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Abstract
The process capability index (PCI) is a useful tool for assessing the capability of a manufacturing process. It plays an 
important role in monitoring and analyzing process quality and productivity. Since PCI is based on sample observations, 
it is a point estimate of the true PCI. It is well known that confidence interval (CI) provides much more information about 
the population characteristic of interest than does a point estimate. In this article, asymptotic confidence interval (ACI) and 
three bootstrap confidence intervals (BCIs) namely, standard bootstrap (s-boot), percentile bootstrap (p-boot), and Student’s 
t bootstrap (t-boot) of the generalized process capability index (GPCI) Cpy , defined as the ratio of proportion of specification 
conformance to proportion of desired conformance, are studied through simulation when the underlying distribution fol-
lows exponential distribution. Method of maximum likelihood is used to estimate the parameter of the model. Monte Carlo 
simulation has been carried out to investigate the estimated average widths and coverage probabilities of the ACI and BCIs 
of Cpy . Finally, two data sets have been analyzed for illustrative purpose.

Keywords Process capability index · Generalized process capability index · Maximum-likelihood estimate · Asymptotic 
confidence interval · Bootstrap confidence intervals

1 Introduction

From statistical point of view, we can employ several tech-
niques to measure the capability of a manufacturing process, 
namely, graphical methods, design of experiments, and pro-
cess capability indices (PCIs). PCI is a indicator function 
which establishes the relationship between the actual process 
performance and manufacturing specifications, designed by 
the designers or customers. The first PCI Cp , introduced by 
Juran (1974), has taken into account the process standard 
deviation ( � ) only. However, Cp did not detect departure of 
the process mean ( � ) from the specification center. Then, 
second-generation PCI Cpk came in the trend, which was 
developed by Kane (1986) by taking into account both � and 
� together, while Cpk did not consider the target value (T). 
Then, Hsiang and Taguchi (1985) introduced a new index 

Cpm , independently suggested by Chan et al. (1988), which 
took into account the target value (T) together with � and 
� . The third-generation PCI was developed by Pearn et al. 
(1992), abbreviated as ‘PKJ’, applicable in both the condi-
tions when the process distribution is off-centered as well 
as off-target. All PCIs were designed to measure the process 
capability when the studied characteristic of the process is 
normal. Vannman (1995) defined a class of PCIs, depending 
on two non-negative parameters, given as

where m = (U + L)∕2 , the specification center; U and L are 
the upper and the lower specification limits, respectively. 
The four basic indices, Cp , Cpk , Cpm , and Cpmk , are special 
cases of Cp(u, v) by letting u = 0 or 1 and v = 0 or 1. More 
specially, Cp(0, 0) = Cp , Cp(1, 0) = Cpk , Cp(0, 1) = Cpm , and 
Cp(1, 1) = Cpmk , respectively.

In many cases, if the assumption of normality is violated, 
then PCIs calculated using the conventional methods could 
often lead to erroneous and misleading interpretation of the 
capability of manufacturing processes. Clements (1989) 

Cp(u, v) =
d − u�� − m�

3
√
�2 + v(� − T)2
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introduced a method by taking into account non-normal 
PCIs by considering the Pearsonian system and using their 
quantiles. Gilchrist (1993) introduced a quantile transforma-
tion which was based on standardized distribution instead 
of Pearson distribution. Johnson et al. (1994) applied the 
Clement’s method and also obtained the estimators of PCIs. 
Mukherjee (1995) introduced a method of obtaining PCI 
for non-normal manufacturing process based on tolerance 
interval/prediction interval. An alteration of the Clement’s 
method has been derived by Pearn and Chen (1995). Chen 
and Pearn (1997) proposed generalizations of Cp(u, v) for any 
underlying distribution as

where F� is the � th percentile and M is the median of the 
process distribution, respectively. We observed that the gen-
eralizations were developed by replacing � by M and � by (
F0.99865 − F0.00135

)
∕6 in Cp(u, v) , given by Vannman (1995). 

By setting (u, v) as (0, 0), (1, 0), (0, 1), and (1, 1) leads to the 
four basic indices for any underlying distributions, namely, 
CNp , CNpk , CNpm , and CNpmk (see Zwick 1995; Tong and Chen 
1998), respectively.

