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Abstract Network coverage plays an indispensable role in
determining the Heterogeneous Wireless Sensor Networks
(HWSNs) potentiality towards the process of monitoring
the physical world with maximized service quality. This
HWSNs possesses the limitations of complex deployment
environments, poor node reliability and restricted energy
which directly influences the transmission and data collec-
tion process of sensor nodes and minimizes the network
performance. An efficient network coverage controlling
mechanism need to be devised and implemented for improv-
ing the network service quality, lifetime, reducing energy
consumption, and achieve rational utilization of limited
resources. In this paper, a Hybrid Sand Cat Swarm Opti-
mization Algorithm-based Reliable Coverage Optimiza-
tion Strategy (HSCOARCS) is proposed for preventing the
issue of coverage redundancy and coverage blind areas, and
maximally optimize the sensor node deployment location
to achieve reliable sensing and monitoring of target area.
This proposed HSCOARCS is implemented over a HWSN
coverage mathematical model which represents a problem
of combinatorial optimization. The hybridization of Sand
Cat Swarm Optimization Algorithm (SCSOA) is achieved
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for enhancing the speed of the global convergence with the
initial population achieved using the method of Gaussian
distribution. It targets on the optimization objectives that
aids in minimizing the network costs and improve its cov-
erage. The simulation results of the proposed HSSCSOA
confirmed better network reliability of 21.38%, network
coverage of 19.76%, and minimized energy consumption of
17.92% with different number of sensor nodes on par with
the benchmarked schemes used for comparison.

Keywords Heterogeneous wireless sensor networks
(HWSNSs) - Network coverage - Sand Cat Swarm
Optimization Algorithm (SCSOA) - Gaussian distribution

1 Introduction

Wireless Sensor Networks (WSNs) represents a new network
and computing model which comprises of highly intelligent,
expensive and tiny devices termed as sensor nodes in the
network [1]. This WSNs consists of different sensor nodes
which establishes a reliable network structure through the
help of wireless communication technology [2]. It is useful
for monitoring and detecting the events occurring in the core
areas of target that includes the applications of smart home,
mobile target tracking, military monitoring, environmental
detection and urban monitoring [3]. However, weak sensing
range and high network cost are two important limitations of
the sensor nodes that introduces maximized degree of chal-
lenges during the process of routing in WSNs [4]. During the
deployment of sensor nodes, redundancy need to be prevented
for enhancing the objective of coverage in WSNs. Thus opti-
mization of sensor nodes’ coverage is a crucial issue in WSNs
since the aspect of network coverage possesses a significant
impact over the performable of the network [5]. This coverage
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optimization concentrates on the aspect of improving the net-
work area of monitoring with just the least number of sensor
nodes deployed in the network by minimizing the number
of blond spots. The sensor nodes are typically dispersed at
random throughout the entire region of monitoring such that
events in the environment could be monitored in close for
achieving reactive decision-making process [6]. But the ran-
dom deployment of sensor nodes has the maximized probabil-
ity of introducing redundancy and high node density which
in turn results in poor network coverage [7]. This poor net-
work coverage has the probability of further deteriorating the
monitoring effectives in WSNs. In heterogeneous WSNSs, the
dimension of connectivity and coverage are potential twins
of evaluation indicators which is highly useful for identifying
whether the real time data could be facilitated to the users
through the inter-cooperation of sensor nodes [8]. Diversified
number of existing research contributed towards optimization
of heterogeneous WSNs mainly concentrated on coverage and
ignored or overlooked the aspect of network connectivity effi-
ciency [9]. Hence, a reliable sensor node deployment method-
ology need to be practically developed and implemented for
achieving better balancing of load during data transmission
inside WSNs and at the same time increases the service qual-
ity and energy efficacy in WSNs [10].

The sensor nodes’ coverage optimization represents a
typical NP-hard problem since it has to handle the impact
of coverage characteristics and network resources. Thus uti-
lizing the classical mathematical optimization method such
that gradient descent could not solve the problem effectively
with efficiency [11]. From the recent years, the problem of
sensor nodes’ network coverage problem in WSNs have been
explored by a quantifiable number of researchers using the
swarm intelligent algorithms that includes simulated anneal-
ing algorithm (SA), artificial bee colony algorithm (ABC),
particle warm optimization algorithm (PSO), genetic algo-
rithm (GA), and so on [12]. These swarm intelligent algo-
rithms are widely used for addressing the issue of sensor
nodes’ coverage optimization problem since it possesses
only few limitations for the mathematical characteristic
of the problem with maximized degree pf adaptation [13].
Inspite of above-mentioned swarm intelligent algorithms
being successful in optimizing the problem of network cov-
erage in WSNss in reality such that they focus on achieving
approximate optimal solution compared to the best feasible
solution. Further, the search methodologies adopted in the
swarm intelligent algorithms are completely greedy. Most
of the swarm intelligent algorithms used for sensor nodes’
coverage optimization failed in handling the imbalance
between local and global search process. Most of the uti-
lized swarm intelligent algorithms faces the challenges that
needed to be addressed for achieving rapid convergence of
the algorithm, improved population diversity and preventing
the solution from entering into the local point of optimality.
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The proposed research formulates and contributes a Hybrid
Sand Cat Swarm Optimization Algorithm-based Reliable
Coverage Optimization Strategy (HSCOARCS) for optimiz-
ing the coverage and connectivity of sensor nodes in WSNs.

1.1 Major contributions

The major contributions of the proposed HSCOARCS
scheme is listed as follows.

(i) It specifically used a Hybrid Sand Cat Optimization
Algorithm (HSCOA) for improving the quality of the
population such that maximized network coverage and
connectivity is achieved.

(i) It also included into SCOA for improving the objec-
tive of faster convergence such that it prevents the
algorithm from falling into a local point of optimality
such that search space is widened during the aspect of
sensor nodes’ coverage optimization.

(@iii) It is proposed with the well-balanced potential of
exploitation and exploration offered by SCOA which
helped in better network coverage even under the
existence of obstacles in the network.

(iv) The performance evaluation is conducted using cov-
erage ratio and connectivity efficiency with different
number of iterations.

In addition, Fig. 1 presents the Overall View of the pro-
posed HSCOARCS scheme contributed for guaranteeing
Reliable Coverage Strategy in heterogeneous WSNis.

The remaining section of the paper is organized as follows.
Section 2 presents the comprehensive review of the existing
swarm intelligent algorithms-based sensor nodes’ coverage
optimization techniques contributed to the literature over the
recent years with the merits and limitations. Section 3 details
the WSN coverage model and the background of the adopted
Hybrid SCOA algorithm used for achieving better sensor
nodes’ coverage optimization. Section 4 demonstrates the
results and discussion of the proposed HSCOARCS scheme,
and the benchmarked approaches evaluated in terms of net-
work coverage and connectivity ratio with different number
of iterations, Sect. 5 concludes the paper with major contri-
butions and future scope of enhancement.

2 Related work

In this section, the comprehensive review of the existing
swarm intelligent algorithms-based sensor nodes’ coverage
optimization techniques contributed to the literature over
the recent years is presented with the merits and limitations.

Yao et al. [14] have proposed an improved coverage
mechanism for WSNs using Virtual Force-directed Ant Lion
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Fig. 1 Overall view of the pro-
posed HSCOARCS scheme
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Optimization (VF-IALO) algorithm. This ALO-based algo-
rithm involves reassignment of ALs with dynamic reduction
of number of ALs. It includes a factor for continuous ant
arbitrary walk boundary reduction. It limits random walk
range of ants to decrease the moving node distance during
secondary positioning. It introduces virtual force incorporat-
ing force of neighbouring nodes, gravity of grid point along
with repulsion of boundary. It updates the co-efficients rep-
resenting weights of virtual force, AL as well as elite AL to
dynamically modify the location of ant. It aids in preventing
the algorithm from falling into local optimum, accelerating
convergence speed as well as enhancing the overall opti-
mization capability of the algorithm. Zhu and Wang [15]
have dealt with the irregular node distribution that leads to
issues of increased and incomplete coverage of areas that are
monitored. To handle this challenge, an optimization model
for dealing with network coverage is proposed along with
coverage optimization scheme using Improved hybrid Weed
algorithm (LRDE_IWO). Initially, in seed diffusion phase,
it employs tangent function-based Standard Deviation (SD)
of normal as step size of seed for balancing global and local
searches of weed algorithm. To overcome the issue of early
convergence, it uses a disturbance scheme which combines
improved Levy flight and dynamic Random walk (LR) for
seed breeding. In invasive weed phase, it involves Differen-
tial Evolution (DE) approach for optimising the operation
and speeding up convergence. The proposed weed algorithm
optimises coverage. The proposed scheme offers improved
coverage rate, superiority as well as validity in contrast to
standard schemes for optimising coverage in WSNs.

