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Abstract
Rapid advancement over the past decades in nanomanufacturing has led to the realization of a broad range of nanostruc-
tures such as nanoparticles, nanotubes, and nanowires. The unique mechanical, chemical, and electrical properties of these 
nanostructures have made them increasingly desired as key components in industrial and commercial applications. As the 
geometric dimension of nano-manufactured products is on the sub-micron to nanometer scale, different mechanisms and 
effects are involved in the nanomanufacturing process as compared to those for macro-scale manufacturing. Although 
direct measurement methods using atomic force microscopy and electron beam microscopy can determine the dimensions 
of the nano structure with high accuracy, these methods are not suited for online process control and quality assurance. In 
comparison, indirect measurement methods analyze in-process parameters as the basis for inferring the dimensional varia-
tions in the nano products, thereby enabling online feedback for process control and quality assurance. This paper provides 
a comprehensive review of relevant indirect measurement methods, starting with their respective working principles, and 
subsequently discussing their characteristics and applications in terms of two different approaches: data-based and physics-
based methods. Relevant mathematical and physics models for each of the methods are summarized, together with the asso-
ciated effect of key process parameters on the quality of the final product. Based on the comprehensive literature conducted, 
it was found that: (1) indirect measurement, especially the data-based method, plays a critical role when it comes to online 
process control and quality assurance in nanomanufacturing, because of the short processing time compared to the direct 
method, and (2) physics-based method is providing a way to optimize the process set up for desired geometrical dimensions.
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1  Introduction

Nanomanufacturing, in the last decades, has rapidly evolved 
with the development of material, control, and manu-
facturing sciences. Recent research regards the study of 
nanomanufacturing as falling into two categories [1]: (1) 
The dimensions of the components are at the nanometric or 
micrometric scale with nanometric scale feature size, and 
(2) the geometrical accuracy of the components is at the 
nanometric scale.

For the first category, research has shown that when the 
scale of specific components reaches the nanometric scale, 
the performance of components is greatly improved [2]. For 
example, the nanoparticles of metal material can improve 
light absorptivity when the particle dimensions match the 
light wavelength [3]. The superparamagnetic effects asso-
ciated with nano-ferromagnetic particles improve mag-
net stability at low temperatures [4]. Additionally, carbon 
nanotubes enhance the characteristics of polymeric matrices 
by increasing their tensile and shear stiffness 23-fold [5]. 
In addition to nanoparticles and tubes, other nanomanu-
facturing products are also widely studied for industrial 
applications, including nanofilms and nanotubes for sens-
ing elements [6–11], thermal energy harvesting [12], flame 
retardants [13], self-cleaning mechanisms [14, 15], polymers 
[16] and nanowires for energy saving [17, 18], and structural 
reinforcement [19, 20].
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The second category refers to processes for producing 
products of high-dimensional tolerances, e.g., diamond 
machining of metals and ultrasonic-assisted machining, 
which enables the advanced stability and surface quality 
of the products [21, 22]. The scope of this paper mainly 
addresses the measurement methods for the first category 
of nanomanufacturing. Depending on the type of nanostruc-
tures and their applications, the parameters of interest for 
the nanomanufacturing products cover a wide spectrum. 
According to the physical nature of these parameters, they 
can be categorized into three major types:

•	 Critical dimensions (CDs), also considered geometrical 
properties, are the geometric dimensions determining 
the overall performance of the products. Depending on 
the type of nanostructure being produced, CDs cover the 
structural length, width, thickness, roughness, and angle 
of the geometric features [23].

•	 Mechanical properties mainly include Young’s modulus, 
hardness, and other material-related characteristics for 
the structures on the nanoscale.

•	 Thermal properties consider the heat capacity and con-
ductivity of nanowires and nanoparticles.

Compared to the macroscale manufacturing processes, 
determining properties in nanomanufacturing faces new 
metrological challenges due to the scale of nanoproducts 
being close to or even smaller than the wavelength of light, 
e.g., ranging from 100 to 1000 nm. On the other hand, meas-
urement technologies developed over the past decades can 
be categorized into two groups: direct and indirect meth-
ods, as shown in Fig. 1. The direct methods obtain these 
properties through direct imaging of the nanostructure or 
measurement process using atomic force microscopy (AFM) 

[24–26], scanning electron microscopy (SEM) [27], pho-
toinduced force microscopy (PiFM) [28], electrostatic force 
microscopy (EFM) [29], scanning transmission electron 
microscopy (STEM) [30–32], optical scatterometry (OSM) 
[33–35], X-ray imaging [36–40], and other hybrid methods 
[41–45]. Because of the capability of obtaining CDs through 
direct optical or physical interaction, the direct measurement 
methods can achieve a high measurement resolution of up 
to 0.1 nm.

In addition to serving as a metrological approach, direct 
methods are also used to calibrate each other or validate 
other measurement methods. At the same time, direct meth-
ods are also subject to constraints due to the direct physical 
interaction between the probes or electron/light beams and 
the nanostructure being measured. Measuring CDs on the 
nanometer scale requires a high spatial resolution on the 
level of at least a sub-nanometer. This measurement would 
need to define small incremental steps to move the probe 
along the horizontal trajectories on the scanned surface 
(e.g., AFM, PiFM, and EFM) or apply high spatial resolu-
tion to the light detectors (e.g., SEM, OSM, STEM, and 
X-ray imaging). Considering the overall dimensions of the 
nanoproducts and the large amount produced by nanoman-
ufacturing, applying such high-resolution scanning would 
result in a long measurement period. As an example, AFM 
scans 1 mm2 in 1200 s [46]. Therefore, the direct methods 
are generally used for offline sampling and are not intended 
for in-process monitoring.

In comparison, indirect measurement quantifies in-pro-
cess parameters, such as temperature [47], pressure [48], 
and etching solution concentration [49, 50], during the 
nanomanufacturing processes. Through proper data ana-
lytical techniques, these parameters are interpreted to infer 
the CDs and various mechanical and thermal properties by 

Fig. 1   Indirect nanoscale meas-
urement methods (FDTD finite 
difference time domain method, 
FEA finite element analysis 
method)
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referring to the physics of the underlying process and/or the 
historical data [51]. Because these parameters are measured 
in real time, they can be used as feedback to adjust the opera-
tion without stopping the process [52]. As an example, an 
indirect measurement technique using deposition time, fluid 
atom concentration, temperature, and electric field intensity 
to infer the thickness and surface roughness of a nanofilm 
has a reported sampling rate of up to 10 samples/s, making 
online monitoring of the nanofilm manufacturing process 
feasible [53].

