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Abstract
This paper examines the effect of preventive maintenance and repair done by different repairpersons on the system perfor-
mance. By means of semi-Markov process and regenerative point technique, the researcher has developed a stochastic model 
of two unit parallel system. Both units are identical in nature. A usual repairperson visits the system to conduct preventive 
maintenance at the completion of maximum operation time and repair at the failure stage of the unit. At the elapse of the 
pre-definite time (called maximum repair time), the usual repairperson inspects the failed unit to examine the feasibility of 
further repair by the expert repairperson; otherwise that unit will be replaced by a new one with some replacement time. The 
unit may work as good as new after getting maintenance, repair and replacement as well. The switch devices are considered 
as perfect. Various measures of system usefulness such as MTSF, availability and profit have been derived to depict the 
usefulness of expert repair facility.
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1  Introduction

The technological development and ever-increasing demand 
of society is making the designing of systems more complex. 
Repairing of such systems turn out to be an important issue 
in the reliability theory. Again, the continued function and 
aging of systems progressively lessen their performance, 
reliability and security. Thus, not only to maintain the opera-
tional power, but also to reduce the failure rate, preventive 
maintenance of the systems is necessary after a pre-definite 
phase of operation time. Many attempts from the authors, 
engineers and industries have been devoted to improve 
the repair performance of accessible machines. Numerous 
researchers have developed the maintenance model with 
different sets of assumptions such as imperfect switchover, 
two-phase repair, degradation of system and hard and soft 
failures (see (Lam 1997; Mahmoud and Mahmoud 1983; 

Rakesh 1986; Mokaddis et al. 1990; Niwas et al. 2013; 
Malik et al. 2016; Qiu et al. 2018). Furthermore, as one 
of the key parts of a repairable system, the repairperson 
(server) can affect the economic assistance of the system. 
Thus, the repairperson’s capability of repairing all the snags 
that occurred during the repairing process with in specific 
period of time becomes essential (Jose 2012; Barak et al. 
2018; Haji and Yunus 2015). Apart from this, arrival time 
and vacations of repairperson are some other major issues 
which have been discussed in the last few years (see Chan-
der 2005; Chander and Bhardwaj 2009; Malik and Gitanjali 
2012; Tuteja and Malik 1994; Sridharan and Mohanavadivu 
1998).

Thus to maintain a required level of reliability and system 
performance, in this paper we develop a parallel system of 
two identical units stochastically by incorporating the ideas 
of preventive maintenance and repair by an expert server. 
A usual repairperson visits the system to conduct preven-
tive maintenance at the completion of maximum operation 
time and repair at the failure stage of the unit. At the elapse 
of the pre-definite time (called maximum repair time), the 
usual repairperson inspects the failed unit to examine the 
feasibility of further repair by the expert repairperson; oth-
erwise that unit will be replaced by a new one with some 
replacement time. The unit may work as good as new after 
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getting maintenance, repair and replacement as well. The 
switch devices are considered as perfect. By means of semi-
Markov process and regenerative point technique, various 
measures of system usefulness such as MTSF, availability 
and profit have been derived to depict the usefulness of the 
expert repair facility.

2 � System description

1 � Notations

E	� Set of regenerative states
N0	� Unit in normal and functioning mode
λ	� Constant failure rate of the unit
υ0	� Constant rate of repair instance taken by the 

usual repairman
η0	� Constant rate of operation instance of the 

unit
h(t)/H(t)	� pdf/cdf of the inspection time of the unit
f(t)/F(t)	� pdf/cdf of the replacement time of the unit
g(t)/G(t)	� pdf/cdf of the repair time of the unit taken 

by the usual repairman
p(t)∕P(t)	� pdf/cdf of the preventive maintenance time 

of the unit
FUpm∕FUPM	� Unit under preventive maintenance/under 

preventive maintenance continuously from 
the previous state

FWpm∕FWPM	� Unit waiting for preventive maintenance/
waiting for preventive maintenance continu-
ously from the previous state

