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Abstract
Redundancy Allocation Problem (RAP) is one of the most well-known and widely applicable optimization problems that 
has been considered by the researchers and designers over the recent decades. Several factors influence the redundancy 
allocation decisions in a system. Some of these factors are as follows: availability in repairable systems, redundant system 
configuration in parallel or standby systems, and time and dependent failures in case of common cause factors (CCF) and 
load share. These features should be incorporated into the RAP modeling to obtain logical/realistic solutions. In this paper, a 
RAP in a k-out-of-n system by considering several features of availability, reparability, interference factor, and load sharing 
is formulated. The Markov chain is used to formulate the RAP and the repair rate is assumed to be dependent on the number 
of repairmen. In other words, it is assumed that the higher the number of repairmen is, the higher the repair rate and as a 
result, the higher the availability of the system is; however, in real situations, it is possible that the excessive increase in the 
number of repairmen decreases the availability due to the repairmen work interference. To resolve this problem, a parameter 
called interference factor is defined and incorporated into the modeling and calculations for each subsystem. RAP is among 
the optimization problems that are categorized under NP-hard class of problems. Therefore, NSGA-II algorithm is utilized 
to solve the proposed model. Finally, a special problem is solved as a sample and the obtained results are discussed.

Keywords Redundancy allocation problem · k-out-of-n · Load share · Interference factor · Instantaneous availability

1 Introduction

Most of the systems are made up of several subsystems, each 
of which is comprised of some components. Subsystems are 
connected to each other in series, such that failure of a single 
subsystem leads to total system failure. Therefore, to avoid 
total system failure in case of failure of one component, it 
is better to put more than one component in parallel in each 
subsystem. Increased number of components in each sub-
system leads to increase of system cost, weight, and volume 

(Chern (1992). Hence, system designers should determine 
number of redundant components in such a way that the 
system configuration is optimal, which means costs are mini-
mized, availability is maximized, and constraints pertaining 
to the system weight and volume are taken into account.

Redundancy Allocation Problem (RAP) is one of the 
most authentic and best-known reliability optimization prob-
lems. In such problems, it is posited that several subsystems 
are connected together in series, such that each subsystem, 
i ∈ {1, 2,… ,N} , can be constituted of several ( n ) paral-
lel components (Fig. 1). In RAP, the aim is to select the 
optimal number of parallel components in each subsystem 
(Chern 1992). For the RAP to determine the best and most 
appropriate solution, for system designers, the real system 
features must be incorporated into RAP modeling and these 
conditions must be integrated into the modeling. Some of 
the most important features are: availability (system repair), 
redundant system configuration (parallel and standby), and 
time and dependent failures (CCF and Load share).
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The term ‘availability’ refers to a property of systems 
with repair capability or checking after each period of opera-
tion (mission). Integrating the repair in reliability allocation 
models exerts a significant effect on their outcome. Increased 
repair rate is accompanied by increased availability and 
decreased repair rate is accompanied by decreased avail-
ability (Lambert et al. 1971). In recent years, the discussion 
on repair in RAP has received considerable attention. Arabi 
and Jahromi (2012) modeled the steady-state availability of 
a system with several redundant subsystems according to the 
cold standby strategy considering repairable components. 
They constructed their model using the Markov process. 
Lins and Droguett (2011) considered the system structure 
and the number of maintenance groups and provided com-
prised solutions set in their proposed methodology. This 
system was subject to imperfect repairs. They presented a 
Multi-Objective Genetic Algorithm (MOGA) in combina-
tion with discrete event simulation to solve the problem. Liu 
(2015) considered an availability optimization problem with 
repairable components with different constraints such as 
weight, volume, the required level of components reliability, 
and cost. To solve the problem, he developed a redundancy 
allocation heuristic method by combining four algorithms 
constituted of tabu search, simulated annealing, non-equi-
librium simulated annealing, and the genetic algorithm. He 
applied the sensitivity analysis for the proposed approach 
under design limitation. A common categorization of RAP 
optimization is based on reparability of components in the 
system and includes reliability optimization and availability 
optimization. Zoulfaghari et al. (2014a) evaluated a system 
with configuration for both repairable and non-repairable 
components concurrently by presenting a Mixed Integer 
Nonlinear Programming (MINLP) model for the availability 
optimization problem. To solve their model, they developed 
a Genetic Algorithm (GA).

Guo et al. (2014) considered a parallel-series system with 
the repairable components. In their paper, failure rate, repair 