The core challenge in indirect methods is to establish the 
relationship between the measurable parameters and the 
properties of the produced nanostructures. This relation-
ship justifies the meaningfulness and effectiveness of an 
in-process measurement. As illustrated in Fig. 1, this paper 
categorizes the indirect measurement methods into two 
major classes: data-based and physics-based methods. The 
former method establishes the relationship between in-pro-
cess parameters and properties of the nanostructures through 
machine learning algorithms, which do not involve physical 
models and may be considered a black box. As the data-
based method relies on much data to train the model, it is 
mainly adopted for measuring the CDs of the nanostructure, 
which can be accessed by direct methods. The latter method, 
in comparison, depends on the underlying physics of the 
manufacturing process to establish the process–property 
correlation. According to the mathematical models being 
applied to the physical dynamics and chemical reactions, 
the physics-based methods developed in the literature can 
be divided into four major categories: molecular dynam-
ics (MD) simulations, the finite difference time domain 
(FDTD) method, the Monte Carlo (MC) method, and finite 
element analysis (FEA). As these models can simulate mate-
rial behavior in macro- or microscales, the physics-based 
method can extend the scope beyond the measurement of 
CDs, for instance, to predict the mechanical and thermal 
properties of the nanoproduct.

This paper systematically reviews the indirect meas-
urement methods and associated models and algorithms, 

focusing on the measurement principles and applications. 
Specifically, in the category of physics-based methods, 
four primary techniques that have been extensively inves-
tigated are discussed: MD, FDTD, MC, and FEA methods. 
The remaining paper is organized as follows: Sect. Data-
based Methods discusses the data-based method and the 
associated mathematical algorithms. In Sect. Physics-based 
Methods, indirect measurement techniques based on physi-
cal principles are introduced, including MD simulations, 
the FDTD method, the MC method, and the finite element 
method. For each method, representative applications are 
introduced. Discussion of the presented work is presented 
in Sect. Discussion. In Sect. Conclusion, conclusions and 
future research directions are summarized.

2 � Data‑Based Methods

The data-based method is rooted in statistical modeling to 
build a relationship between input and output parameters. 
The rapid development of machine learning techniques has 
made data-based modeling increasingly applicable to esti-
mating the properties of nanostructures.

2.1 � In‑Process Parameters 
in the Nanomanufacturing Techniques

According to how a nanostructure is fabricated, nanoman-
ufacturing processes can be classified as “top-down” or 
“bottom-up” approaches, as shown in Fig. 2. The associated 
process variables in these approaches are listed in Table 1. 
In the top-down approach, the material is subtracted from 
the raw piece, which includes nanomachining, etching, and 
nanolithography. Their manufacturing processes are related 
to different process parameters. Nanomachining is defined 
as the material removal process in which a dimension accu-
racy of 100 nm or better, even toward the 1-nm level, can be 
achieved [5]. The common nanomachining includes cutting, 
grinding, polishing, and single-point diamond turning. The 

Fig. 2   Nanomanufacturing 
techniques
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cutting parameters, such as cutting speed, cutting depth, and 
cutting rate, influence the CDs of manufactured components 
as the macroscale machining techniques. Etching is a type of 
chemical material removal technique. The patterns obtained 
by etching depend on the etching time, temperature, solu-
tion concentration, etc. Nanolithography applies an electron 
beam or light beam to etch, write, and print raw material 
and then obtain nanoscale components. The main parameters 
related to the nanolithography process include layer mate-
rial, layer thickness, aperture shape, and light wavelength.

In the bottom-up approach, the nanostructures are built 
from molecules or particles through mechanical assembly 
or chemical synthesis. The common bottom-up methods 
include nanoprinting, deposition, and self-assembly. In-
process parameters, such as vapor pressure in deposition, 
solution viscosity, and injection velocity in printing, influ-
ence the performances of manufactured components for each 
bottom-up approach.

2.2 � Effect of In‑process Parameters 
on Nanostructure Properties

The relationship between the in-process parameters and 
nanostructure properties has been quantitatively studied in 
recent decades. Keong et al. studied the nanoscale cutting 
process for aluminum 7075 and found that the surface rough-
ness of the product increases with the cutting depth [54]. 

Zhang [55] used elliptical vibration cutting as an amplitude 
compensation method to achieve ultra-precise nanostructure 
fabrication. Sreemanth et al. [56] found that the scanning 
speed in optical nanolithography determines the width and 
depth of etched line structures. Piner et al. [57] found that the 
width of nanolines by dip-pen nanolithography is sensitive 
to the scanning speed of the pen-tip and the transport rate 
of the solution from the tip to the substrate. An increased 
scanning speed and a few traces resulted in a decreased line 
width. Ahn et al. [47] found that the orientation of nanopar-
ticle patterns depended on the applied magnetic field distri-
bution in high-resolution magnetic printing. Wilson et al. 
[58] measured the grain size of inkjet-printed polymer films 
under different solution concentrations. Kazuya et al. [50] 
used wet etching to form nanoholes in different concentra-
tion solutions containing HF and H2O2 with silver nanopar-
ticle catalysts. The shape of the silver particles was an essen-
tial factor in determining the direction of nanoholes, while 
the etching time and solution concentration determined the 
length and diameter of the nanoholes.

Yuki et al. [59] studied the influence factors on silicon 
nanowires formed by catalytic chemical etching in Ag2O/
HF solution. This work found that solution concentration, 
etching time, and temperature can influence the length of 
the nanowires, as shown in Fig. 3. Zhao et al. [60] found that 
the microstructure and morphology of Ag catalyst film affect 
the silicon nanowire fabrication process in chemical etching. 

Table 1   Nanomanufacturing 
approaches and process 
variables

Approaches Techniques Process variables

“Top-down” Cutting Cutting speed, cutting depth, and feed rate [54, 55]
Etching Etching time, solution concentration, and catalyst [50, 59]
Nanolithography Aperture shape, photoresist, and mask material [53, 56]

“Bottom-up” Self-assembly Solution concentration, temperature, time, and evapora-
tion rate [47, 152]

Chemical synthesis Particle-to-solution ratio [153, 149]

Fig. 3   Factors affecting Si nanowire formation in catalytic chemi-
cal etching. 1 Nanowire length vs. Ag2O concentration at 25  °C for 
30 min. 2 Nanowire length versus etching time in Ag2O/HF solution 

at 25 and 50 °C. 3 Nanowire formation rate versus reciprocal solution 
temperature [59]
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Xie et al. [61] fabricated a well-ordered silicon nanowire 
array using an Ag-assisted chemical etching technique and 
found a linear relationship between the length of the nanow-
ire and the etching time.