Maiti et al. (2010) suggested a generalized process capa-
bility index (GPCI), defined as the ratio of proportion of 
specification conformance to proportion of desired con-
formance. PCI Cpy can be measured under unilateral as well 
as bilateral specification limits and normal as well as non-
normal process distributions, given as

where F(t) = P(X ≤ t) is the cumulative distribution func-
tion of the quality characteristic X, p is the process yield, 
and p0 is the desirable yield. LDL and UDL are the abbre-
viation of lower desirable limit and upper desirable limit, 
respectively. Sometimes, the practitioners may realized the 
LDL as lower tolerance limit (LTL) and UDL as upper toler-
ance limit (UTL), respectively. The beauty of the GPCI is 
that most of the PCIs defined in the literature are directly or 
indirectly related with this index.

In recent time, competitiveness in quality is not only 
central to profitability, but crucial to business survival, and 
industry is viable only if they provide satisfaction to their 
consumers. Use of PCIs in industry motivated the statistician 
and quality control engineers to focus on the point estimation 
and construction of confidence intervals (CIs) of these PCIs 
(see, Chan et al. 1988). The construction of confidence limits 

CNp(u, v) =
d − u|M − m|

3

√(
F0.99865−F0.00135

6

)2

+ v(M − T)2

,

Cpy =
F(U) − F(L)

F(UDL) − F(LDL)

=
p

p0
,

for PCIs was introduced by Hsiang and Taguchi (1985). 
Then, many other researchers have developed numerous 
techniques and tables to construct confidence limits for 
these PCIs. Chen and Hsu (1995) proposed the asymptotic 
distribution of Cpmk . Several researchers have developed 
numerous techniques and tables to construct confidence 
limits for these PCIs. Initially, the CIs were constructed for 
a normally distributed process, and nowadays, a frequently 
used approach is a non-parametric statistical method called 
bootstrap technique, introduced by Efron (1982), which 
did not require the assumption of process distribution for 
obtaining the confidence limits. Owing to cost and/or time 
constraints, data of large sample sizes are seldom realized 
in industry, and therefore, limited or insufficient data are 
used by the engineers/practitioners for statistical inference. 
When utilizing the bootstrap method to construct confidence 
limits for the PCIs, Wasserman and Franklin (1991, 1992) 
and Price and Price (1993) still used the conventional PCIs 
for non-normal process distribution. Later on, efforts were 
also made by several authors to develop the construction of 
CIs for non-normally distributed manufacturing processes 
(see, Peng 2010a, b; Rao et al. 2016; Dey et al. 2017; Saha 
et al. 2018).

In this article, our objective is to find out the asymptotic 
confidence interval (ACI) and bootstrap confidence inter-
vals (BCIs), namely, standard bootstrap (s-boot), percentile 
bootstrap (p-boot), and Student’s t bootstrap (t-boot) of Cpy 
for exponentially distributed quality characteristic. To the 
best of our knowledge thus so far, no attempt has been made 
to study these ACI and BCIs based on Cpy for exponentially 
distributed quality characteristic. Our aim is to fill up this 
gap through this present work.

The rest of the article is organised as follows: In Sect. 2, 
we have discussed some earlier work regarding Cpy under 
the exponential distribution. ACI and BCIs of Cpy based on 
exponential distribution have been discussed in Sect. 3. In 
addition, Monte Carlo simulation study is carried out to see 
the performance of the proposed ACI and BCIs of Cpy under 
exponential distribution in terms of average width and cover-
age probabilities in Sect. 4. In Sect. 5, real-life examples are 
presented for illustrative purposes of the proposed study. The 
article ends with a brief conclusion given in Sect. 6.

2  Review of the earlier works

The assumption of exponentially distributed quality character-
istics is generally valid for data that have a natural one-sided 
boundary with a large probability mass concentrated near this 
boundary. Gunter (198) pointed out some cases where this dis-
tributional assumption seems to be reasonable. Yeh and Bhat-
tacharya (1998) pointed out that the exponential distribution 
arises frequently in industrial process. Perakis and Xekalaki 
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(2002) investigated the properties of the PCI in the case where 
the process distribution is exponential. In addition, the infer-
ential aspects of the index Cpy have been pointed out in case of 
exponentially distributed quality characteristic by Maiti et al. 
(2010), Maiti and Saha (2011). A process whose distribution 
can be regarded to be the exponential with parameter � , the 
GPCI is given by (see, Maiti et al. 2010)