rate, and comparative factors were considered as uncer-
tain variables. Also, for solving the Multi-Objective RAP 
(MORAP), they proposed an efficient Non-Dominated Sort-
ing GA (NSGA-II). Ebrahimipour and Sheikhalishahi (2011) 
investigated a multi-objective reliability redundancy alloca-
tion problem and solved their proposed model to obtain the 
number of components and reliability of each component in 
the subsystems. In their paper, parameters were considered 
as fuzzy numbers. To study effects of the repair strategy, sev-
eral approaches under various situations were investigated. 
To increase the system availability, non-identical multi-state 
components can be added as a redundant component in the 
parallel configuration in the subsystem. Nourelfath et al. 
(2012) presented a model for investigating redundancy and 
imperfect preventive maintenance planning optimization 
in the series–parallel multi-state degraded systems. They 
utilized Markov process to model and analyze the repair 
rates. Xie et al. (2014) presented an operational availabil-
ity maximization model with two decision variables of the 
component redundancy and the number of spares stocking 
under cost and physical limitation. In their paper, a single 
repairable k-out-of-n system under various shut-off rules 
was modeled by a developed continuous-time Markov chain. 
Some main parameters of operational availability and spare 
parts availability were calculated using the model. In the 
paper by a multi-objective Joint Availability Redundancy 
Allocation Problem (JARAP) in the series–parallel sys-
tem was solved using a Simulation-Based Optimization 
(SBO) method by Attar et al. (2017). With an emphasis on 
the developed SBO method, they considered random free-
distributed time for failures and repair times under sev-
eral standby conditions. To solve the model, two efficient 
algorithms were used: a Non-Dominated Sorting Genetic 
Algorithm (NSGA-II) and a Strength Pareto Evolutionary 
Algorithm (SPEA2). Khalili-Damghani et al. (2013) pro-
posed a Dynamic Self-Adaptive Multi-Objective Particle 
Swarm Optimization (DSAMOPSO) method to solve the 

Fig. 1  Series parallel system 
of RAP
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binary-state Multi-Objective Reliability Redundancy Allo-
cation Problems (MORAPs). Different properties of their 
proposed method made it robust and competitive, among 
other existing methods. A procedure based on an extended 
version of efficient method and Data Envelopment Analysis 
(DEA) was proposed to solve binary-state Multi-Objective 
RAP series–parallel problem by Khalili-Damghani and 
Amiri (2012). Other innovative ways have been used to solve 
problems of RAP. Khalili-Damghani et al. (2014) also pro-
posed a Decision Support System (DSS) to efficiently solve 
the Multiple Objective Decision Making (MODM) problems 
by producing a Pareto front with a Decision Maker (DM) 
preferred resolution. The core of proposed DSS is based 
on Topsis module, modified efficient �-constraint module, 
and DEA module. Different applications of metaheuristic 
methods and MODM methods in RAP can be found in the 
literature (Ardakan and Rezvan 2018; Yeh 2018; Dolatshahi-
Zand and Khalili-Damghani 2015; Li et al. 2010; Taboada 
et al. 2007; Zio and Bazzo 2011).

There are the different structures in a redundant system, 
including parallel, k-out-of-n, hot standby, warm, and cold 
standby. The difference between parallel and other structures 
is the operating condition of all components. Chen and You 
(2005) considered a series–parallel redundant reliability 
problem, in which both the multiple component choices of 
each subsystem and the redundancy levels of every selected 
component were to be decided simultaneously so as to 
maximize the system reliability. In another study, Soylu 
and Ulusoy (2011) studied a bi-objective redundancy allo-
cation problem on a series–parallel system with component 
level redundancy strategy. Their main aim was to maximize 
the minimum subsystem reliability, while minimizing the 
overall system cost. Gen and Yun (2006) introduced several 
variations of reliability design problem with parallel con-
figurations such as reliability design problems of redundant 
system, reliability design problems with alternative design, 
reliability design problems with time-dependent reliability, 
reliability design problems with interval coefficients, and 
reliable networks design problems. They have also described 
various GA-based approaches for the problems. Bhunia et al. 
(2010) studied reliability stochastic optimization problem 
in the series–parallel systems with various limitations of 
resources. For solving the problem, they considered reli-
ability of each component as fuzzy-random quantities with 
known probability distributions and fuzzy membership 
functions.

Chambari et al. (2012) presented a model with two objec-
tives: of maximizing the reliability and minimizing the cost 
of the system in a RAP. In their paper, two redundancy 
strategies were considered: active and cold standby. They 
had also effectively solved the model using NSGA-II and 
MOPSO. Kim and Kim (2017) addressed the Reliability 
Redundancy Allocation Problem (RRAP) of either active or 

cold standby components by considering an optimal redun-
dancy strategy. For modeling purposes, they utilized Markov 
chains and solved their proposed model using a parallel GA.

There is a limited number of studies on a specific oper-
ational time in RAP. Specifically, a specific time implies 
that systems can or should be operational within a short 
period of time, i.e., it should respond to a situation instan-
taneously. For example, consider one-shot systems, which 
should operate at a specific and very short time. Therefore, 
it is crucial to consider operation time in RAP modeling. 
This can be achieved by utilizing Markov chains. Amiri 
and Ghassemi-Tari (2007) proposed a methodology based 
on continuous-time Markov chain for analyzing system 
availability with instantaneous responses. Their proposed 
method was applicable to series, parallel and k-out-of-n sys-
tem configurations. An instantaneous availability model for 
repairable multi-state system (MSS) was studied by Yu et al. 
(2014). Their model was created from combination of both 
Markov process and Universal Generating Function (UGF). 
Xu and Hu (2013) investigated instantaneous availability 
of a kind of repairable system with preventive maintenance 
using Markov chain. They also developed a time-dependent 
solution, which is essential for analyzing the instantaneous 
availability of the repairable system.