2.3 � Data‑Based Model in Nanomanufacturing

From experimental results in nanomanufacturing, a certain 
relationship is shown to hold between in-process param-
eters and properties of nanoscale products. Data-based 
modeling trained by the historically sampled data from 
experiments can describe this relationship based on experi-
mental approaches, particularly for complicated processes or 
nanostructures where the physical relationship is difficult to 
obtain through theories [62, 63].

Typical machine learning algorithms for building data-
based models were summarized in [64]. According to the 
requirement on ground truth data (labeled data), machine 
learning algorithms are classified into three major catego-
ries: supervised, unsupervised, and reinforcement learning. 
Supervised learning takes the labeled data as the output of 
the model and correlates some of them with the process vari-
ables (input) for model training. The remaining labeled data 
are used to validate and test the trained models. Random 
forest (RF), support vector machine (SVM), decision tree, 
and Naïve Bayes are typical supervised learning algorithms 
[64]. In comparison, unsupervised learning algorithms do 
not require labeled data but only rely on the process vari-
ables. Typical unsupervised learning includes clustering, 
principal component analysis, and singular value decom-
position. Compared with supervised learning, unsuper-
vised learning does not require data labeling [64], which 
may take a significant amount of time and effort to establish 
the ground truth. Reinforcement learning is a relatively new 
category in machine learning that determines a data-based 
model through an iterative approach. In each iteration, rein-
forcement learning statistically adjusts the model parameters 
by referring to the “rewards” representing the estimation/
prediction accuracy. Through this approach, the algorithm 
seeks an optimal solution for long-term and maximum 
overall rewards. Compared with the other two categories of 
machine learning methods, the architecture of reinforcement 

learning algorithms generally has a higher level of complex-
ity and requires a larger amount of process variable data for 
model training. In applications, labeled data are optional 
for reinforcement learning. Typical reinforcement learning 
methods are realized by a deep neural network, recurrent 
neural network, deep belief network, etc. [64].

In recent years, machine learning methods have been 
applied to nanostructures [65–72], nanobiomedication [73, 
74], nanoidentification [75], and nanomaterials [66]. Specifi-
cally, for nanomanufacturing, supervised and unsupervised 
learning methods have been widely applied to building data-
based models for data analysis in indirect measurements. 
Table 2 lists the reported modeling algorithms together 
with the parameters and estimated CDs found in recent 
publications.

Hou et al. [63] studied a data-based model for the nano-
particle wet milling process. The model was trained through 
the response surface method (RSM) to represent the rela-
tionship between the milled grain size and process param-
eters such as milling time and rotation velocity. The model 
was further optimized by the genetic algorithm to minimize 
the estimation error. Erdemir et al. [76] studied the effect 
of milling parameters on nanoparticle size during a high-
energy ball milling process based on the RSM. A central 
composite design was implemented to determine the effects 
of milling parameters, i.e., milling time, the ball-to-powder 
ratio, and milling speed, on the produced nanoparticle diam-
eter. Yordem et al. [51] studied the effect of the in-process 
parameters of electrospinning on polyacrylonitrile nanofiber 
diameter. The RSM was used to design the experiments at 
the setting of solution concentration, voltage, and collector 
distance. Ayu et al. [49] developed an RSM model to study 
the influence of metal-assisted chemical etching process 
variables on the nanopillar profiles. The process variables 
include solution and catalyst concentration, deposition time, 
and etching time. Experimental validation showed an esti-
mated error of 1.8% by referring to the dimensions measured 
via SEM.

Research [77] studied the behavior of bias power and Cl2 
concentration in silicon trench etching and their influence on 
the etching rate and the variations in sidewall profile. Huey 
et al. [78] built the RSM and artificial neural network models 

Table 2   Statistical models for estimating CDs of nanostructure

Modeling methods Measured parameters Estimated critical dimension Measurement error

Response surface method Speed, molecular weight, tempera-
ture, duration, solution, solution 
concentration, etc.

Grain size, surface roughness, profile 
angle

0.2%–2% [48, 77,  78, 
149–151]

Artificial neural network Speed, molecular weight, tempera-
ture, duration, solution, solution 
concentration, etc.

Surface roughness Less than 5% [78]

Support vector machine Voltage and anodization time Layer thickness 18%–26% [154]
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for the chemical etching process to correlate the etching 
variables, including etching temperature, etching duration, 
and solution concentration, with the surface roughness of 
the etched surfaces. The model shows that for individual 
process parameters, the relationship between the parameter 
and product surface roughness varies significantly for dif-
ferent materials. Compared to the experimental results, the 
estimated roughness achieves an accuracy of 95%. Lin et al. 
applied the SVM to correct errors in microscope photo-
graphs when evaluating nanostructure thickness [79]. Kim 
tested eight machine learning methods to estimate the thick-
ness of TiO2 films. A comparative study of these methods 
with respect to the estimation accuracy has revealed that 
the decision tree algorithm achieved the highest accuracy of 
82%, while K-nearest neighbor learning had the lowest accu-
racy of 70%. Du et al. estimated the mobility of aluminum 
atoms on Al2O3 nanofilm during ductile deformation based 
on the SVM with an accuracy of 69%–82% [80]. Notably, 
most of the algorithms in the literature used to build data-
based models are of the supervised or unsupervised learning 
type. Broad-based applications of reinforcement learning for 
indirect measurement are yet to be seen.

Data-based models can be applied to nonlinear and 
complex systems at the cost of requiring a certain amount 
of historical data to train the models. Compared with the 
physics-based method, the data-based method is advanced in 
the short response time for a trained model to estimate CDs 
from the measured process variables. As data-based models 
entirely depend on the training data, the developed data-
based model can hardly be extended to other applications 
with different model architectures, manufacturing platforms, 
or materials [81].

3 � Physics‑Based Methods

3.1 � Molecular Dynamics

Nanomanufacturing occurs at the molecular level by 
manipulating materials at the atomic and molecular scales. 
Physics-based modeling methods are generally based on the 
well-understood physical or chemical dynamics of the spe-
cific nanomanufacturing processes. The particle behavior 
in the nanomanufacturing process can be understood from 

theoretical analysis, and the results of the theoretical analy-
sis can be calculated through numerical simulation. On the 
basis of the analysis scale and the type of properties studied, 
four physics-based modeling techniques will be discussed to 
obtain the properties of nanoscale products with respect to 
their principles and application status.