Then Zhang et al. [16] have proposed an optimized Grey
Wolf Algorithm (GWA) based on Simulated Annealing (SA)
in which the nodes involve increased aggregation degree and
reduced coverage rate when arbitrarily deployed. Initially,
it establishes a mathematical model to handle coverage

I
v v

Network Lifetime
Improvement

Energy Stability

optimization in WSNs. Secondly, it includes SA in GWOA
once siege behavior finishes and before GW is updated to
improve global optimization capability and convergence
rate of GWA. It is seen that the enhanced SA optimised
GWA is applied to coverage optimization of WSNs. It
offers improved optimization speed, network coverage and
lifetime along with reduced energy consumption. Ma and
Duan [17] have focussed on effectively increasing node cov-
erage of WSN. Enhanced Butterfly Optimization Algorithm
(H-BOA), a hybrid strategy is proposed. It introduces Kent
Chaotic Map (KCM) for initialising population to assure
unvarying search space. It also includes an inertial weight
that is based on modified Sigmoid function to balance global
as well as local search capacities. It uses elite-fusion as
well as elite-based local mutation approaches to improve
diversity. It involves perturbation that is based on normal
distribution to lessen likelihood of algorithm dropping into
premature convergence. It also introduces SA to assess the
quality of solution and enhances algorithm’s capability that
is helpful in moving out of local optimum. The proposed
scheme offers improved network coverage in contrast to opti-
mization algorithms.

Liang et al. [18] have proposed Adaptive Cauchy Vari-
ant Butterfly Optimization Algorithm (ACVBOA) for effi-
ciently enhancing network coverage in Soil Moisture WSNs
(SMWSNG). It involves Cauchy variants as well as dynamic
factors for enhancing global as well as local search capabili-
ties of ACBOA. Further, it offers a coverage optimization
model which includes node coverage along with network
QoS. Performance is analysed in terms of fairness for cer-
tain population size and number of iterations. The proposed
scheme offers improved convergence rate. Dao et al. [19]
have proposed a system for offering ideal node coverage of
unstable WSN distribution while performing arbitrary posi-
tioning depending on Enhanced Archimedes Optimization
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Algorithm (EAOA). It collectively takes network coverage
from numerous sub-areas. As AOA is inefficient in deal-
ing with complex scenarios, EAOA adapts equations using
reverse learning as well as multi-direction schemes. The
proposed scheme offers better range of coverage as well as
convergence speed.

Chawra and Gupta [20] have focussed on finding ideal
wakeup schedule for nodes with acceptable coverage as well
as connectivity demands. The existing schemes focus on
only coverage or connectivity. Only a few mechanisms take
both into consideration, hence do not offer an ideal solution
and get struck into local minima. An enhanced Memetic
Algorithm-based energy-efficient wakeup scheduling mecha-
nism is propounded based on connectivity, energy, coverage
and ideal wakeup schedule. It forms new mutation, crosso-
ver, as well as local search operators. The proposed mech-
anism better offers better results based on coverage ratio,
ideal quantity of live nodes as well as network lifespan. The
existing algorithms do not consider optimising energy or
enhancing network coverage together with reducing equip-
ment cost. Zulfigar et al. [21] have proposed bio-stimulated
algorithm that mimics the digestive system of ruminant ani-
mals. These animals consume huge quantity of raw food
and produce ideal value of food which is filled with energy.
The propounded algorithm focuses on enhancing network
coverage offering optimized energy and node distribution
that improves device lifespan. It enhances network cover-
age thus offering optimized energy value without increase
in the quantity of sensors deployed in the network. It offers
improved more network coverage and enhanced lifespan
involving same equipment cost.

Hanh et al. [22] have designed a multi-Objective design
for Maximizing lifetime with Target Coverage (MO-MMTC)
that deals with fluctuation of energy among mobile nodes
after every movement. Enhanced Non-dominated Sorting
Genetic Algorithm IT (ENSGA-II), a multi-population GA
is proposed to handle this issue. It determines numerous
ideal movement plans that offers optimised energy balance
in mobile WSNGs. It simultaneously reduces the total and
maximal movement distance of sensors. A 2-phase frame-
work is proposed for handling the issue. It uses geometri-
cal computing schemes to handle the initial stages. Multi-
objective optimization-based bi-population GA is proposed
for dealing with relocation involving coverage constraints.
Heterogeneous WSNs (HWSN5s) demand sufficient network
coverage along with connectivity. Zeng et al. [23] have pro-
posed Improved Wild Horse Optimizer IWHO) algorithm
to deal with this issue. It improves population quality by
using SPM CM during initialization. It hybridises WHO
and Golden Sine Algorithm (Golden-SA) to enhance accu-
racy and offer quicker convergence. IWHO aids in escaping
from local optimum as well as broadening search space by
employing Opposition-Based Learning (OBL) and Cauchy
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variation. IWHO offers better optimization capacity. The
proposed scheme offers improved sensor connectivity with
coverage ratios.

Wang et al. [24] proposed an enhanced Grey Wolf Opti-
mization Algorithm with multi-strategy for achieving effi-
cient coverage and energy conservation in WSNs. This
IGWOAMS was proposed as an energy efficient network
coverage optimization solution which improved coverage
area and minimized energy consumptions. This model used
a sort-driven hybrid opposition-based learning and higher-
order multinomial sensing models for addressing the number
of obstacles in the network area. It was proposed a better
approach for sustaining scalability and enhanced connectiv-
ity with the option of minimizing the node deployment costs
in the network.

Ma et al. [25] proposed a Reptile Search algorithm-based
network coverage optimization method This network cover-
age was proposed with the idea for tracking the movement
of each optimal CHs in the network during each round of
lifetime. It included the strategy of distribution estimation
for comprehensive determination of all information associ-
ated with the sensor nodes deployed in the entire network.
This RSA-based network coverage method when tested with
different optimization test benchmarked function confirmed
better convergence and optimal results. The experiments
conducted using different influential factors and scenarios
confirmed the efficiency of this approach in optimization the
network coverage facilitated by the deployed sensor nodes
using the random initialization of search agents.

Yue et al. [26] proposed a Monarch Butterfly Optimi-
zation Algorithm (MBOA)-based network coverage solu-
tion using the model that included the factors of coverage,
energy consumptions and operational performance during
the determination of optimal results. It facilitated potential
sensor placement for guaranteeing required coverage in the
network. It used the parameter of butterfly adjustment ratio
as the iteration number for the objective of preventing local
extremes, increasing the search space and rapid up the rate of
convergence. It divided the population of search agents into
particle swarm update, butterfly adjustment and migration
for the process of attaining hybrid update mechanism. The
This MBOA-based network coverage method when tested
with different optimization test benchmarked function con-
firmed better convergence and optimal results. The results
of this MBOA-based network coverage algorithm confirmed
better results in terms of node utilization and minimized
network expenses.

Kurian et al. [27] implemented a Hill Climbing and simu-
lated annealing integrated the binary ant colony algorithm
(HCSABACA) for addressing the issue of energy efficiency
during the process of achieving maximized network cov-
erage. This approach was modelled based on the concept
of pheromone trails and foraging behaviour of ants while
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determining the location of sensor nodes deployed in the
network. This method specifically adopted HC and SA for
refining the solution that are determined initially during the
inclusion of BACA over the initial part of the network life-
time. This hybridisation of HC and SA balanced the trade-
off between exploration and exploitation such that superior
solutions are only determined during the process of network
coverage. The results of this HCSABACA approach con-
firmed better energy potential coverage in the two-dimen-
sional network field (Table 1).