Types of dependent failures in reliability engineering are 
introduced in (Mortazavi et al. 2016; Mortazavi et al. 2017). 
Load share and common cause failure (CCF) are among the 
most important dependent failures. da Costa Bueno (2005) 
utilized a mathematical expression to allocate spare com-
ponents in a k-out-of-n system and assumed that compo-
nents are dependent on each other. Li et al. (2010) studied 
the heterogeneous redundancy optimization of multi-state 
series–parallel systems. Their main aim was minimizing 
costs and finding an optimal level of redundancy. In this 
regard, they incorporated CCF into their proposed model 
and concluded that considering CCF results in a different 
redundancy allocation strategy compared to the case where 
CCF is absent. Ramirez-Marquez and Coit (2007) formu-
lated a RAP in the presence of CCF and presented three non-
linear optimization models categorized based on computa-
tional time, degree of similarity to the true system behavior 
and CCF modeling. After solving models, they concluded 
that considering CCF significantly influences the outcomes. 
Arabi and Jahromi (2013) designed a new model for RAP 
using Markov chain. Two types of decision variables, redun-
dancy level and number of repairmen, are directly calculated 
in the objective function. In the designed model, load share 
was also considered, i.e., failure of a component in a subsys-
tem affects the load on others.

To create an applicable model of the RAP, real-world fea-
tures of the problem should be incorporated. Specifically, 
as salient matter, the repair rate affects availability of each 
system. Therefore, in this paper, a parameter named work 
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interference factor is defined to model influence of the number 
of repairmen on the repair rate in real-world situations. As pre-
viously mentioned, structure of redundant systems can be of 
different types. One of the most important structures, which is 
considered the least in RAP, is the k-out-of-n structure. In this 
structure, the dependent failure decreases availability of the 
system and it should be considered in reliability analyses. The 
scarcity of research on RAP in k-out-of-n systems under real-
istic situations was our main inspiration in this paper, which 
led to development of a dynamic RAP model considering the 
realistic assumptions, including time, work interference factor, 
repairable components, and their dependent and independent 
failures.

2  Model development of RAP

As explained in Sect. 1, system designers seek to increase 
system availability; hence, in recent years, many researchers 
endeavored to increase system availability through various 
models and techniques. In this section, a model along with its 
solution algorithm for a RAP in a k-out-of-n system consider-
ing load share, reparability, interference factor, and instantane-
ous response availability will be discussed.

2.1  Problem description and assumptions

Assume a system with m different subsystems connected in 
series, each has n components with k-out-of-n configuration. 
In addition, suppose that the failure time of each component 
in the ith subsystem follows exponential distribution with 
parameter λ. Exponential distribution is commonly used for 
its mathematical simplicity and sufficiently realistic descrip-
tion of life time and time to failure (Robinson and Neuts 1989; 
Rausand and Høyland 2004; Cui and Li 2007). For instance, 
Çekyay and Özekici (2015) and Kuo et al. (2014) made the 
assumption that both failure and repair rates follow exponential 
distribution, considering a k-out-of-n configuration in which 
failure of k out of n components (in each subsystem) results in 
the whole system failure.

Components in each subsystem maintain an interdepend-
ency of load share type (the subsystems themselves are 
independent). Load share is a kind of dependent failure in 
redundant systems in which failure in one redundant system 
component increases the load on the surviving ones, thus 
increasing their failure rate. The capacity flow model is a com-
mon functional model for computing failure rate of redundant 
system components with constant failure rate and load share 
(Pozsgai et al. (2003). Equation (1) presents the formulation 
of this model for computing failure rate in each subsystem.

(1)�ij =

(
ni

ni − j

)�i

⋅ �i0,

where, ni refers to the number of components in the ith sub-
system, j is the number of failed components in the subsys-
tem, �i is the load factor for the ith subsystem, �i0 represents 
the initial failure rate for the ith subsystem and �ij denotes 
the failure rate of surviving components after failure of j 
components in the ith subsystem. Load share is common 
in most redundant systems, including electric generators, 
water pumps, cable-stayed bridges, CPUs, etc. (Shao and 
Lamberson 1991).

Components in each subsystem are repairable. Each com-
ponent can be repaired by a single repairman or more repair-
men. Each subsystem may suffer failure in one or several 
components. In such case, a single repairman or a team of 
repairmen can repair one failed component at any moment. 
Here, we assume that each component has a constant repair 
rate and the repair time follows exponential distribution. In 
addition, suppose that transfer of repairmen among subsys-
tems is not allowed, i.e., each repairman repairs a specific 
subsystem and is assigned to that specific subsystem. Each 
subsystem can have yi identical repairmen. There is a direct 
relationship between the number of repairmen and repair 
rate. More specifically, assume that �i represents the repair 
rate for each component in the ith subsystem and yi speci-
fies the number of repairmen for the ith subsystem, then the 
repair rate of this subsystem is obtained by yi × �i . In real-
world situations, due to the work interference among repair-
men, increased number of repairmen does not necessarily 
lead to an increase in repair rate. High degree of work inter-
ference reduces repair rate; thus, it diminishes system avail-
ability. Equation (2) is a way of modeling the relationship 
between the number of repairmen and the repair rate, where 
� ∈ (0, 1) is the work interference factor. A value close to 1 
for the interference factor indicates high work interference 
among repairmen, while a value close to 0 indicates low 
work interference.