In practice, the true value of � is unknown. Using the invari-
ance properties of the MLE, Maiti et al. (2010) obtained the 
MLE of Cpy , given as follows:

Since Z =
∑n

i=1
Xi is complete sufficient statistic for � , using 

Lehmann–Scheffe theorem, the MVUE of Cpy is given as

where X̄ is the sample mean and

By carrying out Monte Carlo simulation study with 
� = 0.2, 0.5, 0.7 1.0 and with n = 25, 50, 100, 150 , Maiti 
et al. (2010) showed that for 𝜆 < 0.5 , Ĉpy (MLE of Cpy ) gives 
better result than C̃py (MVUE of Cpy ) in MSE sense, but, for 
𝜆 > 0.5 , it is reverse. Maiti and Saha (2011) have looked 
into the inferential aspects of the GPCI Cpy for exponential 
process distribution. Where only one specification limit has 
been set, this may be either U (e.g., surface roughness), or L 
(e.g., time until failure) is set, they have obtained the exact 
lower confidence limit of the index Cpy in case of exponen-
tial process distribution. Maiti and Saha (2012) has also 
obtained the Bayesian estimation of the index Cpy in case 
of exponential process distribution under squared error loss 
function. The Bayes’ estimate of the index Cpy has been com-
pared with the frequentist counterpart.

3  Asymptotic confidence interval of Cpy

In this section, we have derived the asymptotic distribution 
and 100(1 − �)% ACI of Cpy under the assumption of expo-
nential distribution. In Sect. 1, some recent work related to 
the ACI has been discussed. It is to be noted that, to derive 

Cpy =
1

p0

(
e−�L − e−�U

)
.

Ĉpy =
1

p0

(
e−

L

X̄ − e−
U

X̄

)
.

C̃py =
1

p0

(
∫

U

L

f (x|X̄)dx
)

=
1

p0

{
n−1∑
r=1

(−1)r
(
n − 1

r

)(
1

nX̄

)r

(Lr − Ur)

}
,

f (x|X̄) = n − 1

nX

[
1 −

x

nX̄

]n−2
; 0 < x < nX̄.

the ACI of Cpy , we have to derive at first the asymptotic 
distribution of � . It is to be noted that

and the 100(1 − �)% ACI for � is given by

where Z(�∕2) is the upper (�∕2) th point of the standard nor-
mal distribution. Here, we have derived the ACI of Cpy using 
the MLE of the parameter � . It can be easily shown that for 
large n:

where

the log-likelihood function (l) of the parameter,

and

Hence, the 100(1 − �)% ACI Cpy can be easily obtained as

4  Bootstrap confidence intervals of Cpy

In this section, we obtained the CIs of Cpy using bootstrap 
method. Franklin and Wasserman (1991) and Choi and Bai 
(1996) have used bootstrap methods for estimating various 
PCIs. Here, we have obtained three BCIs, namely, Standard 
bootstrap (s-boot), Percentile bootstrap (p-boot), and Stu-
dent’s t bootstrap (t-boot) for calculating CIs of the GPCI Cpy.

Let X1, X2, ..., Xn be a random sample of size n drawn 
from exponential distribution with parameter �.

√
n(�̂� − 𝜃) ∼ N

�
0, 𝜃2

�

{
�̂� ± Z(𝛼∕2) ⋅

√
�̂�2

n

}
,

Ĉpy − Cpy√
Var(Cpy)

∼ N(0, 1),

Var(Cpy) =

�
�Cpy

��

�2

×

⎛⎜⎜⎜⎝
1

E
�
−

�2l

��2

�
⎞⎟⎟⎟⎠
,

l = n log � − �

n∑
i=1

xi,

E

(
−
�2l

��2

)
=

n

�2

�Cpy

��
=

1

p0

{
Ue−U� − Le−L�

}
.

{
Ĉpy ± Z(𝛼∕2).

√
Var(Ĉpy)

}
.
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ALGORITHM

• Step 1: From the given random sample of size n, we 
compute MLE �̂� of � . A bootstrap sample of size n is 
obtained from the original sample by putting 1 / n as 
mass at each point, denoted by X∗

1
, X∗

2
, … , X∗

n
.

• Step 2: We compute the MLE �̂�∗ of � as well as Ĉ∗
py

 of 
Cpy . The mth bootstrap estimator of Cpy is computed as 
Ĉ∗(m)
py

= Ĉpy(X
∗
1
, X∗

2
, … , X∗

n
).