3 Proposed Hybrid Sand Cat Swarm
Optimization Algorithm-based Reliable
Coverage Strategy (HSCOARCS)

3.1 Network coverage model of WSNs

Let us consider an area of monitoring which is repre-
sented using a two-dimensional region with the dimen-
sion M X N. In this area of monitoring, number of sensor
nodes are deployed randomly which is represented using
Ngi = {ny,ny, ... ... ..,n, }. If the sensor nodes in this moni-
toring area are heterogeneous in nature with different radius
of sensing (R,) and communication radii which is equivalent
to R, and R, > 2R_. At the same time, the sensor nodes is
determined to move such that the position cam be instantly
updated. Then the Euclidean distance between the random
sensor node and targeted sensor node is represented using

Eq. (1)

2 2
d(Nsys Tog)) = \/(x@ —x¢) "+ (Vo) = ¥p)) M

where, (x(,-), y(i)) and (x(]-), y(/-)) represents the random sensor
nodes coordinates and targeted sensor nodes coordinates.

_ [ 0R;>d(Ng. Top)
p(NS(i)’TO(i)) = { IR < d( Ny TO(i)) 2)

Then the probabilities related to the joint perception of
random and targeted sensor nodes is determined based on
Eq. (3)

m

P(Nsy Tow) = 1= [ [ P(Nsws Tow) A3)

I=1

At this juncture, the coverage ratio being a significant
indicator of heterogeneous WSN problem of deployment is
computed based on Eq. (4)

M XN
2ot P(Nsg):Tog))
M XN

“

F, =Cov =

The degree to which the sensor nodes’ coverage gets
evaluated depends on coverage efficiency The maximized
coverage efficiency represents that only few numbers of sen-
sor nodes are used for achieving the same coverage area. The
coverage efficiency is computed based on Eq. (5)

Uisim Nsareati

CoV gy = S Q)

NS(Area(i)

where, Ng,.q) represents the area enveloped by each of
the i sensor nodes deployed in the network of area M x N.

_ [ O R;>d(Ng). Toq)
p(TO(i)’ TO(J)) - { 1 Rs < d<NS(i)’ TO(i)) (6)

The ratio of connectivity which represents the proportion
of connected paths to the number of maximized connected
paths determined between the sensor nodes is determined
based on Eq. (7)

XL X p(Tow: Tow)

= n(n—1)/2 @

In this situation, the number of paths determined between
two specific sensor nodes is determined to be n(n — 1)/2.

Hence, the objective function for the proposed model
depending on sensor node coverage and connectivity is
determined based on Eq. (8)

Max f(F|,F,) = W,F, + W,F, ®)

MXN
Z P(Ngi): Tog) S MXN

J=1

P(Nsay Tog) 20

P(Tow: Tow) 20

In this context, the weights [28-31] associated with W
and W, related to two functions F| and F, after several
number of experiments is determined to be 0.8 and 0.2,
respectively.

3.2 Primitives of Sand Cat Swarm Optimization

The adopted Sand Cat Swarm Optimization (SCSO) algo-
rithm mimics the foraging nature of Sand Cats (SCs) that
are found in deserts. It is efficient in identifying noise of low
frequency to localise prey, be it under or above the ground.
It determines the prey by taking optimal value seen in explo-
ration space. The Search Agent (SA) constantly examines

@ Springer



Int. j. inf. tecnol.

JIomIau Y} ur pakojdap sios

-uos Jo Aynuenb oy ur 9seaIoul JNOYIIM An[eA AF1ou
paziundo FurIoyo sny) 93BIA0D JI0MIQU SOOUBRYUF @

uedsojI] 201A9p soaoxdur

Jey) uonINQLISIp opou pue A313us pozrumdo Jur
-IQJJO 9FBISA0D IOM]OU FUIOURYUD UO SISNI0] @

93e10A00
JI0M]OU 91RIOPOW UT S)[NSaI S10joe Joedwr owos Jo
9oueIOUST ) AOUIS JAISUAYIdWOD 9q 0) PISU UONBZ
-tundo 95eI0A00 SOPOU JOSUIS PAZIWIXBW SUIAJIYOER
JIOJ POISPISUOD UOTOUNJ SSOUIY Y],
s1oyerado yoreas
[890] SE [[oM SE ‘IOA0SSOIO ‘UOBINW MIU SWLIO] @
o[npayos dnoyyem
[eopI pue 93eI9A00 ‘A3I0UD ‘AJIAT}OUUOD UO paseq e

K)IAT)OQUUOD
pue 23e12A00 YIomlou Juroueyud jo Ajiqrssod ay) sey
[0S yorym juswaAoidwr Jo wool e sassassod uone)
-uowadwiI J0J POISPISUOD [OPOW JI0M)AU AFBIJA0D Y,
SOUIAYOS UONIIIP-N [N
SE [[om se SuTuIed[ 9s19Aa1 ursn suonenba sydepy e
1509 JI0MJQU 9y} SUIZIWTUTW UBY) IOYJeT UoT) seare-qns
-ezrundo uo pajedie) A[Uo JUTUIBI] 9SISAQI JO SN Y], SNOIOWNU WOIJ 9FLIIA0D JIOM)AU SAYe) A[OAT}II[0)) @
SO0 NI0MIAU SE [[oM St 9FBIIA0D IPOU SIPN[OUT
yorym [opowr uoneziundo 25810400 € SIJQ @
uonezrundo VO4DV Jo sanlfq
Jo ssaoo01d 9y SuLmp $10Jo€J JO JoqUINU PIZIWIXBW -eded yoIeas [e00[ Sk [[9m Sk [8qO[3 JurouBquo I0f
PazI[nn pue 2OUAFIOAUOD JO el J00d © SIOAI[OP I]  SI0JORJ OIUIRUAD SE [[oM SB SJUBLIBA AUONBD) SOAJOAU] @

Kys1aATp 2aoxdwt 0} sayoeoidde uon
-BJNW [800] PISLq-9)I[9 SB [[oM SB UOISNJ-I)I[d SIS[) @
sonioedes yoreas
[800] SE [[oM Sk [eqO[S 90ue[eq 0} UonOUNy prowsig
pue a3e10A00 yI0MIou Juroueyua Jo Ayiqissod oy) Sey  PIyIpoOW UO paseq SI Jey) JYSIom [BI)IdUT UB SOPN[OU] @
[0S yorym juswaAoIidwr Jo woor e sassassod uone) 9ords yoress Surkreaun ansse o3 uonendod
-uowordw J0J PAIOPISUOD [OPOW I0MISU 95810400 dY], Sursireniur 10y (JND) dejy onoey)) oy Soonponuj e

K)IAT)OSUUOD

VMD JO 9381 90ua310Au0d pue Ajjiqedes uonez
-tundo [eqo]3 aaoxdwir 0 pajepdn ST p\D) 210J2q pue
‘SQUSIUY JOIARYQQ 9391 90U0 YOMD Ul S Sapnjou] e

uonezrundo oFe
-IOA0D J[pURY O} [OPOW [BITBWAYIEW © SAYSI[qeISH
Surpaaiq pass 1oy (1)
Y[em wopuey SrweuAp pue Y3y KA paroidur
SQUIQUIOD YOTYM SWAYDS dOUBQIMISIP © SIS[) ®
seare
J0 9510400 S19[dwOOUT pUL PIsLIIOUT JO SANSST
0} Spe9] 1By} UONNQLISIP 9POU JE[NTILII SISNI0,] ®

ss2001d uonezrumndo ay3 Jurmp synsar
arewrxoxdde ATuo soururaiop J1 ey yons Ayewmndo jo
jutod [eo0] 9y oyur yoms Juna3 jo Apiqissod Ay sey Iy

95e10A00 sapou Josuds Jo uoneziwndo ay) Jurnp
uoneyo[dxa pue uonero[dxa Jo ssedo01d 9y usamIaq
PIZI[eal 90uR[EqUI JO ONSST 9Y) S[pULY 0} J[qe JOU Sem 1]
Arepunoq jo uorsindar ym
Suore jurod pus jo Ay1aeis ‘sopou Surmoqu3ou
J0 90107 SurjeI0dIOdUT 90I0J [ENIIIA SIONPOIU] ®
Suruonisod A1epuodas Jurmp aoue)SIp 9pou FurAowW
) 95BAIOIP 0) SIUE JO 2FULI Y[EM WOPUEI SHWI] @
uononpal Arepunoq
J[em Areniqre Jue snONUNUOD JOJ JOJOR) B SOPN[OU] e