As an illustration, assume that the repair rate and the 
interference factor of a subsystem are equal to 0.02 and 0.2, 
respectively. Table 1 presents repair rate versus number of 
repairmen. As can be seen, increasing the number of repair-
men up to five repairmen leads to increase in repair rate. 
However, repair rate declines with six or more repairmen 
due to the work interference. RAP modeling must consider 
work interference to prevent unnecessary increase in the 
number of repairmen. In case of high work interference 
among repairmen, increasing the number of repairmen not 
only reduces the availability of the system, but imposes 
higher costs on the systems (increased maintenance costs).

It should be noted that the number of components in 
each subsystem is limited and varies between ȴmin and ȴmax. 
The fact that each subsystem has a k-out-of-n configuration 

(2)�i × yi ×
(
1 − �i

)(yi−1)
.
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necessitates the existence of at least two components in each 
subsystem, i.e. ȴmin > 2. Similarly, the number of repairmen 
in each subsystem lies in the range [ �min, �max ]. All com-
ponents in the subsystem are repairable (All components are 
fully repaired); therefore, each subsystem requires at least 
one repairman, i.e. 𝜂min > 1.

Since k and n are decision variables, each subsystem 
can have a specific configuration; therefore, each system 
is thought to have different installation costs. Furthermore, 
since the number of repairmen may vary from one subsys-
tem to another, repairman fees are considered to be different 
for each subsystem. Moreover, the components function in a 
binary (not multi-state) manner.

With the above descriptions and assumptions regarding 
the addressed RAP, model of the current problem can be 
formulated as follows.

2.2  Notation

See Table 2.

2.3  Mathematical model of RAP

Based on the forgoing assumptions and Table 2 of symbols, 
the mathematical RAP model is as follows:

(3)Max A(t) =

N∏
i=1

Ai

(
ni, ki, yi, �i0, �ij, �i,�i, �i, t

)
,

(4)Min

N∑
i=1

(
cini + hiyi

)
,

s.t.,

(5)
N∑
i=1

wini ≤ W,

The two objective functions in the forgoing model are in 
conflict with each other. The first objective is to maximize 
total system availability at a specific time t and the sec-
ond is to minimize the total cost. Since all subsystems are 
arranged in series, total system availability is determined 
by multiplying Ai(t) of each subsystem. Hence, it is imper-
ative to compute the Ai(t) of each subsystem prior to com-
putation of A(t). Great number of studies has developed 
various methods to compute the availability of k-out-of-n 
systems (Mortazavi et al. 2016; Carpitella et al. 2017; Li 
et al. 2016). In the present paper, the value of Ai(t) , which 
is a function of number of components ( ni ), number of 
( ki ), number of repairman ( yi ), dependent failure rate ( �ij ), 
repair rate ( �i ), interference factor ( �i ), and specific time 
(t), is computed using Markov chain and transition matrix. 
According to the forgoing discussion, each subsystem can 
have its specific configuration. For system designers, it is 
of vital importance to ascertain the proper configuration 
and number of repairmen for each subsystem.

(6)
N∑
i=1

vini ≤ V ,

(7)

(8)�min ≤ yi ≤ �max.

Table 1  Effect of the number of 
repairmen on the repair rate

Number of repair-
men

Repair rate

1 0.020
2 0.032
3 0.038
4 0.041
5 0.041
6 0.039
7 0.037
8 0.034
9 0.030
10 0.027

Table 2  Symbols

A(t) Availability of total system at specific time t
Ai(t) Availability of ith subsystem at specific time t
N Number of subsystems
�i0 Initial failure rate of operating component in subsystem i
�ij Failure rate of surviving components when j components 

are failed in subsystem i
�i Load factor in subsystem i
�i Repairing rate for failed component in subsystem i
�i Interference factor in subsystem i
ci Cost of each component in subsystem i
hi Fee of each repairman in subsystem i
wi Weight of each component in subsystem i
vi Volume of each component in subsystem i
C Allowed cost of system
W Allowed weight of system
V Allowed volume of system
ni Number of components used in subsystem i
ki Minimum number of components required for subsystem i
yi Number of repairmen used in subsystem i
ȴmax Maximum number of components in each subsystem
ȴmin Minimum number of components in each subsystem
�max Maximum number of repairmen in each subsystem
�min Minimum number of repairmen in each subsystem
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Figure 2 illustrates the transition diagram for a k-out-
of-n system. In this diagram, each state presents the num-
ber of failed components in the subsystem. Hence, state 
0 denotes absence of failed components in the system (all 
components are operating) and state n indicates failure of 
all subsystem components. It is worth mentioning that all 
components in each subsystem operate at moment 0.