MD modeling is a method that determines the motion of a 
group of molecules following Newton’s second law, correlat-
ing the movement and the force applied together. The force 
field that results in the movements can be calculated based 
on the initial positions of the molecules and their interac-
tion with neighboring molecules. In the MD analysis, the 
molecular motion in each set time step can be simulated 
based on the theories, making the process transparent. This 
advantage makes it a good complement for experiments, 
visualizing the motion of molecules to study the mechanisms 
of the nanomanufacturing process from the microscopic per-
spective. As the MD method solves the trajectory of each 
molecule, it simulates the actual nanomanufacturing process 
with high spatial accuracy.

3.1.1 � MD Principles

3.1.1.1  Force Field  As the force field determines the motion 
of molecules physically, modeling the force field is one of 
the keys to the MD method. The study of a force field for 
describing microscopic particle motion was started in the 
1960s by Aligner’s group [82] to calculate the motion of 
hydrocarbon molecules. Thus far, the concept has been 
extended to study various types of particles, such as peptides 
[83], aluminum [84], germanium [85], and ethane [86]. In 
general, the force field resulting in the potential energy of a 
single molecule in the MD model can be expressed as given 
in Eq. (1) [87].

where Vbond is the energy change related to bond length vari-
ation in a molecule, as shown in Fig. 4 (1), where the solid 
lines/circles show the molecule at the equilibrium position, 
while shapes in dash lines/curves show the positions after 
the conditions changed; Vangle is the energy change related 
to bond angle change, as shown in Fig. 4 (2); Vtorsion is 
the energy change when a certain torsion is applied to the 

(1)V = Vbond + Vangle + Vtorsion + Voop + Vnonbond

Fig. 4   Molecular movement 
model. 1 Translation of mol-
ecule. 2 Rotation of molecule. 3 
Torsion of molecule. 4 “Out-of-
plane” motion b0

b

Δθ

(1) (2) (3) (4)



215Nanomanufacturing and Metrology (2022) 5:209–229	

1 3

molecule, resulting in a rotation, as shown in Fig. 4 (3); Voop 
is the “out-of-plane” energy, representing the energy change 
when one part of the molecule is moving out of the plane, as 
shown in Fig. 4 (4); Vnon-bond is the noncovalent interaction 
energy, including van der Waals interactions and Coulombic 
interactions.

According to the physics of each component, Eq. (1) can 
be extended as [82, 87]:

where kb, k� , k�, k� are the stiffness coefficient of the bond 
length, angle, torsion, and out-of-plane motion, respectively; 
b is the distance between atoms, b0 is the equilibrium dis-
tance; θ is the angle between two bond vectors, θ0 is the 
equilibrium angle; � is the torsion angle, � is the phase, n is 
the dihedral potential, � is the out-of-plane displacement, 
and �0 is the equilibrium displacement. The last summation 
term of Eq. 2 represents the van der Waals interaction, com-
posed of a 12–6 Lennard–Jones potential and Coulombic 
interaction. In this term, �ij is the size parameter of atom 
i and atom j,�ij is the energy parameter, rij is the distance 
between atoms i and j [88], and qi and qj are the effective 
charges on atom i and atom j, respectively.

Based on the application and the type of molecules, the 
detailed parameters measured or approximated can be sub-
stituted into the force field formation equations (Eqs. 1 ~ 2) 
to generate different force field models. Examples of these 
models include the first force field developed by Allinger’s 
group, MM2 [89], MM3 [90], and MM4 [91], which are 
used to study hydrocarbons. The force field concept has 
been further extended in recent decades to study complex 
systems with large molecules in nanomanufacturing. Drei-
ding and universal force fields are two examples that can be 
used to model all molecules [92]. AMBER [93] is a force 
field model that can be applied to biomolecules, canoni-
cal/noncanonical nucleic acids, and proteins in water. The 
CHARMM force field [94] studies small and large biologi-
cal macromolecules, such as lipids and carbohydrates [82]. 
GROMOS [95] was developed to simulate condensed matter.

In addition, other types of force field models, such as 
OPLS [96], COMPASS [97], CFF [98], and MMFF [99], 
have been developed to describe the behavior of specific 
molecules or particles. The application scope of every force 
field is introduced in [82]. The performance of a force field 
strongly depends on the system and particle type being 

(2)

V(r) =
∑

bonds

kb

2
(b − b0)

2 +
∑

angles

k�

2
(� − �0)

2

+
∑

torsions

k�

2
[cos(n� + �) + 1] +

∑

oop

k�

2
(� − �0)

2

+
∑

nonbond
pairs

4�ij[(
�ij

rij
)12 + (

�ij

rij
)6] +

qiqj

rij

simulated. Each force field has its strengths and weakness 
related to the molecular formation procedure and environ-
ment, while some general force field models can generate 
reasonable results comparable with experimental results for 
a wide range of molecules and various environments [100].

3.1.1.2  Motion Algorithm  The force field model in 
Eqs. 1–2 is applied to each molecule in a material, and the 
motion of each molecule can be described by a second-
order partial derivative function based on Newton’s sec-
ond law [92]:

where mi and ri are the mass and location of atom i, respec-
tively, and V(r1, r2, ..., rN) is the sum of the potential energy 
of atoms 1–N in their initial locations.

The molecular trajectories are calculated in n consecu-
tive time steps, t0, t0 + Δt, …, t0 + nΔt. In each discrete 
time step, a solution to the second-order partial differential 
equation, Eq. (3), is obtained through numerical methods. 
The most used numerical method includes the Verlet inte-
grator (leap-frog algorithm) and velocity-Verlet algorithm. 
In the Verlet integrator method, the solution is obtained 
through iterative approximations, expressed as [101]:

where vi and ai represent the velocity and acceleration of the 
molecule in the studied space, respectively. The velocity-
Verlet algorithm further considers the second-order integra-
tion of acceleration in calculating the molecule’s position 
and accordingly solves Eq. (3) as follows:

In addition, other methods, such as the Euler method 
[102] and the Crank–Nicolson method [103], are also 
reported in the MD modeling research for nanomanu-
facturing. Although complicated algorithms that include 
more terms in the expression for the molecule trajectory 
will improve the accuracy of the model, considering 
the many molecules within a nanostructure, such algo-
rithms generally result in an increased computational load 
[104, 105]. In practical applications, selecting numerical 
algorithms for solving the trajectory in the MD method 

(3)mi

d2ri

dt2
= fi = −

�

�ri
V(r1, r2, ..., rN)

(4)

⎧

⎪

⎨

⎪

⎩
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Δt

2
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2
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Δt

2
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1
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vi(t0 + Δt) = vi(t0) +
1

2
[ai(t0) + ai(t0 + Δt)]Δt
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generally considers the balance between accuracy and 
computational efficiency.

