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Abstract
In the present study, an attempt has been made to predict flank wear during milling operation with the help of signal pro-
cessing and machine learning techniques. The vibration and acoustic emission signals obtained from the spindle of milling 
machine with variations in feed and depth of cut are decomposed into various levels using symlet wavelet. To select the best 
level permutation entropy criteria were applied. Level giving minimum permutation entropy was selected for the calculation 
of statistical features. Eleven statistical features such as skewness, kurtosis, mean, etc. were extracted from symlet wavelet and 
feature vector is formed. To select the relevant features, correlation-based feature selection criterion was used for reducing 
the size of feature vector. Feature vector with vibration signals and acoustic emission signals is fed into machine learning 
techniques such as linear regression and K-Star to predict the flank wear measured during milling operation. It is observed 
that K-Star gives higher prediction rate of tool wear with both training and testing of the classifier and feature vector with 
the reduced feature set with acoustic emission signals gives better prediction accuracy compared to vibration signals.
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1  Introduction

In milling process, a cutter is used to remove material from 
the surface of a workpiece. Speed, feed, and depth of cut 
are the important parameters which control the operation 
during the milling process. When it comes to the manu-
facturing industry, it is required to control the machining 
process of a workpiece to increase the quality as well as 
productivity. One of the major factors that affect the quality 
of components is tool wear which is a phenomenon observed 
due to the interaction between the tool and workpiece dur-
ing manufacturing operations. Specifically, the wear on the 
tool flank is of more importance compared to the other face 
wears such as rake face wear. Flank face wear occurs due to 
the friction between the newly generated workpiece surface 

and the tool flank. When the tool wears significantly and is 
not replaced, it would cause poor surface finish/quality of the 
workpiece and leads to dimensional inaccuracy (Niu et al. 
1998). Recent studies have shown interest in the prediction 
of tool wear as that would provide a great advantage to the 
industry in terms of production cost, waste reduction, and 
accuracy. The average machine downtime because of tool 
wear is 7–20%. There have been many techniques to meas-
ure the tool condition including using sensor signals from 
sensors such as acoustic emission sensors, current sensors, 
and vibration sensors (García Plaza and Núñez López 2018). 
From the data provided by these sensors, it is possible to 
predict the wear of tools during the manufacturing processes 
so that it may be possible to machine a product with desired 
quality and accuracy. The procedure requires predicting tool 
wear are data acquisition, signal processing, feature extrac-
tion, feature selection, and finally classification or prediction 
(Vakharia et al. 2015).

In a study conducted by the authors (Khamel et al. 2012), 
ANOVA was used to investigate the influence of process 
parameters cutting speed, feed rate, and depth of cut in fin-
ish hard turning of AISI 52,100 bearing steel with CBN 
tool. Response surface methodology was used by Jeyaku-
mar et al. (2013) for the prediction of cutting force, tool 
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wear, and surface roughness of Al6061/SiC composite for 
end milling operations. A good agreement between the 
developed model and experimental results was observed. 
When machining is done then vibration occurs and it is an 
important signature which can describe the status of tool, 
chatter, wear, and even any abnormality in component or 
machinery. For investigation of tool wear and surface finish 
in turning operation, Sivasakthivel et al. (2017) captured 
vibration signals with and without cutting conditions with 
the help of triaxial accelerometer mounted on a tool holder. 
In recent researches, artificial neural network (ANN) as well 
as the wavelet packet transform were used for the prediction 
of tool wear. Wavelet packet theorem is used to reduce noise 
and extract the energy feature of the signal (Vakharia et al. 
2017), whereas ANN was used for classification. ANN and 
Fuzzy logic were used for online monitoring of tool wear by 
Kuo (2000). The authors after conducting experiment reveal 
that the methodology developed significantly improves the 
accuracy compared to the conventional approaches. Drouille 
et al. (2016) used the ANN and RMS powers in end mill-
ing tests to predict the tool wear which takes into account 
the uncertainty of tool wear and was shown to be a very 
quick process and inexpensive. In another study, Wang and 
Wang (2012) diagnosed the tool wear in milling by combin-
ing wavelet packet theory and Hidden Markov Model; the 
tool wear predicted using Gaussian regression model. Fang 
et al. (2011) and Mishra et al. (2016) predicted the wear of 
tools using the fast Fourier transform (FFT) technique and 
discrete wavelet transform technique. It is concluded that 
discrete wavelet transform technique is a more effective sig-
nal processing technique compared to FFT at higher cutting 
speeds. There have been a few authors who have focused 
on the acoustic emission (AE) sensors to extract the signals 
for predicting the tool wear. Acoustic emission is an effec-
tive sensor which accurately senses the friction of rubbing, 
during wear and the action of dislocation in the shearing 
zone in tool condition monitoring. Li (2002) discussed the 
utility of AE for tool wear monitoring during turning pro-
cess. AE signal classification was discussed and the utility 
of AE sensors in tool wear monitoring highlighted. Liang 
and Dornfeld (1989) developed an autoregressive time-series 
model to detect cutting tool wear with acoustic emission 
signals. The advantage of AE signals is that the frequency 
ranges of the AE signals are much higher than that of the 
mechanical vibrations. Further using filter, uncontaminated 
signals were collected by simply mounting a piezoelectric 
transducer on the tool holder. For classification/prediction of 
tool wear condition, various methods such as ANN, support 
vector machine, naïve bayes exist in the current research 
area of condition monitoring, each having their own merits 
and demerits. Effective condition monitoring methodology 
will reduce errors of identifying tool wear. It is believed 
that machine learning algorithm provides a quick and right 