FWr∕FWR	� Unit failed and waiting for repair/waiting for 
repair continuously from the previous state

FWre∕FWRe	� Unit failed and waiting for repair by expert 
server/waiting for repair by expert server 
continuously from the previous state

FUr∕FUR	� Unit failed and under repair/under repair 
continuously from the previous state

FUre/FURe	� Unit failed and under repair with expert 
server/under repair continuously from the 
previous state with expert server

FURp∕FURP	� Unit failed and under replacement/under 
replacement continuously from previous 
state

qij(t)/Qij(t)	� pdf/cdf of passage time from regenerative 
state i to a regenerative state j or to a failed 
state j without visiting any other regenera-
tive state in (0, t]

Wi(t)	� Probability that the server is busy in the 
state Si up to time ‘t’ without making any 

transition to any other regenerative state or 
returning to the same state via one or more 
non-regenerative states

mij	� Contribution to mean sojourn time in state 
Si ∈ E and non-regenerative state if it 
occurs before transition to Sj ∈ E . Mathe-
mat ica l ly,  i t  can  be  wr i t ten  as 
mij = ∫ ∞

0
td(Qij(t)) = −q∗�

ij
(0)

μi	� The mean sojourn time in state Si which is  
given by 𝜇i = E(T) = ∫ ∞

0
P(T > t) dt =

∑

j mij, 
where T denotes the time to system failure

∼ ∕ ∗	� Symbol for Laplace–Stieltjes transform/
Laplace transform

S ∕ ©	� Symbols for Stieltjes convolution/Laplace 
convolution

The possible transitions between states along with tran-
sition rates for the system model are shown in Fig. 1. The 
states S0–S9 are regenerative, while the other remaining 
states are non-regenerative.

2.1 � Transition probabilities and mean sojourn times

The transition probability matrix (t.p.m) of the embedded 
Markov chain is p = pij = Qij(∞) = Q(∞) , where the non-
zero elements pij =  probability that the operating unit j in 
state Si fails during time (t, t + dt) and unit j + 1 does not fail 
up to time t:

Using the above relation, we have

pij = lim
t→∞

Qij(t) =

∞

∫
0

qij(t) dt.

p01 =
�0

�0 + 2�
, p05 =

2�

�0 + 2�
, p20 = p∗(� + �0),

p23 =
�0

� + �0

[1 − p
∗(� + �0)],

p24 =
�

� + �0

[1 − p
∗(� + �0)],

p50 = g
∗(� + �0 + �0),

p56 =
�0

�0 + � + �0

[1 − g
∗(� + �0 + �0)],

p57 =
�0

�0 + � + �0

[1 − g
∗(� + �0 + �0)],

p5,10 =
�

�0 + � + �0

[1 − g
∗(� + �0 + �0)],

p6,14 = p10,11 = 1 − g
∗(�0),
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Fig. 1   State transition diagram