3.1.2 � MD Applied to Nanomanufacturing

3.1.2.1  Mechanical Properties  The MD method has been 
applied to simulating nanoscale components from which 
mechanical properties are derived. The effectiveness of the 
method has been verified experimentally, as reported in the 
literature. Tang et al. applied transmission electron micros-
copy (TEM) and MD simulations to study the deformation 
and fracture mechanism of Si nanowires with a diameter of 
9 nm [106]. The nanostructure behavior under tensile and 
bending loads was obtained through MD simulations and 
experiments, as shown in Figs. 5 and 6. In the tensile test 
(Fig.  5), the nanowire breaking process during increasing 
normal stretch stress on the two ends of the nanowire was 
simulated. The simulated linear relationship (approximate) 
between stress and strain well matches the experimental 

results. Figure  6 shows the observed nanowire deforma-
tion during the bending test. The nanowire was imaged by 
TEM in the experiments when the bending moment was 
loaded to the nanowire. A crack was visually observed on 
the image when the bending strain exceeded 21.5%. This 
result matches well with the MD modeling results, as shown 
in Fig. 6 (2) [106].

Li et al. simulated physical vapor deposition and the 
nanoindentation process by MD to study the hardness and 
defect of nanofilm under different deposition temperatures 
[107]. A piece of Cu/Au thin film of 7.2 × 7.2 × 30 nm3 was 
simulated in the study. An ideal spherical indenter with a 
radius of 2 nm at a constant velocity of 50 m/s was built to 
simulate the nanoindentation process by indenting the depth 
from 1.6 nm to 2.2 nm. The force–depth curve was calcu-
lated during the indentation process [107]. Li et al. stud-
ied via the MD method the process in which the nanofilm 
thickness changes the glass transition temperature, Young’s 
modulus, and yield stress [86]. Lai et al. conducted a 3D MD 
simulation to study the nanometric cutting of germanium, as 
shown in Fig. 7. The studied workpiece dimension was set 
as 45 × 27 × 12 nm3. The uncut thickness and cutting force 
with different cutting depths on different crystal orientation 
faces were calculated based on this MD model. This work 
can provide references for selecting the cutting parameters 
and modeling the nanometric cutting mechanisms [85].

3.1.2.2   Critical dimensions  Chen et al. built a kinetic com-
petition model with kinetic parameters from in situ TEM to 
estimate the diameter of silicon nanowire [108]. Sindhu et al. 
studied nanoparticle formation in an inter-gas evaporation 
technique, and the particle size and distributions were pre-
dicted by solving the general dynamic equations through the 
nodal approach under different ambient conditions. When 
the injecting energy is higher than the vaporization energy, 

Fig. 5   Simulated nanowires under tensile test. 1 Simulated nanow-
ire structure in the side view and cross-sectional view. 2 Simulated 
stress–strain relationship [106]

Fig. 6   Comparison of nanowire 
behavior in the bending test 
under experiments and simula-
tion. 1 Experimental image 
obtained via TEM. 2 Simulated 
nanowire [106]
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the dimensions of the produced particles are reduced [109]. 
Xu et al. studied the supramolecular structure of surfactant 
and carbon nanotube aggregates in aqueous solution using 
atomic-level MD simulation [110]. The surfactant adsorp-
tion on a nanotube with a hemimicellar structure was found 
to be consistent with the observations under TEM in the 
structure periodicity (4.5 ± 0.5 nm). The average height of 
the hemimicelle is also in good agreement with the experi-
mentally measured height [110]. The MD method was also 
applied to simulate the deposition and annealing of a Ni–Al 
wire on a Ni substrate [84]. Sputtering parameters (includ-
ing the incident energy, incident angle, and substrate tem-
perature) and subsequent heat treatment were considered in 
the model.

The MD method has a wide application in analyzing the 
nanomanufacturing process and estimating the mechanical 
properties of nanoscale products from the initial and in-pro-
cess working conditions. The MD method can build a rela-
tionship between the in-process parameters and nanoscale 
product. It can also predict the mechanical properties of 
nanoscale products. However, as the simulated elements are 

generally at the molecular dimension level, modeling the 
nanostructure generally includes many elements. In addition, 
since the MD needs to be sampled every 10–100 fs, simulat-
ing the transients of the nanomanufacturing process requires 
at least trillions of time steps, which further increases the 
computational load [82]. In general, on the current compu-
tation platforms, such a constraint limits the MD method to 
simulating processes shorter than a few seconds.

3.2 � Finite Difference Time Domain Method

The FDTD method is a numerical method for modeling 
an electromagnetic field and its propagation in 1D, 2D, or 
3D space. The idea of FDTD was first developed by Yee 
[111] in the 1960s. The technique was fully developed by 
Umashankar and Taflove in the 1970s [112]. Since then, the 
FDTD method has become a fundamental tool for study-
ing microwaves and optics [113]. In recent decades, the 
FDTD method has been used to model the optical prop-
erties of nanostructures [114] and the nanomanufacturing 
process, such as nanolithography [115] and surface plasmon 

Fig. 7   Simulated nanometric cutting process 1 MD simulation model. 2 Simulated uncut thickness at different cutting depths on the (010) and 
(111) crystal orientation face. 3 Simulated cutting force at different cutting depths [85]
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polarization processes [116]. In these processes, the light 
waves or photons dynamically interact with the molecules of 
the photosensitive material, change the material character-
istics, and determine the nanostructure CDs in consecutive 
procedures. To mathematically model the electromagnetic 
waves, the FDTD method discretizes the space and time to 
calculate a time-varying electromagnetic field in each time 
step based on Faraday’s law and Ampere’s law [117].

In nanomanufacturing, FDTD has been used to determine 
the relationship between the applied light intensity and the 
geometry/shape of the nanostructure. Shao et al. built a two-
dimensional FDTD model to study fabricating high-density 
arbitrary patterns on a sub-100-nm scale in the ultraviolet 
nanolithography process, as shown in Fig. 8 [113]. Figure 8 
(1) shows the modeled setup, with UV light applied to react 
with the photoresist film under the metal mask. Simula-
tion results from the FDTD model are compared with the 
theoretical results (analytical) in Fig. 8 (2), where a good 
matching between the two types of data is observed. The 
model was also used to simulate the electric field distribu-
tion in the photoresist layer, as shown in Fig. 8 (3). When 
the aperture in the metal mask is reduced from 50 to 20 nm, 
the light transmission is significantly reduced to 60%. This 

relationship provides a reference for manufacturers to deter-
mine the aperture size and light source intensity according 
to the preferred nanostructure CDs.