K)1ATIOQUUOD paIousT Jng 95BIOA0D
JI0MIAU JO JUSWADIYOE Y} UO A[UO PAJeIIUIIU0D ]

S[ewITue JUuBUNUNI JO
WA)ISAS 9AT)SO3IP UO Paseq WILIOZ[e paje[nws-org

wstueyoaw Surnpayos dnayem
JUSIOYJI-ASIUD PAseq-WYILIOI[Y JIQWJA pasueyuyg

(vova)

w03y uoneziundQ SOPIWIYIITY pPasueyuyg

(VOEDV) wipLiosy
uoneziundQ Agrenng juerrep Ayone) sandepy

(VO4g-H) wyyLios[y

uonezrumdQ Agronng pooueyuo A39jens prgqhyq

(VMD) wipioS[y Jlop Aarn paziundo

(OMI™daIT WwLios[e paopy prqAy panoxdury

unpos[e (OTVI
-4A) uoneziundQ uory JUy pajoAIIP-2010,] [BNIIA

[12] Te 10 1ebynz

[02] erdnD pue eimey)

[61] Te 30 0eg

[81] Te 10 Suery

[L1] uenq pue e\

[91] Te 32 Sueyz

[S1] Suem pue nyz

[#1] Te 30 ovX

SILIOWA(] SOINB,]

WISTURYOIIA

sioyIny

sonbruyo9) uoneziwndo 938I9A00 SOPOU JOSUDS PISEq-SWYILIOF B JUSSI[[AIUI WIBMS SUNISIXd 9y} Jo Arewwing | d[qe],

pringer

AQs



Int. j. inf. tecnol.

9oeds yoreass jo uonejrojdxs pue uoneiofdxe

10739 J0J [BIIUDSS T8 A3} YSnoy) UsAd y'S pue DH

Jo uotsnjour ay) 03 anp Y3y A[qerapisuod st yoeoxdde
s1y) Aq paxrnour Ayrxo[dwos reuoneindwod ay,

KJISIOATD

UuoTIN[Os pue AFLISA0D JO el 9y} Ul Juawrasordur

reuswouayd saxmbar 9oudy pue ‘[eurdrew st yoeoidde
s1y) Aq poAaIyor AQUIOLJe ASIoUd Jo 99139p Y],

J[qesuadsipur sowod9q sseooxd Suryoress [eqors
PUE [E50] 9Y) U0IM]Oq 9JUB[Eq [[9M B 90U PUB ‘Jualll
-oro1dwr Jo wool e sassassod [[ns wiypLIose Yy Jo

uondope dy3 SuLINP PAASIYIL ITLIGA0D YI0MIU Y],

ssao01d uoneneas uonoung ssawy jo asodind 9y 10§

s1030€§ [ny3oedwl JO JOQUINU 2IOW AZI[HN 0) PIAU 1S 1]

ssa001d Suryoreas [eqo[S pue [BJ0] UdaMIaq JJO-ape)
pooueeq-[[om & SUuIysI[qels Ul JUSWAIUBYUD JO WOOI ©

sassassod os[e yS pue QHA\ Suneisaur jo 3oadse oy,

QAISUQYRIdWO0d JOU ST [opol AFRIIA0D JI0MIAU )

Jo Tenuajod oy} Surjen[eAd I0J PIAPISUOD SIOJOR] AT,

QWITIRJI JI0MIU Y} JO
j1ed [enIur oY) 10A0 YV JO UOISN[OUI 9y} SuLInp
AJ[enIur pauruLIa}op 9Je Jey) uonn[os Ay} Suruyar
10J VS pue DH paidope A[[eoyroads poyjeu sIy [, e
y1omiau ) ur pakordep
SOPOU JOSUQS JO UONBIO] A} SUTUTULIIP J[IYMm
sjue Jo anoraeyeq SurSeio] pue s[ren suoworoyd Jo
1daou0o oY) uo paseq pafepows sem yoeoidde siyJ, e
90ua319AU0D JO 9je1 oY) dn pidex
pue 2oeds yoreas oY) Sulsearou] ‘SOWAINX [eI0] Sul
-juaAa1d Jo 9A1309(qO 9y} JOJ IoqUINU UOTJRINT JY)

se onjer juownsnipe Apgrennq jo 19)owered ay) pasn ] e

JI0mIau Y} UI 9FeIIA0D parmnbar Sured)

-ueren3 1oy juowaoeld Josuss [enuajod pajeIIoR) 1] e

SH0MIQU QIUD
oy ur pekodop sepou J0Suas Y} YIIM PAJLIIOSSE

UOT)EWLIOJUT [[€ JO UOTIBUTULIANOP 9AISUSYIdwod J0§

uonewnse UoONNQIISIp Jo A591ens 9y} papn[oul I e
QWINQJI[ JO PUNOI YO SULIND JI0MISU )
ur sgD rewndo yoes jo juswasoul ) Sunjorn 10y
eop1 oY) 1M pasodoid sem oSeIoA0D YIOM)QU ST, @
BOIE YIOMIOU O} UI
S9[9B)SqO JO Joquunu ) SUISSAIPPE JoJ S[opout Sul
-SU9S [RIUIOUT}[NW JOPIO-ISYSIY pue JuruIes] paseq
-uonisoddo priqAy UoALIP-1I0S B pasn [9pow SIY], @
suondwnsuod
A313U3 pozruuTw pue BaIe 958ISA00 pasorduur

yorym uonnjos uoneziundo 93eIoA00 JI0MIaU JUALD

-JJo AS1ouo ue se pasodoid sem SINVOMDI STUL, @
Q0Ud312AU0D J1330INb 190 pue Aol

-NOOE QOUBYUS 0] YS-UIP[OD) Put OHAM SOSIPLIGAH e
uonezifeniul uLmnp

IND NS Sursn Aq Ayipenb uonendod saaordwy e
SIOSUDS JO QOURISIP JUSWIAOW

[BWIXEW pUE [B10} AY) SOONPAI A[SNOSUL)[NWIS @
SNSAA 2[1qowr ut doueeq A31oud pastundo s1oyo

ey sue[d JUSWISAOW [EOPT SNOISWNU SSUTULIIO(] @

(VOVEVSOH) wiptios[e Auofod jue Areurq
Q) pajeI3oIul SuIeaUUR paje[NWIS pue Sulquir) [[TH

uonN[os 9FBIGA0D JI0MIOU PIseq
-(VOgIN) wpuosTy uonezrund(Q Agrenng yoIeuoy

poyjowr uoneziundo
95e10A00 YI0MI0U POseq-uIILIOSTe yoreas omdoy

33810100
JI0MIaU JUIOYJS SUTAIYOR 10 A3jens-nnu yirm
wpLo3[y uoneziundQ JJOA A210 poueyud Uy

wpnodre (OHMI) FozmundQ 9s10H pliay paaoidug

(OLININ-OIN) 951940 10518,
UIIA QWY SUIZIATXBIAL 10] USISIP 2AN0(GO-NTMA

[£T] 'Te 10 ueLINy

[92] Te 10 9nx

[¢z] e N

[¥T] Te 1o Suepmy

[¢2] ‘e 1o Suaz

[zl T8 10 quey

SILIOW(

saInjeaq

WSTUBYIIIN

sioyIny

(ponunuod) [ Aqel,

pringer

As



Int. j. inf. tecnol.

search space based on position updates, finally gets nearer to
location of optimal value. It includes prey search and attack
schemes. The scheme designed to handle the search for prey
simulates SCs foraging for prey. The SC population is given
by,

- —b —
P, =T (Pt - rand(O,l).Pf) ©)

where,

P—Position vector of SA; t—Present iteration; ﬁb—Posi-
tion of best candidate; ﬁC—Current position of SA; r—Range
of SCs’ sensitivities to low frequency noise

T =T, xrand(0,1) (10)

where, T,—Common sensitivity range linearly decreased
from 2 to 0

N sy X Itr,
TC=SM—< M Curr> (11)

Itr o

where, Itre, —Current iteration; Itry, —Maximum itera-
tions; sy = 2.