p7,17 =
�

� + �0

[1 − h∗(� + �0)],

p7,18 =
�0

� + �0

[1 − h∗(� + �0)],

p79 = bh∗(� + �0),

p9,22 =
�

� + �0

[1 − g
∗
1
(� + �0)],

p25.4 =
�

� + �0

[1 − p
∗(� + �0)]p

∗(0),

p90 = g
∗
1
(� + �0),



58	 Life Cycle Reliability and Safety Engineering (2019) 8:55–64

1 3

p9,21 =
�0

� + �0

[1 − g∗
1
(� + �0)], p11,12 = p14,15 = p17,12 = p18,15 = a,

p8,19 =
�0

� + �0

[1 − f ∗(� + �0)], p11,13 = p14,16 = p17,13 = p18,16 = b,

p22.3 =
�0

� + �0

[1 − p
∗(� + �0)]p

∗(0),

p52.6 =
�0

�0 + � + �0

[1 − g
∗(� + �0 + �0)]g

∗(�0),

p78 = ah∗(� + �0), p52.6,14,15 =

a�0

�0 + � + �0

[1 − g∗(� + �0 + �0)][1 − g∗(�0)]h
∗(0)f ∗(0),

p52.6,14,16 =
b�0

�0 + � + �0

[1 − g∗(� + �0 + �0)][1 − g∗(�0)]h
∗(0)g∗

1
(0),

p55.10 =
�

�0 + � + �0

[1 − g∗(� + �0 + �0)]g
∗(�0),

p55.10,11,12 =
a�

�0 + � + �0

[1 − g∗(� + �0 + �0)][1 − g∗(�0)]h
∗(0)f ∗(0),

p55.10,11,13 =
b�

�0 + � + �0

[1 − g∗(� + �0 + �0)][1 − g∗(�0)]h
∗(0)g∗

1
(0),

p75.17,12 =
a�

� + �0

[1 − h(� + �0)]h
∗(0)f ∗(0),

p75.17,13 =
b�

� + �0

[1 − h(� + �0)]h
∗(0)g∗

1
(0),

p72.18,15 =
a�0

� + �0

[1 − h(� + �0)]h
∗(0)f ∗(0),

bp72.18,16 =
b�0

� + �0

[1 − h(� + �0)]h
∗(0)g∗

1
(0),

p85.20 =
�

� + �0

[1 − f ∗(� + �0)]f
∗(0),

p82.19 =
�0

� + �0

[1 − f ∗(� + �0)]f
∗(0),

p95.22 =
�

� + �0

[1 − g∗
1
(� + �0)]g

∗
1
(0),

p92.21 =
�0

� + �0

[1 − g∗
1
(� + �0)]g

∗
1
(0),

p12 = p32 = p45 = p∗(0),

p12,5 = p15,2 = p20,5 = f ∗(0) = p13,5 = p16,2

= p19,2 = p21,2 = p22,5 = g∗
1
(0).

It can easily be verified that

The mean sojourn times μi in state Si is given by

(1)

p01 + p05 = p12 = p13 = p20 + p23 + p24 = p32

= p50 + p56 + p57 + p5,10

= p45 = p78 + p79 + p7,17 + p7,18

= p80 + p8,19 + p8,20

= p90 + p9,21 + p9,22 = p12,5 = p13,5

= p15,2 = p16,2 = p19,2 = p20,5 = p21,2

= p22,5 = p20 + p22.3 + p25.4

= p50 + p57 + p52.6 + p52.6,14,15 + p52.6,14,16

+ p55.10 + p55.10,11,12 + p55.10,11,13

= p78 + p79 + p75.17,12 + p75.17,13 + p72.18,15

+ p72.18,16

= p80 + p82.19 + p85.20

= p90 + p92.21 + p95.22 = 1.

𝜇0 = ∫
∞

0

P(T > t) dt = m01 + m05 =
1

𝜂0 + 2𝜆
,

𝜇1 = m12 = −p∗�(0),

�2 = m20 + m23 + m24 =
1

� + �0

(1 − p∗(� + �0)),

�5 = m50 + m56 + m57 + m5,10 =
1

�0 + � + �0

[1 − g∗(�0 + � + �0)],

�7 = m78 + m79 + m7,17 + m7,18 =
1

� + �0

(1 − h∗(� + �0)),

�8 = m80 + m8,19 + m8,20 =
1

� + �0

(1 − f ∗(� + �0)),

�9 = m90 + m9,21 + m9,22 =
1

� + �0

(1 − g∗
1
(� + �0)),

�
�
2
= m20 + m22.3 + m25.4 = (1 − p∗(� + �0))

(

1

� + �0

− p∗�(0)

)

,

�
�
5
= m50 + m52.6 + m52.6,14,15 + m52.6,14,16

+ m57 + m55.10 + m55.10,11,12 + m55.10,11,13

=
1

�0 + � + �0

[1 − g∗(�0 + � + �0)]