decision about the condition of the cutting tool. A multiple 
linear regression model was used by Bhattacharyya et al. 
(2007) to estimate tool wear in face milling operation. The 
feature vector was constructed using current and power sig-
nals. Ramalingam and Mohan (2016) utilized K-Star algo-
rithm to detect and predict the changes in the EEG signals 
with finger open, finger close, wrist clockwise, and wrist 
counter-clockwise movements of prosthetic arm. Madhusu-
dana et al. (2016) conducted an experimental study for the 
fault diagnosis of face milling tool using histogram features 
and K-Star algorithm. The authors after detail study claim 
that K-Star algorithm provided better classification accuracy 
compared to other classifiers.

In the present study, the acoustic emission and vibra-
tion signals are utilized to predict the flank wear in mill-
ing operations. Discrete wavelet transform with symlet as a 
base wavelet is used for extraction of coefficients from the 
measured signals. To decide suitable levels, the entropy of 
the wavelet coefficients is calculated and the level giving 
least entropy is used for formation of a feature vector. Cor-
relation-based feature selection criterion is used to select the 
best features among all extracted features. Machine learning 
techniques such as linear regression and K-Star are utilized 
for predicting the flank wear of milling tools. The methodol-
ogy also compares the utility of vibration signals and acous-
tic signals which are reported less in the literature. Figure 1 
shows the methodology adopted to predict tool wear using 
vibration signals.

2 � Machine learning techniques

When algorithm shows certain intelligence based on histori-
cal data and training which is different than the intelligence 
in humans and animals, it is known as artificial intelligence 
(AI) or machine learning. Artificial intelligence is an emerg-
ing technique that can perceive the environment around it 
and hence can take necessary action to maximize to succeed 
at a certain goal. Algorithms such as neural networks, dif-
ferent types of mathematical and search optimization and 
methods based on probability, statistics, and economics are 
commonly used machine learning techniques for solving a 
variety of problems. For prediction, i.e., regression, a model 
is built from the training set as an input to the classifier and 
it establishes the relationship between inputs and outputs to 
predict how the output changes as the input vary. Commonly 
used regression methods are ANN, Support vector machine, 
tree-based algorithms, and ensemble methods.

2.1 � Linear regression

Linear regression uses the linear function for modeling the 
relationship between a scalar dependent variable B and one 
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or more independent variables A. The practical uses of linear 
regression can be categorized as shown below:

1.	 If our goal is prediction, error reduction or forecasting, 
linear regression can be used as a predictive model for 
an observed dataset of A and B values. After the model is 
developed, it is possible to predict the value of B for an 
additional given value of A. This means that the model 
can be used to predict the value of B.

2.	 If we are given a variable B and many variables A1, A2…
Ap that might be related to B, then the linear regression 
analysis is used to quantify the relationship strength 
between B and Ai so as to find out which Ai has no rela-
tion with B and to identify the subsets of Ai contain 
redundant information about B.

When given a dataset of 
{
bi, ai1, … , aip

}ni of n statisti-
cal units, the relationship between the dependent variable bi 
and the p vector of regressor ai is assumed to be linear by 
the linear regression model. The model of this relationship 

is through an error variable ei which is an unobserved ran-
dom variable which is adding noise to the linear relationship 
between the regressors and dependent variables. Hence the 
model is of the form given below:

where T stands for the transpose and hence this equation 
can be written as below when the n equations are stacked 
together

2.2 � K‑Star

K-Star clustering is a vector quantization method and is used 
in data mining for cluster analysis. The K-Star method is 
meant to part n observations into k number of clusters in 
which each observation belongs to the cluster with the near-
est mean which serves as a prototype of the cluster. For a set 
of observations (a1, a2, …an) in which each observation is a 
d dimensional real vector, K-Star clustering aims to partition 

(1)bi = C01 + C1ai1 +…+ Cpaip + ei = AT
i
C + ei,

(2)B = AC + e.
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Fig. 1   Flow chart of the methodology adopted for tool wear prediction
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the n observations into k ≤ n sets S ={S1, S2, …, Sk} so that 
we can minimize the variance

Here μi is the mean of points in Si.