Further, SCs observe low-frequencies of 2 kHz. At the
end of prey search, the algorithm attacks it, and the attack
method for SCs population is shown below.

- —-b =c

Png = |rand(0,1).P, — P, (12)
- =b =

P, =P, —T.P,4.cos0 (13)

where, 0—Random angle in range [0, 360]; cos 8—Values
in range [—1, 1]; Eand
and current locations.

Every member in population moves in varying circular
directions. Every SC selects an arbitrary angle. SCs circum-
vent local optimum traps while moving toward prey location.
Random angle in Eq. (5) facilitates influencing hunt as well
as direction of search of SA.

—Random location produced by best

3.3 Exploration and exploitation

SCSO balances exploration as well as exploitation stages
using dynamic factor (R) that is given by,

R =2 xT, xrand(0,1) — T, (14)

where, ‘T,’—Linearly decreases from 2 to 0 with increase
in number of iterations.

The updated description of location of each SC during
exploration and exploitation stage is given by:
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—b —
. ?.(Pt —rand(o,l).Pf), IR| > 1

Pt+1 -

b (15)
P, —T.P4.cos0,|R| <1

where, SA attacks prey when |R| < 1; else SA globally
searches for promising solutions.

Every SC has its own search radius in exploration stage,
thereby preventing the algorithm from dropping into local
ideal solution.

4 Discussion
SCSO has the ensuing features:

— It has a simple structure involving less number of factors
that is easy for implementation

— It considers position of ideal solution as prey. It does not
lead to search stagnation by following angle

— Itis capable of balancing exploration as well as exploita-
tion stages to increase the algorithm’s convergence accu-
racy

— It retains location of global optimal solution in every iter-
ation, and decrease of population quality has no impact
on prey location

— Every member in the population moves in diverse direc-
tions which guarantees that the algorithm can move
toward prey offering increased convergence accuracy

SCSO has some demerits:

— In case of multi-peak functions, it easily falls into
local optimal solutions which demands enhancement
approaches to be included to reinforce transition amid
exploration as well as development stages of algorithm
and assign a sensible sensitivity range lessening approach

— Quality of arbitrarily produced populations is diminished
as they are in want of diversity

— There are chances for presence of insufficient commu-
nication among individuals along with global optimal
solution which guides the population to cause search
stagnation

Algorithm 1: SCSO Algorithm

Initialize population
Determine fitness function
Setr,r,, R
while (t < itr,
for (every agent)

max)
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Obtain an arbitrary angle ‘@’ in the range [0°, 360°]
if (JR| < 1) then

Update location of SA using Eq. (13)

else

Update location of SA using Eq. (9)

end /*if*/

end /*for*/

t=t+1

end /*while*/

4.1 Stochastic difference-based SCSO with elite
collaboration

4.1.1 Non-linear periodic modification approach

For population-based optimization schemes like SCSO, a
stable shift amid global exploration as well as local exploi-
tation (R) is essential for optimising the algorithm. In early
iterations, improved global exploration capability is vital for
maintaining diverse population distributions. In later itera-
tions, improved local exploitation ability is indispensable
for ensuring fine exploitation in local scale and accelerating
algorithm convergence.

‘R’ aids in finding the switch between exploitation
and exploration, and indicates algorithm’s capability to
determine the finest. This arbitrary value lies in the range
[—Zrc, 2rc], where ‘T, drops from 2 to 0 by using linear
iteration.

When |[R| > 1, location of SC is modified at present and
prey arbitrary locations amid present and prey locations
conforming to algorithm’s global detection stage

When |R| < 1, cat targets the prey conforming to algo-
rithm’s local exploitation

From Eq. (11), it is evident that ‘T,” decreases linearly
in single-period. As this process is iteratative, it becomes
erratic with natural rule which demands several rounds of
co-operative prey capture for population, leading to lin-
ear conversion of varying range of ‘R’. So the algorithm
involves a non-linear periodic modification approach for
‘T.” to define prey hunting performed by the population.
Precisely, a logarithmic function that is used to represent
non-linear periodicity is shown below:

- itr, 3
I, =Sy —SyXIn|l+ - e—=1 (16)
max
where, t—Present amount of iterations; itr,,, —Maximum
quantity of iterations; e—Natural constant; Sy; = 2.
Based on Eq. (6), the value of ‘R’ decays slowly in
initial iterations which is faster in later iterations. The

population performs sufficient global exploration as well
as improves population diversity in initial iteration; in
latter iteration, algorithm may converge faster to attain
a balanced and steady switch among global exploration
(initial iteration) and local exploitation (late iterations). It
improves accuracy of optimization as well as algorithm’s
convergence speed.

4.1.2 Pseudo-oppositional and pseudo-reflection learning
schemes

OBL improves diversity of population, accuracy as well
as convergence speed of smart optimization algorithms
using synchronised consideration of candidate entities
along with opposition solutions. In correlation model,
location of entity (i) in d-dimensional space is given by
—(x! %2 dy.
X; =X, X7 ... XD x; € L, U]
[L;,Uj]|—Range values in j-dimensional space;
X! = (x",x?...xY)—Entity’s opposing point;
X!" = (x'',x"%, ... x/"")—Entity’s Pseudo-Opposite Point

. X,
1 i i i

(POP); X!" = (xi’”l, xi”’z, .xi’"d)—Entity’s Pseudo-Reflec-

tion Point (PRP)

x! = Li+U; - x/ (17)
4 L+U;

<= rand[ g ’,x?] (8)
. . L.+ U.

X;”J = rand [le, l J] (19)

The PRP is always closer to Candidate Solution (CS)
when compared to POP, and may be locally exploited com-
pletely in CS’ neighbourhood. In case, the POP is away
from the location of CS, then wider global exploration can
be obtained and unexplored space of CS can be opened.

When |R > 1], the prey may escape from encirclement,
and hence the SC should enlarge search range to seize prey.
To handle this, PO Learning (POL) scheme is included in
location update phase of global search. As POP is distant
from CS location, once PO solution of present solution in
the area far from CS is generated, the entity may attain a
broader global search and increase the area not examined
by CS. This improves the population diversity and holds the
original and POS into population of ensuing generation by
using greedy selection approach. Let ‘Xff)ll 4 be the location
update in global search. After including POL, the location
update is given by,
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x0u
i1
F(x09) <r(x1)
XE+1 = Lyt " lip1 (20)
f(X.Old> Zle(X(H )
14 Li+1
" " "
Xim = (Xi,l.OldM "Xi,ld.Oldt+1> 2D
L +U;
% _ ol i T Y
Xijou,, = rand [Xi,jm’ < 2 >] (22)

By including POL and PRL schemes in local exploitation
and coalescing diverse search approaches of entities, it acceler-
ates search efficacy of SCSO algorithm and enhances universal
convergence capability.

4.1.3 Stochastic variation (SV) with elite collaboration

Elite collaboration approach is employed in heuristic algo-
rithms. PSO employs dimensional elites as well as population
elites for population guidance. Ideal guidance is repetitious
and does not offer significance to intelligence of population.
The GWO algorithm performs association of 3 ideal GW posi-
tions. The chosen Elites have similar weights which mean that
every elite has similar location update for GW. The selected
elites do not involve any weight variation as every elite has
similar role weight on location update of GW leading to non-
ideal location update of elite collaboration. Hence, an elite
association approach involving elite weights is proposed to dif-
ferentiate elite entities’ roles on updating population location.
Furthermore, the elite approach overcomes the challenge per-
taining to communication lack amid population entities during
iterations and prevents the algorithm from dropping into local
optimum solutions.