[1 − ((� + �0)(1 − g∗(�0))(h
∗�(0) + af ∗�(0) + bg∗�

1
(0)))],

�
�
7
= m78 + m79 + m75.17,12 + m75.17,13 + m72.18,15 + m72.18,16

= (1 − h∗(� + �0))

(

1

� + �0

− h∗�(0) − af ∗�(0) − bg∗�
1
(0)

)

,
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3 � Reliability characteristics

3.1 � Mean time to system failure (MTSF)

Let �i(t) be the cdf of the first passage time from regenera-
tive state Si to a failed state. Regarding the failed state as 
absorbing state, we comprise the subsequent recursive rela-
tion for �i(t):

where Sj is an unfailed regenerative state to which the given 
regenerative state Si can transit and k is a failed state to 
which the state Si can transit directly.

Taking Laplace–Stieltjes transform of relation (3) and 
solving for �∗∗

0
(s), we get

The reliability R(t) can be obtained by taking inverse 
Laplace transformation of (4) and MTSF is given by

where N1 = �0 + p05(�5 + p57(�7 + p78�8 + p79�9)) and 
D1 = 1 − p05(p50 + p57(p78p80 + p79p90)).

3.2 � Availability analysis

Let Bi(t) be the possibility that the system is in upstate at 
instant t given that the system entered regenerative state i at 
t = 0 . The recursive relations for Bi(t) are given as

where Sj is any successive regenerative state to which the 
regenerative state Si can transit through n ≥ 1 (natural num-
ber) transitions and Zi(t) is the probability that the system is 
up initially in regenerative state Si ∈ E at time ‘t’ without 
visiting any other regenerative state. Thus,

�
�
8
= m80 + m82.19 + m85.20 = (1 − f ∗(� + �0))

(

1

� + �0

− f ∗�(0)

)

,

(2)

�
�
9
= m90 + m92.21 + m95.22 = (1 − g∗

1
(� + �0))

(

1

� + �0

− g∗�
1
(0)

)

.

(3)�i(t) =
∑

j

Qi,jj(t) S �j(t) +
∑

k

Qi,jk(t),

(4)R∗(s) =
1 − �

∗∗
0
(s)

s
.

(5)MSTF(T0) = lim
s→0

R∗(s) = lim
s→0

1 − �
∗∗
0
(s)

s
=

N1

D1
,

(6)Bi(t) = Zi(t) +
∑

j

q
(n)

i,j
(t)©Bj(t),

Z0(t) = e−(2𝜆+𝜂0)t, Z2(t) = e−(𝜆+𝜂0)tP̄(t), Z4(t) = e−(𝜆+𝜂0)tG1(t),

Z5(t) = e−(𝜆+𝛼0+𝜂0)tḠ(t),

Z7(t) = e−(𝜆+𝜂0)tH̄(t) and

Z8(t) = e−(𝜆+𝜂0)tF̄(t).

Taking Laplace transform of relations (6) and solving for 
A∗
0
(s), we get steady-state availability as

w h e r e  N
2 = (1 − p55.10 − p55.10,11,12 − p55.10,11,13 − p57(p75.17,12

+p75.17,13 + p78p85.20 + p79p95.22)((1 − p22.3)�0

+p01�2)) + (p50 + p57(p78p80 + p79p90))(p25.4�0 + p05�2))+

(p05(1 − p22.3) + p01p12p25.4)(�5 + p57(�7 + p78�8 + p79�9)).

3.3 � Busy period analysis of regular server

Let Br
i
(t) be the probability that the ordinary server is busy 

due to preventive maintenance, repair, inspection and 
replacement at an instant ‘t’ given that the system entered 
regenerative state Si at t = 0 . The recursive relations for Br

i
(t) 

are given as

where throughout n ≥ 1 (natural number) transitions Sj is a 
successive regenerative state to which state Si transits and

Taking Laplace transformation of relation (8) and solv-
ing for BR∗

0
(s), we get in the long run the time for which the 

regular server is busy in steady state given by

where N3 = H
∗
2
(0)(p01(1 − p55.10 − p55.10,11,12 − p55.10,11,13

−p57(p75.17,12 + p75.17,13 + p78p85.20 + p79p95.22))

+p05(p50 + p57(p78p80 + p79p90))) + (p05(1 − p22.3)

+p01p12p25.4)H
∗
5
(0) + (p57(p05(1 − p22.3) + p01p12

p25.4))H
∗
7
(0) + p57p78(p05(1 − p22.3) + p01p12p25.4)H

∗
8
(0) and 

D2 is already specified.