In the work presented by Wang et al. [118], the FDTD 
method was used to simulate an electric field distribu-
tion through square, rectangular, and bowtie apertures. 
As shown in Fig. 9 [118], the simulation results were 
consistent with experimental data. Chang et al. applied 
an FDTD simulation to obtain the morphology at differ-
ent penetration depths in the photoresist film during 3D 
nanolithography, as shown in Fig. 10 (1) [119]. Consistent 
morphologies were observed by comparing the simulation 
results and the SEM image at penetration depths from 40 
to 650 nm, as shown in Fig. 10 (2). The FDTD simulation 
results were used to predict the CDs of nanostructure pro-
duced by nanolithography [119].

Kim et al. developed a simulation code, AMADEUS 
(advanced modeling and design environment for sputter 
process), to simulate the topography in ion beam-induced 
nanofabrication based on the ion beam milling process. The 
ion beam milling hole depth and diameter were predicted 
[120]. Dragos et al. analyzed nanosphere lithography pro-
gress and the relationship between nanosphere shapes and 

Fig. 8   Photolithography modeled using the FDTD method to study 
the effect of aperture size on the nanostructure CDs. 1 Schematic 
view of the photolithography process. 2 Comparison of the electric 
field distribution of the FDTD simulation and theoretical solution. 3 

Electric field distribution in the photoresist with (a) 50-nm aperture 
and 60-nm resist thickness (b) 20-nm aperture and 50-nm resist thick-
ness [113]
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electric fields in photolithography. A shape-prediction model 
was built based on the FDTD method [121]. Sreemanth et al. 
studied the influence of laser scanning speed on the width of 
nanolines [56]. FDTD was used to numerically design the 
bowtie apertures to estimate the nanoline width under a scan 
speed of 0.2 to 0.9 µm/s with an error of 21% [56]. Mishra 
and Palai presented a technique for measuring the intensity 
of reflection, transition, and absorbed light to compute the 

percentage of porosity in porous silicon. A linear relation-
ship between the transmitted light intensity and the percent-
age of porosity was calculated using an FDTD model [114].

Barth et al. designed a hybrid nanophotonic device that 
can achieve metal nanoparticles nanoassembling in the 
cavity because metal nanoparticles localize themselves 
in positions with high electric field intensity, as shown in 
Fig. 11. FDTD was adopted to analyze the electric field in 
the designed cavity. FDTD simulation results showed that 
when a gold nanorod was inside the designed cavity, the 
electric field maximum moved from the cavity surface to 
the nanorod surface [122]. Lee and Hahn applied FDTD to 
obtain a localized field distribution on the photoresist under 
C-shaped and bowtie-shaped apertures during nanolithogra-
phy. The calculated field distribution was used to predict the 
profile of the nanopatterns and optimize the initial param-
eters of nanolithography [123].

As the light transportation through the nanostructure can 
be simulated by FDTD, this function makes FDTD a can-
didate model for optimizing the parameters for controlling 
the nanolithography process, which can hardly be accessed 
by direct measurement methods. The FDTD method can 

Fig. 9   Electric field distribution with different apertures. 1 Square, 2 
rectangular, 3 bowtie [118]

Fig. 10   Penetration depth in nanolithography. 1 Schematic of the nanolithography process. 2 SEM images of the fabricated structure versus 
depth from 40 to 650 nm [119]

Fig. 11   Nanoparticle assembly process modeled by FDTD. 1 AFM image of a cavity with a gold nanorod. 2 Electric field distribution of a cavity 
without a gold nanorod. 3 Electric field distribution of a cavity with a gold nanorod [122]
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also simulate the internal variation in the nanostructure. 
This capability makes it a powerful tool for understanding 
the physical variation inside the raw material. However, as 
one of the nanoscale modeling methods, FDTD shares the 
same problem as the MD method of a high computational 
load. The discrete spatial sections and time steps must be 
sufficiently small to satisfy the requirement of the Nyquist 
theorem. In addition, constrained by the core theories of 
electromagnetic waves, FDTD can only be applied in nano-
lithography or other procedures affected by microwave, UV, 
visible, or infrared light.

3.3 � Monte Carlo Method (or Monte Carlo Molecular 
Method)

The MC method is a numerical approach to solving deter-
ministic problems with random trials. It was first developed 
in the 1940s at Los Alamos National Laboratory [124]. In 
simulating molecule behavior in a complex macromolecular 
system, the method generates a molecular ensemble under 
specific thermodynamic conditions by assuming stochastic 
distribution in the molecule displacement [125]. Compared 
with the MD method, the MC method does not provide 
information about time evolution [126]. The rationality of 
updating the molecular configuration is determined by the 
molecular distribution probability variation and the resulting 
change in potential/dynamic energy. The MC method has 
been applied to studying heat conduction characteristics in 
nanostructures [127], gas absorption ratios of nanomaterial 
[128, 129], critical dimension formation during nanomanu-
facturing [130, 131], and cutting forces/temperatures in 
nanometric cutting processes [132].

3.3.1 � Working Principle

The MC method assumes the number of particles, system 
volume, and temperature as constants in each thermody-
namic system. Accordingly, it models the system ensemble 
as a representative of all molecular states [131]. The system 
ensemble is expressed as a function of the particle variables 
(position, momentum) and the material properties [132]:

where kB is Boltzmann’s constant, T is the system tempera-
ture, E(r⃗N , p⃗N) is the total potential energy of the N particles 
at position r⃗N with momentum p⃗N(r⃗N and p⃗N are N-dimen-
sional arrays). A(r⃗N , p⃗N) is a generic property representing 
the potential energy, kinetic energy, local density, coordina-
tion number, or radius of gyration. Because of the nonlin-
ear terms in Eq. (6), the solution is generally approximated 

(6)

⟨A⟩ =
∫ +∞

−∞
exp(−𝛽E(r⃗N , p⃗N))A(r⃗N , p⃗N)dr⃗Ndp⃗N

∫ +∞

−∞
exp(−𝛽E(r⃗N , p⃗N))dr⃗Ndp⃗N

, 𝛽 =
1

kBT

through numerical methods. In the system ensemble, the 
space is discretized into grid cells to calculate the behavior 
over the entire space. To reduce the computational load, the 
MC method adopts the metropolis acceptance criterion to 
determine the states. The metropolis acceptance criterion 
always accepts the state where the potential energy is smaller 
than the previous state. Otherwise, the system rejects the 
new state by following a certain probability that is deter-
mined by the Boltzmann distribution [126, 133, 134]:

where H(r⃗N , p⃗N) is the Hamiltonian value of the system 
with position r⃗N and momenta p⃗N , determined by Hamil-
ton’s equations. For each grid or molecule, if the molecule 
transfers from state m to state n, the mathematical expression 
of the metropolis acceptance criterion in the MC molecular 
modeling can be expressed as [133]:

where E is the potential energy of the particle. Based on the 
principle of the MC method, the ensemble in a specific ther-
modynamic condition can be calculated using the following 
iterative algorithm:

1.	 Select a particle randomly, and calculate the potential 
energy E(m).

2.	 Add a random displacement to the selected particle:

3.	 Calculate the new potential energy E(n).
4.	 Determine the new particle to accept or reject by Eq. (8). 

If ΔE < 0 , the new particle is accepted; if ΔE > 0 , draw 
a random number � on the interval (0,1) and accept the 
new particle when exp(−𝛽ΔE) > 𝛾.