There is a likelihood that the elite association may fail in
latter iterations when elite locations are comparatively uni-
form. T-distribution-based random disparity is included to
increase the arbitrariness of elite association approach. Elite
SCs are chosen for adaptation and they collaborate to gener-
ate a fresh SC location to direct the process of searching. Elite
SCs are allocated varying weights depending on the value of
the objective function. Smaller the cost, greater is the weight.
Weights are assigned as shown below:

f(Xg)

1
2 2(e(x1,) +1(x3, ) +1(x3,)) 23)

1 _
ng—
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2
W2 _ l _ f(ng)
g9 1 2 3 24
2<f<ng) + f(ng> + f<ng>>
3
w3 = l _ f(ng) 25)
g 9
2<f<Xéb) + f<X§b> + f<X§b>)
1 1 2 2 3 33
X = ng' ng + ngs' ng + ng'ng (26)

where, wl w2 s W3 __Elite weights; X,.,q—Global opti-
gb gb gb eay
mal solution location following collaboration of elites.
Variation of locations of optimal solution after collabo-

ration of elites using SV strategy is given by,
Xllead = Xiead T Xicad-tiir 27

where, Xfea d—Optimal location of solution after variation;
t(itr)—Present amount of iterations for t-distribution of free-
dom degrees.

SV with collaboration of elites guides the search by
using ‘X]/ead’ instead of ideal solution (ib) in Eqgs. (1) and
(5). At the beginning of iteration, t-distribution moves to
Coasey distribution which is smoother. The t-distribution
operator takes huge values involving increased probabil-
ity along with huge steps of location variation. The algo-
rithm involves improved universal exploration capability.
In latter iterations, t-distribution looks like typical normal
distribution which is more focused. The operator takes
small values involving high probability. Further, step size
of position variation is lesser as it is favourable for algo-
rithm convergence.

Algorithm 2: SCOA

Initialize population
Determine fitness function
Setr, r, R
While (t < itr
for (Every agent)

leX)

Mutate present ideal solution
Modify ideal solution using Eq. (22)
Obtain an arbitrary angle ‘¢’ in the range [0°, 360°]
if (JR| < 1) then
Modify SA location depending on Eq. (23)
else
Modify SA location depending on Eq. (20)
end /*if*/
end /*for*/
t+=1

end /*while*/
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4.2 The classical seagull optimization algorithm

Recently, SOA is studied by several scholars [7, 8]. SA
represents a seagull in search space. Every SA slowly
approaches global optimal solution by mimicking migra-
tion as well as attacking behaviours.

4.2.1 Migration behaviour

It aids SOA to widely explore the whole search space. In this
stage, SA satisfies the ensuing conditions:

¢ Avoiding Collisions: Collision avoidance deals with
increasing the distance amid neighbouring SAs to over-
come collisions as shown in Egs. (28) and (29).

Csp = ALY (28)

. f,
e o)

where, SA = 1,2,... Size; Size—Population size; [tr—
Present iteration; LISIR—Present location of SA; Cgy—
Location of SA after evading collision; Itry,, —Maxi-
mum quantity of iterations; f —Constant; A—Movement
of SA.
During every iteration, ‘A’ decreases linearly from ‘f.’

to 0.

e Direction of Best SA: Once collision is avoided, SAs
move along best SA as shown in Egs. (30) and (31).

Dgs = B(Lgt, — Lg}) (30)

B=2A%r (31

where, LIStL—Best SA in population; Dgy—Direction of
best SA; B—Responsible for balancing exploration as
well as exploitation; —Random number in range [0,1]]

e Searching for best SA: The SA updates the location
depending on best SA.

DiStSA = |CSA + DSA| (32)

where, Distgy—Distance between SA and best SA.
4.2.2 Attacking behaviour

As seagulls attack the prey around them, flight trajectory
approaches a spiral curve. In the planes (X, Y, Z), attacking
behaviour is observed as shown below.

X' = rad.Cos(k) (33)

Y’ = rad.Sin(k) (34)
7' = k.rad (35)
rad = u.e® (36)
Ly = Distgy X'.Y7.Z/ (37)

where, k—Arbitrary number in range [0, 2x] signifying
attack angle; rad—Spiral flight trajectory radius; u and v—
Constants which describe spiral flight trajectory shape; LISt;
—Best solution that updates the location of other SAs.

4.3 SOA based on gaussian distribution (GD)

SOA is an efficient optimizer that is capable of handling
challenging problems with more number of constraints.
But in case of Chemical Dynamic Optimization Prob-
lems (CDOPs), SOA finds it tedious to approximate opti-
mal control flight. GD-based SOA (GSOA) is propounded
for CDOPs. GSOA offers an initialization concept which
depends on GD and Dimension-Order Mutation Operator
(DOMO) that effectively enhances the capability of SOA to
handle CDOPs.

4.3.1 GD-based initialization

Practically, control mechanism must have continuity, and
the one with minor fluctuation is found to be in-line with
features of CDOP [9, 10]. SOA is based on the concept of
conventional random initialization to produce primary popu-
lation that makes every region in search space to have a par-
ticular probability for producing initial entity. Nevertheless,
this concept is not applicable for solving CDOPs as the idea
involves some amount of blindness as well as uncertainty.
It produces chaotic entities and it is observed that the vari-
ance amid neighbouring dimensions in the entity is huge.
Such entities are not typically in-line with the endurance of
CDOP. To enhance the quality of preliminary population, an
initialization concept based on GD is proposed. This concept
efficiently employs the features of GD to produce initial pop-
ulation that can significantly enhance the population quality.

The steps are detailed below.

SA initialization
Lsa = (s Iga -+ 15) (38)

Initially, ‘léA’ is arbitrarily produced in control
domain[U ,U ]using Eq. (39).

min max

Next, ‘lé , is produced using Eq. (40)

@ Springer



Int. j. inf. tecnol.

Let, (pg ,—Random number produced from a GD having
mean y = lé A U U
Standard deviation, ¢ = "‘“‘T"“"
2
Ifog, €U U ]
min max
Equation (30) is used for producing ‘lé A
‘<p§ ,_ continues to be an arbitrary number produced from

a GD having mean p = lé , and ‘c’ has the same value, till
Pl €U .U |

min max

Similarly, lg A lg Ao .IIS\IA are produced in sequence.
I;A - (Umax B Umin) T+ Umin (39)
1 _ 1
o = @sa
U -U \?
BN I ‘max _ min 40)
Psa ] 'sa 10

where, SA=1,2,.... Size; Size—Size of population;
I=2,3,.... N; N—Search space dimension; IISA—Value of
the ‘I™ dimension of SA

Lo = (14 By e Yy)

lls A—‘I‘h’ dimension of SA; U ,U —Upper and lower

max min

bounds of control domain; r—Arbitrary number in the range
[0,1]; (pé ,—Arbitrary number produced from a GD using
=l

An arbitrary number produced from GD N(u, ¢?) has
increased probability to be within [4 — 30, 4 + 30]

Assign the value of ‘s, initialization based on GD cannot
avoid producing huge quantity of chaotic initial entities but
also has reduced probability in generating entities with huge
fluctuation to circumvent missing possible best individual
with huge fluctuation.

4.3.2 DOMO based on GD

In case of CDOPs’ solution, SOA is likely to drop into local
optimum as population evolution is directed by best SA. In
complex search space involving high dimensions, the chosen
SA may drop into local optimum leading to deprived popula-
tion quality. To enhance algorithm’s capability for handling
CDOPs, DOMO based on GD is proposed. Mutation is a
common enhancement approach used in optimization algo-
rithms that can efficiently improve efficiency of algorithms
to move out of local optimum as well as accuracy [11-13].
Focussing on the features of CDOPs, GD-based DOMO per-
forms dimension-wise Gaussian mutation on best SA based
on dimension order to enhance algorithm’s global search
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performance. For a DOP named ‘max J’, the steps of GD-
based DOMO are listed below:

- ngsl = (11;est I,lgresu, .lgreqN> shows the best SA at

“itr'™ iteration, and performance index is represented as

Cyitr s yitr _ itr itr itr C

Jest - Lo = <lnb’1, lnb,2’ .lnb’N) signifies fresh best SA.
— ForLy ., the ‘1" dimension mutates to produce mutated

itr,l _ (qitr,] qitr2 itr,N cqitr,1
SA LMul = (lMu[, lBest, .lBesl). The value lMth of the
I = 1% dimension of ‘Li\‘;‘ult’ is determined using Eq. (36).
itr,1 itr,1
If L>U  (<u ), set