(7)B0 = lim
s→0

sB∗
0
(s) =

N2

D2
,

D
2 = (1 − p57(p75.17,12 + p75.17,13 + p78p85.20

+ p79p95.22)((1 − p22.3)�0 + p12�
�
2
)

− p55.10 − p55.10,11,12 − p55.10,11,13

+ (p50 + p57(p78p80 + p79p90))(p25.4�0 + p05�
�
2
))

+ (p05(1 − p22.3) + p01p12p25.4)(�
�
5
+ p57(�

�
7
+ p78�

�
8
+ p79�

�
9
)).

(8)Br
i
(t) = Hi(t) +

∑

j

q
(n)

i,j
(t)©Br

j
(t),

H2(t) = e−(𝜆+𝜂0)tP̄(t) + ((𝜆e−(𝜆+𝜂0)t©�)P̄(t) + (𝜂0e
−(𝜆+𝜂0)t©�)P̄(t)),

H5(t) = e−(𝜆+𝛼0+𝜂0)tḠ(t)

+ ((𝜆e−(𝜆+𝛼0+𝜂0)t©�)Ḡ(t) + (𝜂0e
−(𝜆+𝛼0+𝜂0)t©�)Ḡ(t)),

H7(t) = e−(𝜆+𝜂0)tH̄(t) + ((𝜆e−(𝜆+𝜂0)t©�)H̄(t) + (𝜂0e
−(𝜆+𝜂0)t©�)H̄(t)),

H8(t) = e−(𝜆+𝜂0)tF̄(t) + ((𝜆e−(𝜆+𝜂0)t©�)F̄(t) + (𝜂0e
−(𝜆+𝜂0)t©�)F̄(t)).

(9)BR
0
= lim

s→0
sBR∗

0
(s) =

N3

D2
,
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3.4 � Busy period analysis of expert server

Let Be
i
(t) be the probability that the expert sever is busy 

in repairing the unit at an instant ‘t’ given that the system 
entered the regenerative state Si at t = 0. The recursive rela-
tions for Be

i
(t) are given by:

where throughout n ≥ 1 (natural number) transitions Sj is a 
successive regenerative state to which state Si transits and

Taking Laplace transform of relation (10) and solving for 
Be∗
0
(s), we get the time for which the system is under repair, 

done by expert server as given by

where N3 = p57p79(p05(1 − p22.3) + p01p12p25.4)H
∗
9
(0) and D2 

is already specified.

3.5 � Expected number of repairs by the regular 
server

Let Vi(t) be the expected number of visits by the ordinary 
server in (0, t] given that the system entered the regenerative 
state Si at t = 0. The recursive relations for Vi(t) are given by

where j is any regenerative state to which the given regen-
erative state i transits and �i = 1 , if j is the regenerative state 
where the regular server does job afresh; otherwise �i = 0.

Taking Laplace–Stieltjes transform of relation (12) and 
solving for V∗∗

0
(s), we get the expected number of visits by 

ordinary server per unit time as

where N5 = (p01p25.4 + p05p22.3)(p50 + p52.6 + p55.10) and D2 
is already specified.

3.6 � Expected number of visits by the expert server

Let Ve

i
(t) be the expected number of visits by expert server in 

(0, t] given that the system entered the regenerative state Si at 
t = 0. The recursive relations for Ve

i
(t) are given by:

(10)Be
i
(t) = Hi(t) +

∑

j

q
(n)

i,j
(t)©Be

j
(t),

H9(t) = e−(�+�0)tG1(t) + ((�e−(�+�0)t©�)G1(t) + (�0e
−(�+�0)t©�)G1(t)).

