043 18.2100 15.2100 12.2100 17.2000 14.2000 11.2000
35 23.6949 20.1949 16.6949 19.7182 16.2182 12.7182 18.2759 14.7759 11.2759
40 25.9474 21.9474 17.9474 20.9415 16.9415 12.9415 19.0630 15.0630 11.0630
45 27.9807 23.4807 18.9807 21.9203 17.4203 12.9203 19.6143 15.1143 10.6143
50 29.8122 24.8122 19.8122 22.6892 17.6892 12.6892 19.9730 14.9730 9.9730



131Life Cycle Reliability and Safety Engineering (2021) 10:121–133	

1 3

Table 6   Profit computation 
under general repair

Time n = 4, k = 2 n = 8, k = 6 n = 12, k = 10

K2 = 0.1 K2 = 0.2 K2 = 0.3 K2 = 0.1 K2 = 0.2 K2 = 0.3 K2 = 0.1 K2 = 0.2 K2 = 0.3

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 4.2997 3.7997 3.2997 4.3331 3.8331 3.3331 4.4762 3.9762 3.4762
10 8.2240 7.2240 6.2240 8.0370 7.0370 6.0370 8.1572 7.1572 6.1572
15 11.8046 10.3046 8.8046 11.1620 9.6620 8.1620 11.1046 9.6046 8.1046
20 15.0682 13.0682 11.0682 13.7879 11.7879 9.7879 13.4470 11.4470 9.4470
25 18.0394 15.5394 13.0394 15.9834 13.4834 10.9834 15.2905 12.7905 10.2905
30 20.7411 17.7411 14.7411 17.8077 14.8077 11.8077 16.7228 13.7228 10.7228
35 23.1940 19.6940 16.1940 19.3120 15.8120 12.3120 17.8160 14.3160 10.8160
40 25.4175 21.4175 17.4175 20.5403 16.5403 12.5403 18.6297 14.6297 10.6297
45 27.4295 22.9295 18.4295 21.5306 17.0306 12.5306 19.2127 14.7127 10.2127
50 29.2464 24.2464 19.2464 22.3157 17.3157 12.3157 19.6057 14.6057 9.6057
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Fig. 10   Expected profit under Copula repair when n = 4, k = 2
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Fig. 11   Expected profit under Copula repair when n = 8, k = 6
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0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

Ex
pe

ct
ed

Pr
of
it
E p
(t)

Row Numbers

K2=0.1
K2=0.2
K2=0.3

n=4, k=2

Fig. 13   Expected profit under general repair when n = 4, k = 2



132	 Life Cycle Reliability and Safety Engineering (2021) 10:121–133

1 3

necessity of systematic repair for repairable systems for 
healthier show. Table 4 and Fig. 9 reveal MTTF of the sys-
tem under variation in failure rates �1 = 0.030, �2 = 0.035, 
�CF = 0.020 and �SW = 0.021 , respectively, when other 
parameter is kept constant. We can observe MTTF of the 
system falls with the rise in the values of all the param-
eters. MTTF is found to be highest for �2 and lowest for �SW . 
Therefore, MTTF of the system is decreasing with increase 
in failure rate from 0.01 to 0.10 when other parameters are 
not changing.

A critical examination of Tables 5 (under copula repair) 
and 7 (under general repair) and Figs. 10, 11, 12, 13, 14 and 
15 reveals that in all three cases for n and k (n = 4, k = 2; 
n = 8, k = 6; n = 12, k = 10) expected profit increases as ser-
vice cost K2 decreases, while revenue cost per unit time is 
fixed at K1 = 1. The calculated expected profit is maximum 
for K2 = 0.1, n = 4, k = 2 and n = 4 and minimum at K2 = 0.3, 
n = 12 and k = 10. One can observe that as service cost 
reduces, profit swells with variation of time. Additionally, 

copula repair is more effective repair strategy for better per-
formance of repairable systems as profit is more in case of 
copula repair.

8 � Conclusion

This paper analyzed a series system comprised of two sub-
systems, namely subsystem-1 and subsystem-2. Subsystem-1 
has n identical units in parallel working under k-out-of-n: 
G policy governed through a switching device, which may 
be defective as and when required. Subsystem-2 has four 
identical units in parallel that are working under 2-out-of-4: 
G policy. The numerical assessment of each parameter have 
addressed for a series of values of failure and repair rates and 
it concludes that availability of the system steadily decreases 
and eventually becomes steady after a reasonable long time 
period for all values of n and k. It is good if the gap in the 
values of n and k is small, and falls rapidly as the differ-
ence enlarges. Variation in reliability follows the same suit. 
MTTF is decreasing continuously as failure rates varied 
from 0.01 to 0.10. It is maximum for subsystem-2 in the 
first half and for catastrophic failure in the second half and 
minimum for switching device which indicates that initially 
subsystem-2 and then catastrophic failure are more respon-
sible for the proper functioning. Expected profit increases 
as time increases. Additionally, as service cost grows, profit 
reduces. In general, the evaluated expected profit is more 
for low service cost as compared to high service cost. From 
investigation, it is interesting to note that system failure can 
be minimized by considering higher values of n and k. In 
addition, availability and profit are higher when repair sup-
ports Goumbel–Hougard copula family distribution; there-
fore, it is advisable to scientific community to adopt multi 
dimension repair in the form of copula. This model has been 
developed by considering n − k + 1 states in subsystem-1 in 
such a way that it established a finite series during solution 
unlike as done in the past. This work may be extended by 
using other methodologies viz. Kolmogorov method, fuzzy 
reliability, s etc. method by considering constant repair rates.
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