• Step 3: There are total number of nn re-samples and we 
calculate B values of Ĉ∗

py
 from these re-samples. Each of 

these Ĉ∗
py

 would be estimator of Ĉpy . The arrangement of 
the entire collection in ascending would constitute an 
empirical bootstrap distribution 

{
Ĉ
∗(j)
py ; j = 1, 2, … , B

}
 , 

will be denoted as Ĉ∗(1)
py

≤ Ĉ∗(2)
py

≤ ⋯ ≤ Ĉ∗(B)
py

.

Here, in this study, we considered B = 1000 bootstrap 
samples.

4.1  Standard bootstrap (s‑boot) confidence interval

Let ̄̂C∗
py

 and Se∗ be the sample mean and sample standard 
deviation of 

{
Ĉ
∗(j)
py ; j = 1, 2,… ,B

}
 , that is

and

respectively. A 100(1 − �)% ACI of the index Cpy is given by

4.2  Percentile bootstrap (p‑boot) confidence 
interval

Let Ĉ∗(𝜏)
py

 be the � percentile of 
{
Ĉ
∗(j)
py ; j = 1, 2,… ,B

}
 , i.e., 

Ĉ∗(𝜏)
py

 is such that

where I(.) is the indicator function. A 100(1 − �)% ACI of 
the index Cpy is given by

̄̂
C∗
py
=

1

B

B∑
j=1

Ĉ∗(j)
py

Se∗ =

√√√√ 1

(B − 1)

B∑
j=1

(
Ĉ
∗(j)
py − ̄̂

C∗
py

)2

,

{
Ĉ∗
py
− z(𝛼∕2) ⋅ Se

∗, Ĉ∗
py
+ z(𝛼∕2) ⋅ Se

∗
}
.

1

B

B∑
j=1

I
(
Ĉ∗(j)
py

≤ Ĉ∗(𝜏)
py

)
= 𝜏; 0 < 𝜏 < 1,

{
Ĉ∗(B⋅(𝛼∕2))
py

, Ĉ∗(B⋅(1−𝛼∕2))
py

}
,

where Ĉ∗(r)
py

 is the rth ordered value on the list of the B boot-
strap estimators of Cpy.

4.3  Student’s t bootstrap (t‑boot) confidence 
interval

Let S∗ be the sample standard deviat ion of {
Ĉ
∗(j)
py ; j = 1, 2,… ,B

}
 , that is

where

In addi t ion,  let  t̂∗(𝜏) be  the �  percent i le  of {
Ĉ
∗(j)
py −Ĉpy

S∗

}
; j = 1, 2,… , B, i.e., t̂∗(𝜏) is such that

where I(.) is the indicator function. A 100(1 − �)% ACI of 
the index Cpy is given by

To study the different CIs, we consider their estimated aver-
age widths. For each of the methods considered, the average 
width of the BCI is calculated based on the B different trials. 
The average width are given by

and

where LW  and UP are the 100(1 − �)% CI based on B 
replicates.

5  Simulation and discussion

Maiti et al. (2010) has shown that the MLE performed bet-
ter than the MVUE of the GPCI Cpy in case of exponentially 
distributed quality characteristics for their considered setup 
in the simulation study. In this section, a simulation study 

S∗ =

√√√√ 1

B

B∑
j=1

(
Ĉ
∗(j)
py − ̄̂

C∗
py

)2

,

̄̂
C∗
py
=

1

B

B∑
j=1

Ĉ∗(j)
py

.

1

B

B∑
j=1

I

(
Ĉ
∗(j)
py − Ĉpy

S∗
≤ t̂∗(𝜏)

)
= 𝜏; 0 < 𝜏 < 1,

{
̄̂
C∗
py
− t̂∗(𝛼∕2) ⋅ S∗,

̄̂
C∗
py
+ t̂∗(𝛼∕2) ⋅ S∗

}
.

Average width =

∑B

i=1

�
UPi

− LWi

�

B
,

Coverage probability =
Number

(
LW ≤ Cpy ≤ UP

)
B

,
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has been carried out to see the performance of ACI and BCIs 
of the GPCI Cpy for exponentially distributed quality char-
acteristics using MLE of the parameter � . Here, we have 
considered the sample sizes n = 10, 20, 30, 50 , and 100, 
and set the lower and the upper specification limits as 0 
and 8.5, respectively. For each design, B = 1000 bootstrap 
samples with each of size n are drawn from the original 
sample and replicated 5000 times. The 95% ACI and BCIs 
are constructed for each methods. Simulations are performed 
using programs written in the open source statistical package 
R (see, Ihaka and Gentleman 1996).