(11)Be
0
= lim

s→0
sBe∗

0
(s) =

N4

D2
,

(12)Vi(t) =
∑

j

Qi,j(t) S [�j + Vj(t)],

(13)V0 = lim
s→0

sN∗∗
0
(s) =

N5

D2
,

(14)Ve
i
(t) =

∑

j

Qi,j(t) S [�j + Ve
j
(t)],

where j is any regenerative state to which the given regen-
erative state i transits and �i = 1 , if j is the regenerative state 
where the expert server does job afresh; otherwise �i = 0.

Taking Laplace–Stieltjes transform of relation (14) and 
solving for Ve∗∗

0
(s), we get the expected number of visits by 

expert server per unit time as

where N6
= (p01p25.4 + p05p22.3)(p50 + p52.6+p55.10 + (p75.17,13

+p79)p57) and D2 is already specified.

3.7 � Expected number of preventive maintenances 
by the regular server

Let Vpm

i
(t) be the expected number of visits by expert server 

(0, t] given that the system entered the regenerative state Si at 
t = 0. The recursive relations for Vpm

i
(t) are given by:

where j is any regenerative state to which the given regen-
erative state i transits and �i = 1 , if j is the regenerative state 
where the expert server does job afresh; otherwise �i = 0.

Taking Laplace–Stieltjes transform of relation (16) and 
solving for Vpm∗∗

0
(s), we get the expected number of visits by 

expert server per unit time as

where  N
7 = p01(1 + p12(1 − p22.3))(p5,10 − p57(p75.17,12+p75.17,13

+p78p85.20 + p79p95.22))+(p05 − p01p25.4p12)(1 − p50 − p57 + p57

(p72.18,15+p72.18,16 + p78p82.19 + p79p57)) and D2 is already 
specified.

3.8 � Expected number of replacements 
by the regular server

Let Ri(t) be the expected number of replacements by the unit 
in (0, t] given that the system entered the regenerative state Si 
at t = 0. The recursive relations for Ri(t) are given by:

where j is any regenerative state to which the given regen-
erative state i transits and �i = 1 , if j is the regenerative state 
where the failed unit is replaced by new ones; otherwise 
�i = 0.

Taking Laplace–Stieltjes transform of relation (18) and 
solving for R∗∗

0
(s), we get the expected number of replace-

ments per unit time as

(15)Ve
0
= lim

s→0
sVe∗∗

0
(s) =

N6

D2
,

(16)V
pm

i
(t) =

∑

j

Qi,j(t) S [�j + V
pm

j
(t)],

(17)V
pm

0
= lim

s→0
sV

pm∗∗

0
(s) =

N7

D2
,

(18)Ri(t) =
∑

j

Qi,j(t) S [+Rj(t)],
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w h e r e  N
8
= (p57p78 + p57(p72.18,15 + p75.17,12)+(p50+

p52.6,14,15 + p55.10,11,12))(p25.4 + p05p20) and D2 is already 
specified.

4 � Cost–benefit analysis

Considering the various costs, profit incurred to the system 
model in steady state is given by:

where K0  is the revenue per unit uptime of the system, K1 is 
the charge per unit time for which regular server is busy, K2 
is the charge per unit time for which expert server is busy, K3 
is the charge per unit visit for repair by the regular server, K4 
is the charge per unit visit for repair by the expert server, K5 
is the charge per unit visit for preventive maintenance, and 
K6 is the charge per unit visit for replacement.

(19)R0 = lim
s→0

sR∗∗
0
(s) =

N8

D2
,

P = K0B0 − K1B
r
0
− K2B

e
0
− K3V0 − K4V

e
0
− K5BV

pm

0
− K6R0,

5 � Case study

To observe the effect of the repair and maintenance on the 
system behavior and characterize the behavior of MTSF, 
availability and profit of the system, repair rate of ordi-
nary and expert servers, replacement rate, inspection 
rate and maintenance rate of ordinary server are assumed 
to be negatively exponentially distributed, given by 

g(t) = �e−�t,

g1(t) = �0e
−�0t,

f (t) = �e−�t,

h(t) = �e−�t and p(t) = �e−�t.