In Fig. 2, each state includes two events: if a component 
fails, the system enters the next state, and if the failed 
components are repaired, the system returns to the previ-
ous state. As mentioned previously, components in each 
subsystem maintain an interdependency of load share type. 
Failure of one component is followed by increased load 
on others, hence their increased failure rate. Under such 
circumstance, failure rate varies from one state to the next, 
which can be computed by Eq. (1). Besides, there are ni 
components arranged in series in each subsystem; there-
fore, transition rate for each state equals (ni − j) × �ij (i 
represents subsystem index and j is the number of failed 
components in each state).

Repair rate for any state is dependent on the number of 
repairmen and the interference factor, which is determined 
by Eq. (2). Due to interference in maintenance activities 
which increases carelessness and indiscipline, not only 
increased number of repairmen does not necessarily entail 
increased repair rate, but also it might even reduce repair 
rate, resulting in reduced availability for each subsystem.

In k-out-of-n systems, if k out of n system components 
fail, the whole system is considered a failure. Given the 
transition diagram in Fig. 2, in which each state indicates 
the number of failed components, the availability of each 
system is determined as follows:

For instance, Fig. 3 illustrates the transition diagram for 
a 2-out-of-3 system. Availability of this system is equal to 
the sum of probabilities of states 0 and 1 (states marked 
in green).

Computation of failure probabilities requires the conver-
sion of the transition diagram in Fig. 2 into a transition rate 
matrix named Q here. Q is a square matrix since the number 
of rows and columns are equal to the number of transition 
matrix states. For example, Q12 shows transition rate from 
state 1 to state 2. The transition matrix for the transition 
diagram in Fig. 2 is based on the following:

(9)Ai(t) =

k−1∑
j=0

pij(t).

(10)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ni�i0 ni�i0 0 ⋯ 0 0

�iyi(1 − �i)
(yi−1) −

��
�iyi(1 − �i)

(yi−1)
�

+(ni − 1)�i1
�

(ni − 1)�i1 ⋯ 0 0

0 �iyi(1 − �i)
(yi−1) −

��
�iyi(1 − �i)

(yi−1)
�

+(ni − 1)�i2
�

⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 �iyi(1 − �i)
(yi−1)

−((�iyi(1 − �i)
(yi−1))

+(ni − 1)�i(n−2))
(ni − 1)�i(n−2) 0

0 0 0 (�iyi(1 − �i)
(yi−1))

−
��
�iyi(1 − �i)

(yi−1)
�

+(ni − 1)�i(n−1)
� (ni − 1)�i(n−1)

0 0 0 0 (�iyi(1 − �i)
(yi−1)) −

�
�iyi(1 − �i)

(yi−1)
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fig. 2  Transition diagram for k-out-of-n configuration

Fig. 3  Transition diagram for 2-out-of-3 configuration
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Amiri and Ghassemi-Tari (2007) developed an equation 
to compute system availability (Eq. (11)). Using Markov 
chain and transition matrix, they determined time-based 
availability functions. Using Eq. (11), the availability func-
tions of a k-out-of-n system versus time can be determined. 
The obtained matrix is denoted by P(t) . Due to memory-
less property of exponential distribution, the probability of 
failing n components at time t which is denoted by Pn(t) 
depends only on probability of failing n components at time 
t = 0 denoted by Pn(0).

where it is assumed that all n components function at 
moment t = 0. Pn(0) is a row vector; all arrays of which 
are zero except the first array which is one. Equation (12) 
demonstrates the probability of occurrence of the nth fail-
ure at moment t, which is determined by the multiplica-
tion,Pn(0) × P(t).

Availability of each k-out-of-n subsystem can be com-
puted through Eq. (9) and the total availability is obtained 
by multiplication of Ai(t) of each subsystem.

3  NSGA II

Solving multi-objective redundancy allocation problem 
(MORAP) using exact techniques is very difficult and it has 
been proved that the MORAP is a NP-hard problem (Alavi 
et al. 2017a, b). Many researchers have used metaheuris-
tic algorithms that have shown a great efficiency in solving 
the MORAPs (Eshraghniaye Jahromi and Feizabadi 2017). 
Genetic Algorithm (GA) is an intelligent population-based 
evolutionary metaheuristic algorithm. Deb et al. (2002) 
introduced a modified version of Non-Dominated Sorting 
Genetic Algorithm (NSGA) called NSGA-II.

In the NSGA II algorithm, with addition of two neces-
sary operators, the single-objective GA is converted into a 
multi-objective algorithm, which offers a set of best solu-
tions known as the Pareto front, rather than only the best 
solution. NSGA II is highly efficient in finding the optimal 
Pareto front and many researchers have applied NSGA II to 
optimize their problems. The two necessary operators are:

1. The operator which assigns an excellence criterion to the 
population members based on non-dominated sorting.

  The concept of domination sort is used where cer-
tain conditions are followed, if solution from objective 
1 dominates the solutions from objective 2.

2. The crowding distance which maintains solution diver-
sity among solutions with equal ranks.

(11)P(t) = pij(t) = eQ×t,

(12)Pn(t) = Pn(0) × eQ×t.