The average widths, the difference between the upper and 
the lower specification limits and corresponding coverage 
probabilities, the true values of Cpy , covered by 100(1 − �)% 
CI, are calculated for comparing the performance of ACI 
and BCIs of Cpy . Tables 1, 2 represent the estimated average 
widths and coverage probabilities of 95% ACI and BCIs of 
the index Cpy . The results show that p-boot provide smaller 

average widths than ACI and BCIs (s-boot and t-boot) for 
� ≤ 0.10 and t-boot provide smaller average widths than 
ACI and BCIs (s-boot and p-boot) for 𝜃 > 0.10 , respectively. 
In addition, it has been observed that, as the sample sizes 
increases, the average widths decrease in almost all cases.

6  Data analysis

In this section, real data sets are considered to illustrate ACI 
and BCIs (viz., s-boot, p-boot, and t-boot) of the GPCI Cpy 
for exponential distribution using the MLE of the parameter. 
At first, we have checked whether the considered data sets 
come from the exponential distribution by the goodness of 
fit test, which are based on five statistics using the log-like-
lihood function evaluated at the MLE ( l(�̂�) ). Let c be the 
total number of parameters to be fitted, n, the sample size, 
then the criteria are: Akaike information criteria 

Table 1  Cpy and its estimated 
average widths and coverage 
probabilities of ACI for 
exponential distribution

n � Cpy Confidence limits Average width Coverage 
probability

L U

10 0.10 0.602721 0.390397 0.843577 0.453180 0.910
20 0.10 0.602721 0.449501 0.778317 0.328816 0.924
30 0.10 0.602721 0.474479 0.744704 0.270225 0.931
50 0.10 0.602721 0.499644 0.709978 0.210334 0.945
100 0.10 0.602721 0.531367 0.680808 0.149440 0.951
10 0.25 0.926912 0.770140 1.075994 0.305854 0.860
20 0.25 0.926912 0.815899 1.038788 0.222889 0.906
30 0.25 0.926912 0.835535 1.019794 0.184259 0.914
50 0.25 0.926912 0.851559 0.998029 0.146469 0.941
100 0.25 0.926912 0.875389 0.978891 0.103501 0.933
10 0.50 1.037616 0.984680 1.076701 0.092020 0.817
20 0.50 1.037616 1.002437 1.064307 0.061869 0.843
30 0.50 1.037616 1.011034 1.059300 0.048265 0.859
50 0.50 1.037616 1.018043 1.054466 0.036423 0.902
100 0.50 1.037616 1.023407 1.049406 0.025998 0.928
10 0.75 1.050838 1.035132 1.060944 0.025812 0.747
20 0.75 1.050838 1.042590 1.056593 0.014003 0.816
30 0.75 1.050838 1.045121 1.055082 0.009961 0.804
50 0.75 1.050838 1.046898 1.053985 0.007086 0.840
100 0.75 1.050838 1.048263 1.053013 0.004749 0.883
10 1.00 1.052417 1.047848 1.055285 0.007437 0.698
20 1.00 1.052417 1.050582 1.053633 0.003051 0.763
30 1.00 1.052417 1.051247 1.053246 0.001999 0.805
50 1.00 1.052417 1.051579 1.052997 0.001417 0.811
100 1.00 1.052417 1.051943 1.052783 0.000839 0.879
10 1.25 1.052605 1.051439 1.053368 0.001920 0.666
20 1.25 1.052605 1.052171 1.052886 0.000715 0.732
30 1.25 1.052605 1.052312 1.052792 0.000480 0.788
50 1.25 1.052605 1.052435 1.052716 0.000280 0.813
100 1.25 1.052605 1.052523 1.052665 0.000142 0.838
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[ AIC = −2l(�̂�) + 2c ], Bayesian information criteria 
[ BIC = −2l(�̂�) + 2 ln(n) ], Hannan–Quinn information crite-
rion [ HQIC = −2l(�̂�) + 2c ln(ln(n)) ], Consistent Akaike 
information criterion [ CAIC = −2l(�̂�) + 2c ∗ n∕(n − c − 1) ], 
a n d  K o l m o g o r o v – S m i r n o v  s t a t i s t i c 
[ D = max1≤i≤N

(
F(Xi) −

i−1

N
,
i

N
− F(Xi)

)
 ], and the results 

are reported in Table 3.