By using the non-zero element pij , we obtain the follow-
ing results:

MTSF(T0) =
N1

D1
 , availability (B0) =

N2

D2
,

busy period of regular server (BR
0
) =

N3

D2
,

busy period of expert server (Be
0
) =

N4

D2
,

expected number of repairs by regular server (V0) =
N5

D2
,

expected number of repairs by expert server (Ve
0
) =

N6

D2
,

expected number of preventive maintenances (Vpm

0
) =

N7

D2
,

expected number of replacements (R0) =
N8

D2
,

where N1
=

1

(2� + �0)

(

1 +
2�

� + � + �0 + �0

(

1 +
�0

� + � + �0

(

1 + �

(

a

� + � + �0

+
b

�0 + � + �0

))))

,

D1 = 1 −
1

� + � + �0 + �0

(

2�

2� + �0

(

� +
�0�

� + � + �0

(

a�

� + � + �0

+
b�0

�0 + � + �0

)))

,

N
2
=

1

(2� + �0)(� + � + �0 + �0)

[(

� + �0 + �0 +
�0

(

� + � + �0

)

(

� + �

(

a�

� + � + �0

+

b�0

�0 + � + �0

))

)

+

(

3�

� + � + �0

(

� +
�0�

� + � + �0

(

a�

� + � + �0

+

b�0

�0 + � + �0

)))

+

(

�
(

�0 + 2(� + �)
)

(

� + � + �0

)

)(

1 +
�0

(

� + � + �0

)

(

1 + �

(

a

� + � + �0

+
b

�0 + � + �0

))

)]

,

N
3
=

1
(

2� + �0

)(

� + � + �0 + �0

)

(
(

1 + � + �0

)

(

� + � + �0

)

)

[(

� +
�0�

� + � + �0

(

a�

� + � + �0

+

b�0

�0 + � + �0

))

+

(

� + �0 + �0 +
�0

(

� + � + �0

)

(

� + �

(

a�

� + � + �0

+

b�0

�0 + � + �0

))

)

+ �

(

(

�0 + 2(� + �)
)

(

1 +
�0

(

� + � + �0

) +

a��0
(

� + � + �0

)

))]

,

N4 =
1

(

2� + �0

)(

� + � + �0 + �0

)

(

�
(

1 + � + �0

)

(

�0 + � + �0

)

)[

b��0
(

� + � + �0

)

(

�0 + 2(� + �)
)

]
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Table 1   MTSF vs. replacement rate

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 4.2, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 7, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 6, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 15, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 8, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.21, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.02

4.99793 4.99851 4.99807 4.99795 4.99826 4.99793 4.99543 4.99261
4.99808 4.99862 4.99822 4.99814 4.99842 4.99808 4.99558 4.99314
4.99813 4.99866 4.99827 4.99821 4.99847 4.99813 4.99563 4.99333
4.99816 4.99868 4.99830 4.99824 4.99850 4.99816 4.99566 4.99342
4.99817 4.99869 4.99831 4.99826 4.99852 4.99817 4.99568 4.99347
4.99818 4.99870 4.99832 4.99828 4.99853 4.99818 4.99569 4.99351
4.99819 4.99870 4.99833 4.99829 4.99853 4.99819 4.99569 4.99354
4.99820 4.99871 4.99834 4.99829 4.99854 4.99820 4.99570 4.99356
4.99820 4.99871 4.99834 4.99830 4.99854 4.99820 4.99570 4.99357
4.99821 4.99871 4.99834 4.99830 4.99855 4.99821 4.99571 4.99359

Table 2   Availability vs. replacement rate

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 4.2, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 7, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 6, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 15, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 8, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.21, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.02