™=y (I"™!'=U ).The remaining dimensions of
Mut " ma Mut " min

‘Lﬁr’l > are equal to values of conforming dimensions
utant
oy Ur >
Of LBesl : itr itr, 1
— Determine performance index ‘Ji3 oof ‘L If
est Mut
itr, 1 itr itr - __ qitr,1 itr, 1 itr itr  __ qiter,1
o > Tpesr S€th, 1 = Iy Ty S Jpeqe setlyy ) =Tgeg
— For ‘L%, the ‘2" dimension mutates to produce
itr,2 __ iter,1 4itr,2 itr, N <qitr,2
mutated SA, LMut = (1Best ,lMu!, .1Besl ). Value of ‘1

of I =2" dimension of ‘L;\t,f‘z’ is computed using
ut

Eq. (4. If B2>U (B<y ) set
max min

lﬁi =U (1:2:{ =U ).Values of residual dimensions
max min

itr,2 . . .
of ‘Livi;n’ are equal to values of conforming dimensions

o itr >
Of Ly - itr2 itr,2
— Determine performance index ‘J =’ of ‘L.’ . If
Mut Mut

itr,2 itr itr,2 __ qitr,2 itr,2 itr itr,2 __ qitr,2
JMut >.JBes.t’ set 1nb - lMu.[' If JMut < JBeSL’ set 1nb - lBesl'
— Likewise, in relation to dimension order, perform muta-

tion of residual dimensions of ‘Lgrest’. Lastly, the fresh

itr __ (qitr,1 qitr,2 itr, N\ -
best SA Lnb = (lnb ,1nb Y .1nb )1s got.

ite, ] _ itr
Ly =

itr \y litr,I Umax _Umin ?
aI Best’ G (4 1 )

G =500 — (490 - itr< 90 ))

TMax

. ; ion- [T
where, I = 1,2, ... N; N—Search space Dimension; 1 ;.. —

Value of ‘I dimension of mutated SA (Li"’I )i 1l value

. Mut/” “best
of ‘I"™ dimension of best SA (Pgrest); itr—Present iteration;

. . . . . 1“«
Itry;,,—Maximum quantity of iterations; a;"'—
itr,I
Best

Random num-
ber produced from GD using u =L
u -u.

max min

G

o =

Moreover, Fig. 2 presents the clustering process included
into the process of the proposed HSCOARCS scheme.



Int. j. inf. tecnol.

Fig. 2 Clustering process
adopted in the proposed HSCO-
ARCS scheme

®
Sensors .

Table 2 Algorithmic parameters used to implement of the proposed
HSCOARCS scheme and the benchmarked approaches

Parameters used Values

Monitoring area 100 mx 100 square meters

Number of sensor nodes 50
Distribution of sensor nodes Random
Size of the data packets O 512 Bytes
Sensing Radius of sensor nodes 10 m
Number of iterations 200

0.5 Joules and 2.0 Joules
(Type 1 and 2)

Initial energy of nodes

5 Results and discussion

The simulation experiments of the proposed HSCOARCS
scheme and the benchmarked approaches are conducted
using the environment which has the configuration of
Windows 10 Professional, 64-bit OS, Intel(R) Core (TM)
i5-4210H CPU @2.90 GHz, 8 GB. This implementation of
the proposed HSCOARCS scheme is conducted using the
simulation software of MATLAB 2016a. The benchmark
approaches used for comparing the proposed HSCOARCS
scheme are ACVBOA, IWHOCOS, EBOA and SAOGWA
mechanisms. The number of fitness evaluations considered
in the experiment are unified to make the comparison fair

Implementation of SCOA-based
reliable coverage mechanism

)

CH Selection

)

Optimal Route Selection
among CH to CH

]

* Residual Energy of CH

e Distance between Sensor Nodes

e Distance among CH and Sensor
nodes

* Delay

* PDR

e Path Loss

* Node Degree

* Node Centrality

¢ Link Quality

kResta rt Number

Table 3 Parameter configurations for simulation experiment-1

/

Parameters used Values
Monitoring area 100 mx 100
square
meters
Radius for sensing 10 m
Number of iterations 200
Number of sensor nodes 50

between each of the implemented algorithms [32-34]. The
number of fitness evaluations considered by each of the
implemented algorithms is 30,000 [35, 36]. Table 2 presents
the algorithmic parameters considered during the implemen-
tation of the proposed HSCOARCS scheme and the bench-
marked approaches.

5.1 Comparative results investigation of simulation
experiment-1

In this simulation experiment 1, the performance of the pro-
posed HSCOARCS scheme and the baseline approaches are
compared based on improvement in coverage ratio as speci-
fied in Eq. (4) which is considered as the objective func-
tion of the problem. The algorithms were ren for thirty time
independently for preventing the possibility of the algorithm
from being struck into local point of optimality. In specific,
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Table 4 Comparison between initial and optimized coverage ratio
achieved by the proposed HSCOARCS scheme during simulation
experiment-1

Optimized coverage
ratio (%)

Number of sensor Initial coverage ratio
nodes (%)

50 81.32 97.96

Table 5 Comparison between coverage ratio and coverage efficiency
achieved by the proposed scheme and the benchmarked approaches
during simulation experiment-1

Compared Algorithms Coverage ratio (%) Coverage

efficiency

(%)
SAOGWA 88.14 58.54
EBOA 93.84 61.94
IWHOCOS 95.16 66.19
ACVBOA 94.18 64.72
Proposed HSCOARCS 97.96 72.64

Bold indicates the proposed approach performance

Table 3 highlights the parameter settings considered during
the implementation of the proposed HSCOARCS scheme
and the benchmarked approaches.

In this results investigation, the coverage maps that are
initially covered by the sensor nodes deployed randomly in
the monitoring area identified that the number of sensors
nodes that overlap is more, but with the optimization of the
proposed HSCOARCS scheme it started decreases. It also
clearly demonstrated that the sensor nodes are evenly dis-
tributed in the entire area of monitoring.

Further Table 4 depicts the ratio of initial coverage ratio
achieved by the proposed scheme and the coverage ration
achieved by the same after the employed of the optimiza-
tion process.

The above-mentioned results confirmed that the initial
coverage ratio and optimized coverage ratio confirmed
during the implementation of the proposed HSCOARCS
scheme are 81.32% and 97.96%, respectively. Thus the
improvement in the coverage ratio offered by the proposed
HSCOARCS scheme is 16.64%. This improvement in cover-
age ratio achieved by the proposed HSCOARCS scheme is
mainly due to the following reasons that the region possesses
more amount of energy voids and seems to be clustered at
the beginning since there were a greater number of redun-
dant sensors in the region. But the sensor nodes distributions
is visualized to be obviously uniform after the optimization
process which eventually improved the coverage ratio to the
expected level. Thus the proposed HSCOARCS scheme is
effective in achieving better coverage optimization in WSNs.

Further Table 5 exemplars the coverage ratio and cov-
erage efficiency achieved by the proposed HSCOARCS
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approach on par with the baseline approaches used for
comparison. From the result, it is transparent that the best
optimization results are achieved during the employment
of the proposed HSCOARCS approach compared to the
baseline approaches, since it employed balanced local and
global strategies that helped in better optimization process.
The results of the proposed HSCOARCS approach on an
average confirmed an improved coverage ratio and coverage
efficiency of 5.13 and 9.81% after thirty independent runs.

From the results, it is also observed that the proposed
HSCOARCS approach outperformed the other compared
baseline algorithms in terms of coverage ratio and coverage
efficiency. In specific, the coverage ratio and coverage effi-
ciency confirmed by the proposed HSCOARCS approach is
higher than the worst SAOGWA scheme by 9.82 and 14.1%,
respectively. On the other hand, the coverage ratio and cov-
erage efficiency confirmed by the proposed HSCOARCS
approach is higher than the best SAOGWA scheme by 2.82
and 6.45%, respectively.

Furthermore, Fig. 3 portrays the coverage convergence
curves related to the proposed HSCOARCS approach and
the baseline approaches used for comparison. This plots
clearly highlighted that the proposed HSCOARCS approach
confirmed a better coverage ratio independent to the number
of iterations. In particular, the coverage efficiency achieved
by the proposed HSCOARCS approach is 72.64% which is
comparatively better than the worst SAOGWA algorithm
by 14.1%. This improvement introduced by the proposed
HSCOARCS approach demonstrated its efficacy in minimiz-
ing the degree of redundancy in the sensor coverage.