• Data Set I: The manufacturer of integrated circuits com-
prises the initial process of wafer and the final process 
of packaging. In an integrated circuit packaging factory, 
the manufacturing process generally includes the several 
steps, details are given in Leiva et al. (2014). In the wire 
bonding process, one of the important factors is the ball 
size which directly related the quality level. Thus, the 
quality characteristic to be monitored is the ball size (1 
mil = 1 / 1000 in = 0.00254 mm). The data set is given 

below: 2.891,  4.035,  4.495,  2.890,  2.312,  3.158, 5.22
8,  3.334,  5.896,  5.639,  3.842,  1.590,  1.954, 1.842,  0.
680,  2.752,  1.301,  2.260,  0.889, 2.381,  0.619,  2.788,   
1.050,  3.750,  3.508,  6.123, 6.549,  5.954,  2.207,  4.4
17,  4.805,  1.516, 2.227,  2.797,  1.636,  1.066,  0.940,   
4.101,  4.542, 1.295,  1.770,  3.492,  5.706,  3.722,  6.6
44, 2.472,  1.383,  4.494,  1.694,  2.892,  2.111,  3.591, 
2.093,  3.222,  2.891,  2.582,  0.665,  3.234, 1.102,  1.0
83,  1.508,  1.811,  2.803,  6.659,  0.923, 6.229,  3.177,   
2.333,  1.311,  4.419,  2.495, 0.921,  4.061,  9.725,  1.6
00,  4.281,  3.360,  1.131, 1.618,  4.489,  3.696,  1.982,  
2.413,  5.480, 1.992,  2.573,  1.845,  4.620,  6.221,  1.6
94,  4.882, 1.380,  3.982,  2.260, 2.366, 2.899, 3.782, 2
.336,  1.175,  3.055 Figure 1 displays the density, Q–Q 
plot, and fitted density of exponential distribution for the 
given data set, and Table 4 represents the 95% ACI and 
BCIs (s-boot, p-boot, and t-boot) of the index Cpy . Here, 
the quality characteristic to be monitored is the ball size 

Table 2  Cpy and its estimated 
average widths and coverage 
probabilities of BCIs for 
exponential distribution

n � Cpy Average width Coverage probability

s-boot p-boot t-boot s-boot p-boot t-boot

10 0.10 0.602721 0.448249 0.440395 0.505157 0.916 0.927 0.915
20 0.10 0.602721 0.326798 0.324286 0.363725 0.939 0.940 0.947
30 0.10 0.602721 0.270090 0.268997 0.296787 0.939 0.938 0.951
50 0.10 0.602721 0.209855 0.209023 0.226023 0.952 0.953 0.956
100 0.10 0.602721 0.149234 0.148908 0.157721 0.943 0.940 0.953
10 0.25 0.926912 0.282853 0.271228 0.215613 0.876 0.910 0.784
20 0.25 0.926912 0.215431 0.210767 0.180329 0.913 0.951 0.848
30 0.25 0.926912 0.179311 0.176866 0.155780 0.904 0.927 0.859
50 0.25 0.926912 0.142110 0.141100 0.128030 0.936 0.950 0.892
100 0.25 0.926912 0.102809 0.102401 0.095589 0.952 0.953 0.927
10 0.50 1.037616 0.099858 0.093496 0.042178 0.879 0.919 0.708
20 0.50 1.037616 0.062315 0.059550 0.031209 0.902 0.935 0.721
30 0.50 1.037616 0.051284 0.049577 0.029181 0.904 0.939 0.769
50 0.50 1.037616 0.037994 0.037152 0.024435 0.924 0.936 0.796
100 0.50 1.037616 0.025961 0.025632 0.019016 0.942 0.946 0.840
10 0.75 1.050838 0.036302 0.033167 0.008902 0.906 0.910 0.142
20 0.75 1.050838 0.018277 0.016955 0.005539 0.919 0.940 0.433
30 0.75 1.050838 0.014148 0.013309 0.005235 0.931 0.942 0.607
50 0.75 1.050838 0.008933 0.008545 0.003962 0.935 0.944 0.741
100 0.75 1.050838 0.005442 0.005306 0.003077 0.928 0.941 0.796
10 1.0 1.052417 0.013821 0.012030 0.001940 0.942 0.932 0.031
20 1.0 1.052417 0.005699 0.005057 0.001034 0.941 0.942 0.149
30 1.0 1.052417 0.003733 0.003373 0.000855 0.933 0.945 0.257
50 1.0 1.052417 0.002065 0.001911 0.000622 0.929 0.940 0.484
100 1.0 1.052417 0.001053 0.001004 0.000443 0.921 0.938 0.681
10 1.25 1.052605 0.005933 0.004863 0.000505 0.955 0.930 0.005
20 1.25 1.052605 0.002027 0.001696 0.000236 0.959 0.930 0.040
30 1.25 1.052605 0.001049 0.000891 0.000150 0.953 0.942 0.079
50 1.25 1.052605 0.000486 0.000428 0.000095 0.953 0.958 0.259
100 1.25 1.052605 0.000222 0.000206 0.000069 0.939 0.941 0.225
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with the upper and lower specification limits L = 0.50 
mil and U = 8.00 mil (1 mil=1 / 1000 in=0.00254 mm), 
respectively.