3 � Experimentation and feature extraction

For predicting the tool wear, the experiments were con-
ducted on a milling machine under the various operating 
conditions. The cutting speed was set to 200 m/min, the feed 
was varied at 0.5 and 0.25 mm/rev, and the depth of cut 
was varied at 1.5 and 0.75 mm. The material used for the 
workpiece was cast iron. A face mill of 70 mm face with six 
inserts of insert-type KC710 was chosen as the tool for the 
experiment which is coated with TiC, TiC-N, and TiN for 
toughness. The tool wear was taken into consideration and 
investigated under the following different cuts: entry cut, 
regular cut, and exit cut. The data collected from this experi-
ment belong to the vibration sensor mounted at the spindle 
of the Matsuura milling center MC-510V. The vibration sen-
sor was an accelerometer (model 7201-50, ENDEVCO). The 
signal was fed into a Phoenix contact cable connector and 
was amplified by a charge amplifier and filtered by an LP/
HP filters before its root mean square was calculated and 
entered into the computer for data acquisition (Agogino and 
Goebel 2007). The next part of the data collected from this 
experiment was taken by an acoustic emission sensor (model 
WD 925, Physical Acoustic Group) which had a range of 
frequency of up to 2 MHz. This sensor was attached to a 

(3)

n∑

i=1

||a − �i||2 =

n∑

i=1

(a − �i)(�i−b)s a ∈ Sia ≠ b ∈ Si.

clamping support. The signal went into the terminal of a 
preamplifier (model 1801, Dunegan/Endevaco) which had 
a 50 kHz high-pass filter and then was amplified by a dual 
amplifier (model DE 302A). The signal goes through a cus-
tom-made RMS meter and then into a cable that feeds the 
signal into a high data acquisition board (MIO-16). Figure 2 
shows the schematic diagram of the milling machine.

For the analysis of the vibration signals and acous-
tic emission signals obtained from the spindle of milling 
machine, the authors have used time–frequency signal 
processing techniques, i.e., discrete wavelet transform 
(DWT) and lifting wavelet transform (LWT). After 
conducting experiments, it is revealed that the energies 
of both the methods were different which is shown in 
Table 1. The statistical features were calculated using 
DWT as it is giving higher energy compared to LWT. 
Symlet was chosen as mother wavelet for DWT (Jemiel-
niak and Kossakowska 2010), and for choosing the best 
level, entropy was compare for the cases considered 
(Wang et al. 2017). It is observed that approximation 
coefficients A1 is the appropriate level for the formation 
of feature vector as it showed the least entropy, which 
is shown in Table 2. When signals contain disorder/ran-
domness then chances of predicting the correct condition 
of tool or component is difficult. Therefore, the authors 
in the present study have chosen minimum entropy for 
selecting approximate coefficients. Table 3 lists the sta-
tistical features considered for tool wear prediction in the 
present study (Vakharia et al. 2016a, b). The variation 
of statistical features with respect to time for both the 
signals, i.e., vibration and acoustic emission is shown in 
Fig. 3. Further to select the relevant features correlation-
based feature selection methodology was used. Four 

Fig. 2   Schematic diagram of 
milling machine

Table

Workpiece

Spindle 

Cu�ng Tool 

Machine frame
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features such as skewness, mean, RMS, and RSSQ were 
selected as the best features with vibration signals and 
kurtosis, maximum-to-minimum difference, peak-mag-
nitude-to-RMS ratio, and energy were selected as beast 
features with acoustic emission signals.