In addition, the excellence of the proposed HSCOARCS
approach over the baseline approaches are verified with to
sensors coverage optimization. In this experimentation, the
parameters are kept constant with those that of the bench-
marked approach for guaranteeing fairness during the inves-
tigation process. The experimental result of this investiga-
tion is presented in Tables 6, 7, 8, and 9, respectively.

5.2 Comparative results investigation of simulation
experiment-2

In general, categorizing the types of sensors is always dif-
ficult in a complex sensor coverage environment, and hence
in real environments a greater number of the heterogeneous
WSNs is often covered. In this simulation experiment 2, two
different sensor types were randomly deployed throughout
the entire area of monitoring. Then the proposed HSCO-
ARCS approach is employed for optimizing the coverage of
the heterogeneous WSNs. In particular, Table 10 portrays
the sensor parameter settings considered during the employ-
ment of the proposed HSCOARCS scheme with two differ-
ent types of sensors.
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Fig. 3 Coverage conver- 1
gence curves of the proposed
HSCOARCS approach and the
baseline approaches with differ-
ent iterations
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Table 6 Experimental results comparing the proposed HSCOARCS
approach and ACVBOA scheme

Table 9 Experimental results comparing the proposed HSCOARCS
approach and ACVBOA scheme

Methods used for comparison Coverage Methods used for comparison Coverage
ratio (%) ratio (%)

ACVBOA 92.38 SAOGWA 88.14

Proposed HSCOARCS 97.96 Proposed HSCOARCS 97.96

Table 7 Experimental results comparing the proposed HSCOARCS
approach and ACVBOA scheme

Table 10 Sensor parameter settings used by the proposed HSCO-
ARCS scheme with two different types of sensors-simulation experi-
ment-2

Methods used for comparison Coverage
ratio (%) Parameters used Values
IWHOCOS 95.16 Monitoring area 100 mx 100
Proposed HSCOARCS 97.96 square
meters
Number of iterations 200
Number of sensor nodes (/Type 1, Type 2) 30
Table 8 Experimental results comparing the proposed HSCOARCS Radius of communication (Type 1) 25m
approach and ACVBOA scheme Radius of communication (Type 2) 20 m
Methods used for comparison Coverage  Sending radius (Type 1) 12m
ratio (%) Sending radius (Type 2) 10 m
EBOA 93.84
Proposed HSCOARCS 97.96

Then Table 11 demonstrates the comparison between
initial and optimized coverage ratio achieved by the pro-
posed HSCOARCS scheme during Simulation Experi-
ment-2. This experimentation is conducted over the
monitoring area which comprises of two different types

@ Springer
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Table 11 Comparison between initial and optimized coverage ratio
achieved by the proposed HSCOARCS scheme during simulation
experiment-2

Number of sensor
nodes

Initial coverage ratio

(%)

Optimized coverage
ratio (%)

30 86.18 98.76

Table 12 Comparison between initial and optimized connectivity
ratio achieved by the proposed HSCOARCS scheme during Simula-
tion Experiment-2

Number of sensor Initial connectivity Optimized connectiv-

Table 13 Sensor parameter settings used by the proposed HSCO-
ARCS scheme with obstacles-simulation experiment-3

Parameters used Values
Monitoring area 100 m x 100
square
meters
Dimension of the obstacle 20 mx20 m
Number of iterations 200
Number of sensor nodes (/Type 1, Type 2) 30
Radius of communication (Type 1) 25m
Radius of communication (Type 2) 20 m
Sending radius (Type 1) 12m
Sending radius (Type 2) 10 m

nodes ratio (%) ity ratio (%)
30 21.56 24.78
Fig. 4 Coverage convergence 1
curves of the proposed HSCO-
ARCS approach and the base-
line approaches with different
iterations (Experiment-2)
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of sensors deployed randomly in the network. This result
clearly confirmed a better optimized coverage ratio of
98.76%, which is a significant improvement of 12.58%
over the initial coverage ration visualized at the initial
stage.

On the other hand, the proposed HSCOARCS scheme
confirmed a better optimized connectivity coverage ratio
of 21.56%, which is a significant improvement of 3.22%
over the initial connectivity ratio realized at the initial
stage. In contrast to simulation experiment 1, the proposed
HSCOARCS scheme achieved better network connectiv-
ity while concentrating on the improvement of network
coverage. In the initial stage, some of the sensors were

@ Springer

not connected and hence the initial connectivity ratio was
21.56%. But after the inclusion of the proposed HSCO-
ARCS scheme-based optimization, the connectivity ratio
is 24.78% which is realized as a potential improvement of
3.22% better than the baseline approaches (Table 12 and
Fig. 4).

5.3 Comparative results investigation of simulation
experiment-3

This simulation experiment is conducted for simulating
a more realistic simulation environment by including an
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Table 14 Comparison between initial and optimized coverage ratio
achieved by the proposed HSCOARCS scheme under obstacles dur-
ing simulation experiment-3

Number of sensor Initial coverage ratio
nodes (%)

Optimized coverage
ratio (%)

30 88.76 98.18

Table 15 Comparison between initial and optimized connectivity
ratio achieved by the proposed HSCOARCS scheme under obstacles
during simulation experiment-3

Number of sensor
nodes

Initial connectivity
ratio (%)

Optimized connectiv-
ity ratio (%)

30 17.19 21.52

obstacle of dimension 20 m X 20 m around monitoring.
This simulation experiment 3 is mainly conducted for eval-
uating the potential of the proposed HSCOARCS scheme
towards the objective of coverage optimization under the
presence of obstacles in the monitoring area. Table 13
depicts the sensor parameters setting considered during
the implementation of the proposed HSCOARCS scheme
for achieving simulation experiment 3.

Then Table 14 and 15 demonstrates the comparative
improvement in the coverage and connectivity ratio achieved
by the proposed HSCOARCS scheme before and after opti-
mization process. The results from Table 14 clearly high-
lighted that the proposed HSCOARCS scheme ensured an

optimized coverage ratio of 98.18%, which is a significant
improvement of 9.62% over the initial coverage ratio visual-
ized at the initial stage.

On the other hand, the proposed HSCOARCS scheme in
the presence of obstacles (Table 15) also confirmed a better
optimized connectivity coverage ratio of 21.52%, which is a
significant improvement of 4.33% over the initial connectiv-
ity ratio realized at the initial stage.

In addition, Fig. 5 demonstrates the curves of cover-
age convergence confirmed by the proposed HSCOARCS
approach and the baseline approaches with different itera-
tions under the presence of obstacles in the network. The
proposed HSCOARCS approach even under the existence
of obstacles enveloped better network coverage ratio with
optimized connectivity such that least number of sensor
nodes are able to cover the network with their capability of
sensing radius.

6 Conclusion

The proposed HSCOARCOS achieved better coverage opti-
mization by addressing the issue of coverage redundancy
and coverage blind areas, and maximally optimize the sensor
node deployment location to achieve reliable sensing and
monitoring of target area. This proposed HSCOARCOS is
implemented over a HWSN coverage mathematical model
which represents a problem of combinatorial optimiza-
tion. The hybridization of Sand Cat Swarm Optimization

Fig. 5 Coverage conver-

gence curves of the proposed
HSCOARCS approach and the
baseline approaches with differ-
ent iterations (experiment-3)
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Algorithm (SCSOA) is achieved for enhancing the speed of
the global convergence with the initial population achieved
using the method of Gaussian distribution. It targets on the
optimization objectives that aids in minimizing the network
costs and improve its coverage. The simulation results of
the proposed HSSCSOA confirmed better network reliabil-
ity of 21.38%, network coverage of 19.76%, and minimized
energy consumption of 17.92% with different number of
sensor nodes on par with the benchmarked schemes used
for comparison.

7 Future scope of improvement

The proposed CH selection approach can be improved based
on security through the process of utilizing multi-criteria
decision-making models which plays and indispensable role
in trust computation. Further homomorphic encryption algo-
rithms can be used for ensuring the confidentiality of data
transmitted from the selected CHs to the sink node.
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