  If two solutions are of the same rank, the solution 
with larger crowding distance is selected. Large average 
crowding distance will result in better diversity in the 
population (Alikar et al. 2017)

In the following, steps of the algorithm are presented 
(Farrokhi-Asl et al. 2017):

Step 1 Initialization
An initial population is generated randomly
Step 2 Evaluation
Values of fitness function for each individual are calcu-

lated. Individuals are compared based on times of non-dom-
inated and a rank is assigned to each chromosome. Rank one 
is the best level, rank two is the next best level, and so on 
(Finding non-dominated solutions as the first front).

Step 3 Density estimation
The average distance of two points on each side of this 

point is estimated and a crowding distance is specified.
Step 4 Selection
Parents are selected for participating in reproduction
Step 5 Crossover operator
Crossover operator is applied to create offspring from par-

ents for a predetermined percentage of individuals selected
Step 6 Mutation operator
Mutation operator is applied to create individuals from a 

predetermined percentage of individuals selected
Step 7 Replacement
Old set of solutions and newly created solutions are 

merged to create a new population. The new population is 
sorted using the non-domination criterion with respect to 
elitism and crowding distance.

Step 8 Individuals with the non-domination level 1 are 
specified as Pareto solutions.

Step 9 These steps are repeated until a stopping condi-
tion is met

In this paper, to solve the proposed multi-objective prob-
lem, NSGA-II algorithm is applied to obtain the optimal 
solution.

3.1  Individual representation

An effective definition of the chromosome can help find a 
better result quickly. These chromosomes are converted to 

Fig. 4  Chromosome definition
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meaningful chromosomes to display solutions of the model 
(Farrokhi-Asl et al. 2017).

In the proposed GA, the solution encoding chromosome 
is presented as a 3 × n matrix, where n is the number of sub-
systems and by considering the bounds of variables, random 
permutation of numbers as a chromosome is created. The 
first row represents number of components in each subsys-
tem; the elements of the second row illustrate number of 
k component in a k-out-of-n system, and final row repre-
sents number of repairmen. Figure 4 presents a chromosome 
structure considered for this problem with n =4.

Defining the initial population is a primary and important 
part of any metaheuristic algorithm. In this paper, population 
is generated legally and randomly. Initial population size is 
considered 100.

3.2  Constraint handling

To handle the constraints of the MORAP, a strict method 
called ‘remove infeasible individual’ is considered. To 
manage the limitations, infeasible individual solutions are 
eliminated after production. In this method, solutions are 
produced regardless of limitations and are investigated after-
ward in terms of feasibility so that the infeasible solutions 
are eliminated from the population. This method is, in fact, 
a strict penalty allocation method with very high penalties.

3.3  Selection

To select parents, the tournament selection is applied to find 
the top solutions for the next generation in which k chro-
mosomes are selected randomly. These chromosomes are 
compared based on two criteria. The first criterion is the 
rank of the selected solutions; the one with the least front 
rank is chosen. Second, if rank of the solutions is equal, the 
crowding distance is compared and the one with the higher 
crowding distance will be selected (Alikar et  al. 2017; 
Eshraghniaye Jahromi and Feizabadi 2017).

3.4  Crossover operators

In the crossover operator, a new solution is produced by 
combining the information of two or more parents. Combin-
ing chromosomes to produce new chromosomes (offspring) 
prevents premature convergence and helps to conduct an 
exhaustive investigation of the solution space. The popular 
crossover methods are: (1) one-point crossover, (2) two-point 
crossover, (3) uniform crossover. In this paper, the two-point 
method is employed. After selecting parents, two random 
integers between 1 and the chromosome length (number of 
variables) are selected. Parents are divided into three distinct 
parts by these two integers (Tavana et al. 2016). Offspring 
is produced by swapping the mid-part of parent’s chromo-
somes and other parts of parents are without change. The 
resulting chromosomes are the offspring. Figure 5 depicts 
the crossover accomplished in the algorithm. After crossover 
operator, replacement strategy is adopted so that parents can 
be replaced by their corresponding offspring. The cross rate 
of 0.8 is assumed here.

3.5  Mutation operators

The mutation operator helps to move toward a new point in 
the solution space. Mutation provides access to the solution 
space areas, a possibility which is not offered by the crosso-
ver operator. The main purpose of applying the mutation 
operator is to enhance diversity and avoid being trapped in 
local optimization (Zoulfaghari et al. 2014b; Amiri et al. 
2013).

In this paper, adaptive feasible mutation method is used. 
This method does a great search for the solution space widely 
and produces the new generation by generating directions. 
This method shows improvement in performance throughout 
the evolution steps and mutates individuals in a constrained 
optimization. The following steps clearly describe the pro-
posed method (Kumar 2010; Tavana et al. 2016).

Fig. 5  Example of two-point 
crossover
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1. Select chromosome randomly for applying mutation.
2. Generate mutation direction vector and initial step size 

randomly.
3. Generate mutated individual by considering direction 

vector and step size.
  A direction vector is generated. According to the vec-

tor, the step size is added to the amount of the selected 
gene for mutation or the step size is subtracted from the 
amount of the selected gene.