• Data Set II: This data set is used by Bhaumik et al. 
(2009), which is vinyl chloride data obtained from clean 
up gradient monitoring wells in mg/l. The data set is 
given below: 5.1,  1.2,  1.3,  0.6,  0.5,  2.4,  0.5,  1.1,  8,   
0.8, 0.4,  0.6,  0.9,  0.4,  2,  0.5,  5.3,  3.2,  2.7,  2.9,  2.5,  
2.3,  1,  0.2,  0.1,  0.1,  1.8,  0.9,  2,  4,  6.8,  1.2,  0.4,  0.2 
Figure 2 displays the density, Q–Q plot, and fitted density 
of exponential distribution for the given data set, and 
Table 4 represents the 95% ACI and BCIs (s-boot, p-boot, 
and t-boot) of the index Cpy . Here, for the data set, we 
hypothetically choose L = 0.5 and U = 7.5 , respectively.

From these given data sets, estimated widths of ACI 
and BCIs at 95% level of significance of the index Cpy for 
the exponential distribution are represented in Table 4. For 
these data sets, it has been observed that t-boot provide 
smaller widths than ACI and BCIs (s-boot and p-boot). 

These results adequately support the simulation output 
also.

7  Conclusions

In this article, methodology has been proposed to analyze 
the capability of any manufacturing process using GPCI, Cpy , 
where the quality characteristic follows exponential process 
distribution. As Maiti et al. (2010) has shown that the MLE 
performed better than the MVUE of Cpy through simulation 
study under exponentially distributed quality characteristics, 
maximum-likelihood method of estimation of the parameter 
has been used for further analysis. In simulation study, ACI 
and BCIs are compared through average widths and corre-
sponding coverage probabilities for exponentially distributed 
quality characteristics. It is to be noted that, in simulation 
study, t-boot performed better than ACI and other two BCIs 
for larger values of parameter, whereas p-boot performed 
better than ACI and other two BCIs for smaller values of 
the parameter, respectively. The real-life examples are also 

Table 3  Model fitting summary for the considered data sets

Data set Model MLE Log-likelihood AIC BIC HQIC CAIC K–S statistic p value

I Exponential 0.329392 − 211.0505 424.1009 426.7061 425.1553 424.1417 0.9300 0.3587
II Exponential 0.532081 − 55.4526 112.9052 114.4316 113.4257 113.0302 0.5588 0.9220

Table 4  Widths of ACI & BCI 
(s-boot, p boot, & t-boot) of Cpy

Data Distributions �̂� Ĉpy
ACI BCI

s-boot p-boot t-boot

I Exponential 0.329392 0.817307 0.020332 0.021810 0.019053 0.005972
II Exponential 0.532081 0.787283 0.092077 0.102937 0.092175 0.044442

Fig. 1  Histogram, density, and 
Q–Q plot

Histogram and corresponding density plot
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adequately in favour to the simulation results. Even in case 
of limited data, engineers/practitioners can easily study the 
capability of any manufacturing process in case of exponen-
tially distributed quality characteristics and can utilize the 
bootstrap technique to study CI of the PCIs. Furthermore, 
the results can be applied to any manufacturing industries for 
analyzing the capabilities for production process.
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