5.	 If the new particle is accepted, the particle movement 
and potential energy calculation are based on the new 
particle; if the new particle is rejected, the system update 
is based on the old particle’s position.

3.3.2 � Applications of the MC Method 
in Nanomanufacturing

In nanomanufacturing, the MC method has been used to 
model or simulate thermodynamic systems. Platzgummer 
et al. developed a model to simulate the ion beam nano-
imprinting process [130]. The developed model included 
an MC module that simulated sputter yield under differ-
ent ion beam angles [130]. Tang et al. studied the heat of 
a nanofilm based on the MC method [135]. Physically, the 

(7)Pr(r⃗N , p⃗N) =
exp(−𝛽H(r⃗N , p⃗N))

∫ dpNdrN exp(−𝛽H(r⃗N , p⃗N))

(8)pmn =

{

exp(−𝛽(E(n) − E(m))) E(n) − E(m) > 0

1 E(n) − E(m) < 0

(9)r⃗(n) = r⃗(m) + Δ
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system heats one side of the nanofilm with a laser beam 
and measures the temperature difference across the film, as 
shown in Fig. 12 (1) [127]. The simulation reveals that the 
porosity, film thickness, and pore radius codetermine the 
thermal conductivity, as shown in Figs. 12 (2, 3). The simu-
lation results also indicate that the MC method estimates the 
thermal conductivity more accurately than the conventional 
effective medium approach model in reference to the experi-
mental results [127]. Leila compared the MC method and 
Langevin dynamic simulation in a study of SnO2 nanofilm 
absorbance when it is used as a sensor to detect ethanol 
[127]. The data show that the two models produce consistent 
results in simulating the sensing process [129].

Komanduri et al. studied the local temperate in the cut-
ting zone of the nanometric cutting process based on the 
MC method and compared the computational load with that 
of the MD method, as shown in Figs. 13 (1, 2) [133]. Fig-
ure 13 (1) shows that when the number of atoms increases, 
the difference in computation time between MD and MC 
increases exponentially. The relationship is observed when 

the cutting velocity is under 500 m/s, as seen in Fig. 13 (2) 
[133]. Zhu et al. built a semiempirical model based on den-
sity functional theory combined with the MC method to 
study the relationship between the catalyst particle and the 
carbon nanotube diameters and compared the results with 
that from the MD model [131, 136]. A good agreement was 
shown between the results of the two models.

According to the literature, MC can be used to simulate 
thermodynamic systems. As the MC method considers state 
transitions instead of continuous time steps, it only discre-
tizes the space or volume of the object. As a result, the com-
putational load is lighter than that of the MD and FDTD 
methods. However, the principle of the MC method also 
determines that the dynamics in the time domain cannot be 
provided in the results [134].

3.4 � Finite Element Method

Finite element (FE) analysis is a numerical method for solv-
ing continuum mechanics problems by dividing a continuous 

Fig. 12   Nanofilm thermal conductivity modeled with the MC 
method. 1 Schematic for cross-plane heat conduction in nanoporous 
silicon film. 2 Thermal conductivity of nanoporous film versus pore 

radius (KnR: pore radius; keff/kbulk: effective thermal conductivity). 3 
Thermal conductivity of nanoporous film at different porosity levels 
(ɛ: porosity) [127]
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structure into a finite number of structural elements. The 
conventional FE method assumes a linear relationship 
among the elements, thereby transforming a nonlinear prob-
lem into a multi-degree-of-freedom linear problem [137, 
138]. Over the last 20 years, the FE method has been applied 
in nanomanufacturing to model nanostructures. As the FE 
method (FEM) does not need to model each molecule, as in 
the MD, FDTD, or MC methods, the meshed element only 
needs to satisfy the dimensional requirement of the specific 
nanostructure. Consequentially, the computational load of 
the FE method is generally much lower than that of the other 
methods. The FEM has been used to calculate the interfacial 
adhesion on top of nanofilms [139], the stiffness tensor of 
nanocomposite material [140], the tomography of nanostruc-
ture [141], the tensile modulus [142], and the cutting force 
during the nanometric cutting process [143].

Figure 14 shows a study of the interfacial adhesive char-
acteristic of nanofilm deposited on a Cu/Si substrate using 
FE analysis and experiments [139]. The FE model simulated 

the process of a tool indenting and scratching the surface of 
the nanofilm and accordingly determined the critical force 
for different nanofilm thicknesses, as shown in Fig. 14 (1). 
The results show good agreement between the experimental 
and FE simulation results [Fig. 14 (2)]. Li et al. modeled sili-
con nanofilms decorated with nanopillar arrays to calculate 
the light absorbance of the nanofilms [144]. The simulation 
results were verified via the transfer matrix method [145], as 
shown in Fig. 15 (1, 2). The difference between the results 
from the two methods is shown to be below 0.25%. Liu et al. 
simulated the nanoimprinting process with the FE method 
on the ABAQUS platform and validated the results experi-
mentally [146]. The simulation model achieves an error of 
8.3% in the ratio of formation height to mold depth relative 
to the experimental data [141].

Sun and Cheng presented a combined FE–MD model to 
simulate crystal aluminum processed by nanometric cutting 
[143, 147]. The developed simulation model employs the 
MD method to model the cutting zone on the nanometer 

Fig. 13   Computational time comparison between the MC and MD methods [133]

Fig. 14   Nanofilm scratching modeled based on the FE method. 1 Setup of a nanoscratch on the nanofilm. 2 Comparison of experimental and 
FEM results with 80-nm and 120-nm film thicknesses (h: penetrations of indenter; Fz: critical force) [139]
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scale and then uses the FE method to model the rest of the 
workpiece to reduce the computational load while maintain-
ing the accuracy, as shown in Fig. 16 [143]. Liu and Jiang 
developed an atomic-scale FE (AFE) method in which the 
atoms of the processed material are modeled as nodes for 
calculating the process parameters, such as displacement, 
strain, stress, and temperature [146]. The CPU time and the 
number of iterations required for the developed method were 
compared with those of the MD method. The CPU time for 
calculating 3200 atoms by the AFE method is 65 s in 31 
iterations and 4000 s by the MD method in 9000 iterations, 
which indicates that AFE reduces the computation time 
approximately 60-fold [148].