4. Check mutated individual within constraints and bounds.
5. Continue, if individual is feasible, produce mutated indi-

vidual; else decrease the step size.

If the generated mutated individual is located on an infea-
sible space, algorithm automatically reduces the amount 
of step and generates another mutated individual using 
direction vector. The process repeats to obtain a feasible 
individual.

3.6  Stopping condition

The proposed algorithm is stopped after a specified iteration 
that provides a stable Pareto front for problem. The number 
of iterations is considered 1000 in the current problem.

4  Discussion

In this section, the model is validated through a numerical 
example. Table 3 demonstrates that eight subsystems (For 
example, electronic components) interconnected in series are 
assumed; each of which has a k-out-of-n configuration. Both 
k and n are regarded as decision variables. System design-
ers can build a separate k-out-of-n configuration for each 

subsystem. Furthermore, considering the presence of load 
share between the components of each subsystem, different 
configurations can be built for each subsystem. Each subsys-
tem configuration can have different availability; therefore, 
selection of an appropriate and optimal configuration leads 
to establishment of a system with high availability. In addi-
tion, since the model presented in the present paper is time-
dependent, an appropriate mission time can be determined 
for the system. Table 3 presents the initial failure rate, repair 
rate, interference factor, costs of each component, repair-
man costs, weight of each component, and volume of each 
component.

The maximum permissible weight for the whole system is 
approximately 130,000 (W = 130,000 kg) and the maximum 
permissible volume for the whole system is about 110,000 
(V = 110,000 m3). Table 4 demonstrates the maximum and 
minimum numbers of components and repairmen for each 
subsystem. The minimum number of components in each 
subsystem is assumed to be two (because, the k-out-of-n 
configuration of the subsystems necessities the presence of 
at least two components in each subsystem). Furthermore, 
since all the subsystems are repairable, each subsystem 
requires at least one repairman. The numerical example pre-
sented in this section is solved using NSGA II. The initial 
population size is considered 50; number of iterations is 200; 
and number of function evaluations is 11,250.

The model has been solved in three different times: 
t = 0.1 h, t = 0.5 h, and t = 1 h. Figure 6 illustrates the first 
Pareto front for the aforementioned model with two objec-
tive functions of costs and availability at specified times. In 
this illustration, the red arrow represents the worst solution 
and the green arrow represents the best solution. Figure 6 
clearly demonstrates the diminution of availability over time. 
For instance, consider a cost of 9000 monetary units. Given 

Table 3  Parameters for each 
subsystem

Parameters Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8

�i0 0.4 0.6 0.5 0.2 0.1 0.7 0.1 0.3
�i 0.6 0.8 0.62 0.4 0.22 0.9 0.4 0.7
�i 0.1 0.2 0.5 0.12 0.14 0.2 0.3 0.2
ci 265 163 338 152 248 340 390 110
hi 165 59 137 163 370 289 144 63
wi 67 17 52 44 54 54 74 100
vi 62 36 34 150 800 20 40 89

Table 4  Maximum and 
minimum number of 
components and repairmen in 
each subsystem

Parameters Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8

ȴmax 10 15 17 7 9 9 6 8
ȴmin 2 2 2 2 2 2 2 2
�max 9 11 8 7 3 3 7 2
�min 1 1 1 1 1 1 1 1
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this amount, the whole system availability is approximately 
72% at t = 0.1, 19.6% at t = 0.5, and 3% at t = 1. Figure 6 
also shows that increased availability leads to increase in 
the whole system costs.

Table 5 demonstrates six different configurations in the 
Pareto front diagram and presents the data relating to the 
best and worst degree of availability for each Pareto front 
(green arrow and red arrow). These tables specify the values 
of n, y, and k for each subsystem at t = 0.1, t = 0.5, and t = 1. 
More components are required to reach maximum availabil-
ity. For example, 37 components are required in the best 
configuration at t = 0.1, 32 are required at t = 0.5, and only 23 
at t = 1 to reach the best availability. Availability decreases 
over the time; hence, this decrease makes it possible to reach 
the best availability with a smaller number of components.

As the number of components decreases, fewer repairmen 
are required. This is presented in Table 5 for the three states 
(i.e. t = 1, t = 2, and t = 3).

Figure 7 illustrates the diagrams for all the six configu-
rations in Table 5. As illustrated in all the diagrams, sys-
tem availability decreases over time. In other words, all 
systems, except system (b), fail over time (systems hardly 

resist failure). For system b, if t = 0.1, then availability 
equals 0.9974. The availability of system (b) reduces over 
time, but the system resists failure up to t = 3.5. System (b) 
is in a stable state at t = 3.5 and maintains an availability of 
approximately 0.062 (still resisting failure). This system can 
be used as an optimization system with very short operation 
time.