4 � Results and discussion

In the present study, the vibration signals and acoustic emis-
sion signals measured from spindle of milling machine with 
various operating conditions are utilized for tool wear pre-
diction. Signals are acquired from the sensors with variations 
in the feed and depth of cut. The vibration and acoustic emis-
sion signals are decomposed into various levels considering 
symlet as base wavelet for extracting useful information and 
calculation of statistical features. In total 11 statistical fea-
tures are used for the formation of feature vector. For pre-
diction of flank wear, two artificial intelligence techniques 
linear regression and K-Star are utilized. Figures 4(a–d) and 
5(a–d) show the actual and predicted value of tool wear rate 
using training and testing of classifier without feature selec-
tion and with feature selection. It is observed that there is 
a significant deviation between actual value and predicted 

Table 1   Discrete wavelet 
transform energy table

S. No. Case Time Run D.O.C. Feed Energy (DWT) Energy (LWT)

X1 9 34 7 1.5 0.5 796.334 791.564
X2 9 40 8 1.5 0.5 802.064 799.991
X3 9 46 9 1.5 0.5 745.8174 741.564
X4 10 39 8 1.5 0.25 709.4416 709.4416
X5 10 45 9 1.5 0.25 699.7668 689.358
X6 101 57 10 1.5 0.25 785.4931 765.8723
X7 11 93 21 0.75 0.25 663.3004 662.456
X8 11 100 22 0.75 0.25 664.12 664.89
X9 11 105 23 0.75 0.25 667.1542 668.278
X10 12 61 13 0.75 0.5 6.53E + 02 6.33E + 02
X11 12 67 14 0.75 0.5 626.1631 603.234
X12 12 74 15 0.75 0.5 609.6322 547.6322
Average 701.857 689.773

Table 2   Entropy calculation 
with different levels

Entropy

Case Time Run D.O.C. Feed A1 A2 A3

X1 9 34 7 1.5 0.5 4.3842 4.7699 5.1367
X2 9 40 8 1.5 0.5 4.5568 4.9585 5.3082
X3 9 46 9 1.5 0.5 4.3166 4.7246 5.0646
X4 10 39 8 1.5 0.25 4.1953 4.5931 4.9006
X5 10 45 9 1.5 0.25 4.4124 4.8051 5.1449
X6 10 57 10 1.5 0.25 4.5867 4.9777 5.3305
X7 11 93 21 0.75 0.25 4.2423 4.6424 4.977
X8 11 100 22 0.75 0.25 4.0128 4.3824 4.7839
X9 11 105 23 0.75 0.25 3.8712 4.226 4.621
X10 12 61 13 0.75 0.5 3.7587 4.1044 4.3607
X11 12 67 14 0.75 0.5 3.7666 4.1276 4.4459
X12 12 74 15 0.75 0.5 3.827 4.2119 4.5811
Average 4.160883 4.543483 4.887925

Table 3   Extracted features

List of statistical features

1. Skewness 7. Minimum
2. Kurtosis 8. Peak to peak (P2P)
3. Mean 9. Peak magnitude to RMS (P2RMS)
4. Root mean square 10. Root sum of squares level (RSSQ)
5. Maximum 11. Energy
6. Variance
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value of flank wear when training and testing of classifier is 
conducted with and without feature selection. Correlation 
coefficient and mean absolute error are shown in Tables 4 
and 5 which are widely used parameter to test the accuracy 
of regression analysis. The correlation coefficient for linear 
regression training with vibration and acoustic emission fea-
tures obtained as 0.717 and 0.908, respectively, is shown in 
Table 4. The mean absolute error with vibration and acoustic 
emission features obtained as 0.12 and 0.07. When testing 
of classifier is done considering 30% of features for testing 
and 70% of features for training then prediction accuracy is 
enhanced which is seen in Fig. 4(a–b). The trend shows that 
there is comparatively less significant difference between 
the actual value of flank wear and predicted value of flank 
wear with feature sets obtained from both vibration and 
acoustic emission data when linear regression is used as a 
classifier for testing of features. The mean absolute error 
with vibration and acoustic features obtained as 0.73 and 
0.756 while mean absolute error with vibration and acoustic 
features obtained as 0.1 and 0.12. Since correlation coef-
ficient in case of acoustic emission features are high com-
pared to vibration signals and mean absolute error is low 
with acoustic emission features, therefore it can be judged 
that the signals obtained from acoustic emission sensors are 
better than the vibration signals for predicting the flank wear 
with linear regression technique. Figure 4(c–d) illustrates 
the training and testing accuracy of predicting flank wear 
with K-Star algorithm with vibration and acoustic emission 
feature sets. The prediction accuracy after using K-Star for 
training is found to be better compared to linear regression. 
Furthermore, the flank wear predicted with the feature set 