0.997764 0.997939 0.997862 0.997716 0.997960 0.998802 0.997762 0.997103
0.997852 0.997997 0.997951 0.997817 0.998033 0.998892 0.997850 0.997274
0.997876 0.998012 0.997975 0.997843 0.998051 0.998917 0.997874 0.997321
0.997887 0.998019 0.997986 0.997855 0.998060 0.998928 0.997885 0.997342
0.997893 0.998023 0.997992 0.997862 0.998064 0.998935 0.997892 0.997355
0.997897 0.998025 0.997996 0.997866 0.998067 0.998939 0.997896 0.997362
0.997900 0.998027 0.997999 0.997869 0.998069 0.998942 0.997898 0.997368
0.997902 0.998028 0.998001 0.997871 0.998071 0.998944 0.997901 0.997372
0.997904 0.998029 0.998003 0.997873 0.998072 0.998946 0.997902 0.997375
0.997905 0.998030 0.998004 0.997874 0.998073 0.998947 0.997903 0.997377

Table 3   Profit vs. replacement rate

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 4.2, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 7, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 6, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 15, 
ρ = 4, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 8, η0 = 0.2, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.21, 
λ = 0.01

θ = 2.1, θ0 = 3.5, 
α0 = 3, γ = 5, 
ρ = 4, η0 = 0.2, 
λ = 0.02

4842.29 4843.86 4845.34 4841.10 4827.68 4896.95 4842.27 4831.18
4842.51 4844.00 4845.56 4841.32 4828.54 4897.39 4842.49 4832.01
4842.56 4844.02 4845.61 4841.36 4828.80 4897.51 4842.54 4832.24
4842.57 4844.03 4845.63 4841.37 4828.93 4897.57 4842.56 4832.34
4842.58 4844.03 4845.64 4841.37 4829.00 4897.60 4842.56 4832.40
4842.59 4844.03 4845.64 4841.37 4829.05 4897.62 4842.57 4832.44
4842.59 4844.03 4845.64 4841.37 4829.09 4897.63 4842.57 4832.47
4842.59 4844.03 4845.65 4841.38 4829.11 4897.65 4842.57 4832.49
4842.59 4844.04 4845.65 4841.38 4829.13 4897.65 4842.58 4832.50
4842.59 4844.04 4845.65 4841.38 4829.15 4897.66 4842.58 4832.51
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6 � Numerical analysis

Using the above results for particular values, we successfully 
obtained the numerical results for reliability attributes func-
tion as shown in Tables 1, 2 and 3, respectively.

7 � Discussion

From the numerical results depicted above in Tables 1, 2 and 
3, we observe that the MTSF, availability and profit of the 
system increase with the increase of replacement rate (β), 
repair rates of ordinary server (θ) and expert server ( �0 ), 
while their values decrease with the increase of failure rate 
(λ) and maximum operation time (�0) of the unit. Also with 
the increase of maximum repair time ( �0 ) and inspection rate 
of the unit (η) taken by the ordinary server, MTSF increases 

N5 =
1

(

2� + �0

)(

� + � + �0 + �0

)(

� + � + �0

)

[

�0�(1 + 2�)

(

1 +
� + �0

� + �0

)]

,
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1

(
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)(
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)(
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)
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(
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(
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(
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,
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1
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whereas profit decreases. However, there is no effect of 
increases of preventive maintenance (ρ) on MTSF, while 
availability and profit increase rapidly.

To come up with a solution, a repairable parallel system 
can be made more reliable and profitable to use either by 
increasing the repair rate of the ordinary server instead of 
increasing the operation time and repair time of the unit or 
by calling an expert server immediately after the mainte-
nance of the unit.

8 � Application

In consequence, the findings of this application will assist 
engineers and decision makers to avoid an incorrect reliabil-
ity assessment and consequent erroneous decision making. 
This may also show the way to reduce unnecessary expen-
ditures and faulty maintenance scheduling.
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