In the light of the forgoing explanations, it is illogical to 
select systems (a), (c), (d), (e), or (f) as optimizations sys-
tems, because these systems undergo failure prior to reach-
ing the stable state. Availability of the systems (c) and (d) 
at t = 0.5 is 0.0947 and 0.7695, respectively. Availability of 
the system (d) might appear logical, but this system also 
undergoes failure prior to reaching the stable state. This is 
the case for systems (e) and (f) as well. As regards systems 
(d) and (f), if short-time operation is desirable, system (d) 
can be more effective than system (f). Besides, the costs of 
system (d) are lower than those of system (f). However, as 
mentioned previously, for short-time operation, system (b) 
is the most efficient of all. In real-world settings, designers 
sometimes need to build new systems with very short oper-
ation time and short-time operation. Therefore, they must 

Fig. 6  RAP Pareto front

Table 5  Minimum and 
maximum points of Pareto front 
based on availability

Pareto front Worst solution Best solution
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n

k

y
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y
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4 5 5 5 4 4 5 5

3 4 4 4 2 3 3 3
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⎤⎥⎥⎦
Availability = 0.58026, Cost = 8353.85 Availability = 0.99669, Cost = 21,983.8

t = 0.5 ⎡⎢⎢⎣

n

k

y
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1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1
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Fig. 7  System availability for systems presented in Table 5
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account for the effect of the passage of time on RAP. The 
best mission time which can be considered for the system is 
t = 0.1. Considering the existence of dependent failure (e.g. 
load share) in most redundant systems, it is recommended 
that these systems are not given long operation time, since 
their availability diminishes substantially over time.

As mentioned before, increased number of repairmen 
does not necessarily lead to increase in availability, and, in 
case of work interference among the repairman, an extreme 
increase in the number of repairmen does not result in 
increase in repair rate. Results presented in Table 5 demon-
strate that the first subsystem has the lowest interference fac-
tor; therefore, it receives the greatest number of repairmen in 
all states (t = 0.1, t = 0.5, t = 1). In contrast, the third subsys-
tem has the highest interference factor, and hence it receives 
the lowest number of repairmen. To better understand the 
effect of the interference factor in the model presented in 
this paper, a special sensitivity analysis is carried out on this 
parameter. For instance, assuming that the interference factor 
is zero for all the subsystems (no work interference among 
the repairmen), the model is solved again at t = 0.1. Table 6 
presents the best solution for the model (Other parameters 
are assumed to be according to Table 3 and the model solu-
tion conditions are assumed to be identical). Due to the lack 
of work interference among the repairmen, the number of 
repairmen in relation to the best solution in Table 5 (t = 0.1) 
has increased (from 29 to 35). Moreover, the configuration 
of each subsystem has changed and the best availability at 

t = 0.1 has decreased (from 99 to 79%) in comparison to 
Table 5. Hence, it is very important to incorporate the work 
interference among repairmen into RAP, since it exerts vari-
ous effects on model solution results. Figure 8 illustrates 
the Pareto front for the model without considering the work 
interference.

5  Conclusion

In the present study, a RAP is presented for the k-out-of-n 
system with reparability, time, load share, and interference 
factor. In this regard, the Markov chain has been used to 
account for these features and efforts have been made to 
integrate real conditions into the optimization model. The 
first objective function in the optimization model is defined 
to create the system availability function by the use of the 
transition rate. Using Markov chain equation, this function 
is obtained in terms of time; considering the mission time 
in RAP modeling is very important, as it affects the number 
of redundant systems. Moreover, there are certain systems 
designed for a very short time interval (such as one-shot 
systems). In these systems, the time interval of the mis-
sion is very sensitive and has a significant impact on the 
performance of the system. Additionally, reparability is an 
important feature that should be considered in creating an 
availability function. The repair rate is directly related to 
the number of repairmen. Typically, with the increase in the 
number of repairmen, the repair rate also increases, but in 
real conditions, this is not always the case and it is possible 
that as number of the repairmen increases, the interactions 
between them also increase and this affects the repair rate. 
To address such a situation, the interference factor has been 
defined and is integrated in the optimization model. Another 
feature that has been investigated in this paper for RAP is 
dependent failures. One of the most important dependent 
failures is the load share. This type of dependency makes 
availability extremely vulnerable in redundant systems. To 
take the load share into account, we used the capacity flow 
model.

To reduce the system costs, the second function has 
been created. System costs include component costs and 
the repairmen fees. Besides, as the problem is NP-hard, the 
genetic algorithm (NSGA II) has been selected for solving 
the optimization model and finally the results were analyzed 
in accordance with different times (t = 0.1, 0.5, 1).

Future studies can focus on developing methods for 
solving and choosing the system configurations (strategy 
selection). Other evolutionary methods can also be used 
to solve the model in terms of uncertainty and to analyze 
the solutions. On the other hand, there are different con-
figurations for redundancy systems (such as cold standby, 
warm standby, etc.) through which the configuration can be 

Table 6  Maximum point of Pareto front of Fig. 8 based on availabil-
ity
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n

k
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⎤⎥⎥⎦
=

⎡⎢⎢⎣

4 6 4 5 6 5 5 6

3 4 3 3 3 4 2 5
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⎤⎥⎥⎦
Availability = 0.7936, Cost = 15,584.91

Fig. 8  RAP Pareto front for �
i
= 0
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accessed with the highest availability and the lowest cost 
by adding a decision variable to the optimization model. It 
is also suggested that other possible distributions (except 
exponential distribution) be considered for calculations.
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