obtained from acoustic emission signals gives 100% predic-
tion since predicted values superimposed with actual values 
which is shown in Fig. 4(c–d). Correlation coefficient for the 
feature extracted from vibration and acoustic emission are 
one for both the signals and mean absolute error is zero sug-
gesting that K-Star correctly identified all the cases of flank 
wear when training of classifier was done. When K-Star is 
used as a classifier for testing of feature vector, from Table 4 
it is clear that the correlation coefficient is 0.76 and 0.866 
and mean absolute error is 0.12 and 0.08, respectively, with 
features calculated from vibration and acoustic emission sig-
nals, respectively. After detailed study it is worthy to men-
tion that the correlation between actual and predicted tool 
wear rate is high both in training and testing of K-Star and 
mean absolute error is lowest with both training and testing 
of K-Star with all 11 statistical features. When correlation-
based feature selection criterion is applied then only four 
features out of eleven were selected for training and testing 
of classifiers. Figure 5(a–d) shows the actual and predicted 
value of tool wear rate using training and testing of classifier 
with feature selection criterion. Table 5 shows the perfor-
mance evaluation of classifier with correlation coefficient 
and mean absolute error. When training is done with K-Star 
classifier and with reduced feature set then small deviation 
is observed compared to K-Star classifier and considering all 
features which is seen in Figs. 4(c) and 5(c). After compar-
ing the evaluation parameters for analyzing the performance 
of classifier, it is observed that with reduced feature set, the 
tool wear prediction is better compared to all feature set 
which is shown in Table 5.   
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Fig. 4   (a–d) Actual and 
predicted value of Tool wear 
rate using training and testing 
of classifier without feature 
selection. a Linear regression 
training. b Linear regression 
testing. c K-Star training. d 
K-Star testing
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(b) Linear Regression Testing

(c) K-Star Training
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Fig. 5   (a–d) Actual and pre-
dicted value of Tool wear rate 
using training and testing of 
classifier with feature selection. 
a Linear regression training. 
b Linear regression testing. c 
K-Star training. d K-Star testing

(b) Linear Regression Testing

(c) K-Star Training
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Figures 6 and 7 show the variations in absolute error 
from linear regression and K-Star testing for both the con-
ditions. The maximum absolute error in prediction of flank 
wear is 0.29 with linear regression and 0.18 with K-Star 
whereas minimum absolute error is 0.03 and 0.01 with 

linear regression and K-Star, respectively, with vibration 
feature set as shown in Fig. 6. When acoustic feature set is 
used then maximum absolute error observed is 0.34 with 
linear regression and 0.25 with K-Star, whereas minimum 
absolute error observed is 0.01 and 0, respectively, with 
linear regression and K-Star, respectively, as shown in 
Fig. 7. Figures 6 and 7 represent the conditions when all 
11 features were used. Figures 8 and 9 represent the plot 
of absolute errors with only four features. When feature 
selection is used then the absolute error is comparatively 
less as observed with all features. Since variations in 
absolute error are less with acoustic emission feature set 
compared to vibration feature set without feature selection 
and with feature selection, therefore, it is revealed that the 
acoustic feature set gives the better result for predicting 
the flank wear in the present study.   

Table 4   Comparison and 
performance evaluation of 
machine learning methods 
without feature selection

Machine learning algorithm Correlation coefficients Mean absolute error

Vibration Acoustic emission Vibration Acoustic 
emission

Linear regression training 0.717 0.908 0.12 0.07
Linear regression testing 0.73 0.756 0.10 0.12
K-Star training 1 1 0.001 0
K-Star testing 0.76 0.866 0.12 0.08

Table 5   Comparison and performance evaluation of machine learning 
methods with feature selection

Machine learning algorithm Correlation coef-
ficients

Mean absolute 
error

Vibration AE Vibration AE

Linear regression training 0.73 0.90 0.11 0.07
Linear regression testing 0.76 0.86 0.09 0.10
K-Star training 0.99 1 0.01 0
K-Star testing 0.88 0.96 0.09 0.08

Fig. 6   Absolute error in pre-
dicted values for vibration fea-
tures without feature selection
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Fig. 7   Absolute error in pre-
dicted values for acoustic emis-
sion features without feature 
selection
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5 � Conclusion

Tool wear prediction from the vibration signals and acous-
tic emission signals acquired from milling machine has 
been utilized in the present study. Discrete wavelet trans-
forms considering symlet as base wavelet are used for the 
calculation of statistical features. Eleven statistical fea-
tures have been extracted from the symlet wavelet coeffi-
cients and feature vector is formed using vibration feature 
set and acoustic emission feature sets. Prediction accuracy 
is compared with linear regression and K-Star algorithm. 
The result reveals that the reduced feature set formed with 
acoustic emission feature set gives better prediction accu-
racy and K-Star is the better machine learning algorithm 
to predict flank wear in milling. Present methodology is 
efficient for predicting flank wear when K-Star is used for 
both training and testing, since prediction error is very low 
while testing of the classifier.
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