4 � Discussion

Compared to direct measurement methods, such as AFM and 
EBM, indirect measurement methods, particularly the data-
based methods, are advanced in fast response to estimate the 
CDs from the measured process variables. Although training 
a data-based model can take hours, using the trained model 
to estimate the CDs takes less than a second [53]. The phys-
ics-based methods generally have a longer response time 

than data-based methods because of the heavy computa-
tional load to simulate the behavior of particles or structures 
on the nanoscale. The actual processing time depends on 
the scale of the simulation in specific applications. Table 3 
summarizes the four physics-based modeling methods in 
terms of computational efficiency, application, and limita-
tion. Because of the constraint of the working principles, 
the FDTD method is generally adopted in an application 
involving microwaves, such as nanolithography and polari-
zation processes. The MC method is advanced in simulating 
thermodynamics without considering each time step. The 
MD and FE methods are universal tools for modeling most 
nanomanufacturing processes. The selection and applica-
tion of these physics-based models can be determined by the 
nature of the manufacturing process and the available com-
putational capability [81]. All physics-based methods take 
seconds to hours to finish simulating a model. Although they 
can hardly be used for online control based on the present 
computational hardware, the simulated chemical reactions 
and physical behavior of the particles provide a theoretical 
basis for indirect measurement.

Uncertainty is an essential characteristic that quantifies 
the reliability of measurement results. In the direct measure-
ment methods, a measurement result is determined by the 

Fig. 15   Nanofilm with pillar 
array modeled in FE software. 1 
Schematic of light incident into 
nanofilm decorated by nanopil-
lars. 2 Efficiency function with 
array periodicity with exact val-
ues of 2330-nm film calculated 
by TMM and FEM [144]

Fig. 16   Multiscale simulation 
model of the nanomatrix cutting 
process [143]
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physical structure of the probes or light/X-ray beams, and 
the uncertainty is closely related to the system hardware. 
In comparison, the uncertainty associated with the indirect 
methods can result from the following four factors [48, 62, 
63, 77, 78, 118–130, 149–151]:

(1)	 The physical limitation of the instrument used when 
measuring process variables associated with the 
nanomanufacturing process;

(2)	 Simplifications and assumptions made when interpret-
ing the measured parameters using empirical or regres-
sion models;

(3)	 The disturbance experienced during the measurement 
process, such as noise, environmental conditions, and 
electromagnetic pulses;

(4)	 Variation in the execution of the instrument operator 
when performing the measurement.

Because indirect measurement methods use the ground 
truth provided by direct measurement methods for model 
training, calibration, and validation, the uncertainty of the 
direct measurement method will be incorporated into the 
outcome of the indirect methods. As a result, indirect meth-
ods may have a higher level of uncertainty and a lower level 
of accuracy than direct methods.

Table 4 summarizes the validation methods in the litera-
ture. The AFM and SEM methods are most used to establish 
the ground truth of the CDs of nanostructures because of 

their high accuracy in quantifying the dimensional meas-
urement and good adaptability to work with different types 
of nanostructures, such as fins, channels, films, and tubes.

5 � Conclusions

This paper reviewed indirect measurement methods for 
monitoring the nanomanufacturing process and measur-
ing the properties of nanoscale products. Compared with 
direct measurement methods, such as AFM, SEM, PiFM, 
and EFM, which use probes or electron/light beams to 
measure the geometry of nanostructures, indirect meas-
urement methods exploit measuring the CDs in situ with-
out interfering with the manufacturing process. This paper 
categorizes the indirect measurement methods into two 
major classes: data-based and physics-based methods. The 
data-based methods establish the relationship between in-
process parameters and properties of the nanostructures 
through machine learning models. These machine learn-
ing models are trained by historical data from experimen-
tal studies and provide high accuracy when much data 
are collected from various conditions. The physics-based 
modeling method, in comparison, depends on the underly-
ing physics of the manufacturing process to establish the 
process–property correlation. The numerical models in the 
physics-based modeling method can simulate the physi-
cal or chemical dynamics during the nanomanufacturing 

Table 3   Computational efficiency and application of physics-based methods

Modeling method Modeling dimension Computational efficiency Application Limitation

MD  < 50 × 50 × 50 nm3 [85, 107] 100 h for 1000 atoms [133] Nanotensile, nanoscratch, 
nanometric cutting, depositing, 
assemble, adsorption analysis

Large computational load

MC  ~ 120 nm [135]  ~ 8 h for 1000 atoms [133] Thermal conduction, nanometric 
cutting, adsorption analysis, 
nanoimprinting

Cannot study process, 
structure perturbations

FDTD  ~ 100 × 100 × 100 nm3 [123] 140 Mcells/s [155], 10 h [135] Nanolithography, plasmon 
polariton

Application limited

FE 6000 × 600 nm3 [139] 65 s for 3200 atoms [148] Nanometric cutting, nanoscratch, 
nanotensile, nanoimprinting

Microscale simulation

Table 4   Validation of indirect 
measurement methods

Indirect methods Validation method (direct)

Data-based AFM [78, 149, 151] SEM [48, 77, 151, 154] OSM [64]

Physics-based MD TEM 
[106, 
108, 
110]

MC SEM [130]
FDTD AFM [118] SEM [56, 118, 119]
FE SEM [139, 141]
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process, allowing accurate predictions to be provided with 
limited historical data. However, the computational load of 
the numerical simulation quickly increases with increasing 
model complexity and spatial resolution. As the indirect 
methods infer the CDs of nanoproducts from the in-process 
parameters accessible by the sensors during the nanomanu-
facturing process, they can predict the nanoproduct quality 
and provide feedback to fine-tune the control parameters in 
nanomanufacturing. In recent years, indirect methods have 
received increased attention due to the increased demand 
for real-time control for improved accuracy and stability in 
nanomanufacturing. Questions such as how to build com-
putational data-based models with improved accuracy, how 
to fully understand the physics of the nanomanufacturing 
process, and how to combine the physics- and data-based 
models to address the generality and accuracy are still 
major challenges that require further research.
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