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Abstract  Network coverage plays an indispensable role in 
determining the Heterogeneous Wireless Sensor Networks 
(HWSNs) potentiality towards the process of monitoring 
the physical world with maximized service quality. This 
HWSNs possesses the limitations of complex deployment 
environments, poor node reliability and restricted energy 
which directly influences the transmission and data collec-
tion process of sensor nodes and minimizes the network 
performance. An efficient network coverage controlling 
mechanism need to be devised and implemented for improv-
ing the network service quality, lifetime, reducing energy 
consumption, and achieve rational utilization of limited 
resources. In this paper, a Hybrid Sand Cat Swarm Opti-
mization Algorithm-based Reliable Coverage Optimiza-
tion Strategy (HSCOARCS) is proposed for preventing the 
issue of coverage redundancy and coverage blind areas, and 
maximally optimize the sensor node deployment location 
to achieve reliable sensing and monitoring of target area. 
This proposed HSCOARCS is implemented over a HWSN 
coverage mathematical model which represents a problem 
of combinatorial optimization. The hybridization of Sand 
Cat Swarm Optimization Algorithm (SCSOA) is achieved 

for enhancing the speed of the global convergence with the 
initial population achieved using the method of Gaussian 
distribution. It targets on the optimization objectives that 
aids in minimizing the network costs and improve its cov-
erage. The simulation results of the proposed HSSCSOA 
confirmed better network reliability of 21.38%, network 
coverage of 19.76%, and minimized energy consumption of 
17.92% with different number of sensor nodes on par with 
the benchmarked schemes used for comparison.

Keywords  Heterogeneous wireless sensor networks 
(HWSNs) · Network coverage · Sand Cat Swarm 
Optimization Algorithm (SCSOA) · Gaussian distribution

1  Introduction

Wireless Sensor Networks (WSNs) represents a new network 
and computing model which comprises of highly intelligent, 
expensive and tiny devices termed as sensor nodes in the 
network [1]. This WSNs consists of different sensor nodes 
which establishes a reliable network structure through the 
help of wireless communication technology [2]. It is useful 
for monitoring and detecting the events occurring in the core 
areas of target that includes the applications of smart home, 
mobile target tracking, military monitoring, environmental 
detection and urban monitoring [3]. However, weak sensing 
range and high network cost are two important limitations of 
the sensor nodes that introduces maximized degree of chal-
lenges during the process of routing in WSNs [4]. During the 
deployment of sensor nodes, redundancy need to be prevented 
for enhancing the objective of coverage in WSNs. Thus opti-
mization of sensor nodes’ coverage is a crucial issue in WSNs 
since the aspect of network coverage possesses a significant 
impact over the performable of the network [5]. This coverage 

 *	 J. David Sukeerthi Kumar 
	 jdsk22@gmail.com

	 M. V. Subramanyam 
	 principal@srecnandyal.edu.in

	 A. P. Siva Kumar 
	 sivakumar.cse@jntua.ac.in
1	 Research Scholar, Department of CSE, JNTUA​, 

Ananthapuramu, Andhra Pradesh 515002, India
2	 ECE Department, Santhiram Engineering College, Nandyal, 

Andhra Pradesh 518501, India
3	 Department of CSE, JNTUA College of Engineering 

(Autonomous) , Ananthapuramu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-024-02163-8&domain=pdf


	 Int. j. inf. tecnol.

optimization concentrates on the aspect of improving the net-
work area of monitoring with just the least number of sensor 
nodes deployed in the network by minimizing the number 
of blond spots. The sensor nodes are typically dispersed at 
random throughout the entire region of monitoring such that 
events in the environment could be monitored in close for 
achieving reactive decision-making process [6]. But the ran-
dom deployment of sensor nodes has the maximized probabil-
ity of introducing redundancy and high node density which 
in turn results in poor network coverage [7]. This poor net-
work coverage has the probability of further deteriorating the 
monitoring effectives in WSNs. In heterogeneous WSNs, the 
dimension of connectivity and coverage are potential twins 
of evaluation indicators which is highly useful for identifying 
whether the real time data could be facilitated to the users 
through the inter-cooperation of sensor nodes [8]. Diversified 
number of existing research contributed towards optimization 
of heterogeneous WSNs mainly concentrated on coverage and 
ignored or overlooked the aspect of network connectivity effi-
ciency [9]. Hence, a reliable sensor node deployment method-
ology need to be practically developed and implemented for 
achieving better balancing of load during data transmission 
inside WSNs and at the same time increases the service qual-
ity and energy efficacy in WSNs [10].

The sensor nodes’ coverage optimization represents a 
typical NP-hard problem since it has to handle the impact 
of coverage characteristics and network resources. Thus uti-
lizing the classical mathematical optimization method such 
that gradient descent could not solve the problem effectively 
with efficiency [11]. From the recent years, the problem of 
sensor nodes’ network coverage problem in WSNs have been 
explored by a quantifiable number of researchers using the 
swarm intelligent algorithms that includes simulated anneal-
ing algorithm (SA), artificial bee colony algorithm (ABC), 
particle warm optimization algorithm (PSO), genetic algo-
rithm (GA), and so on [12]. These swarm intelligent algo-
rithms are widely used for addressing the issue of sensor 
nodes’ coverage optimization problem since it possesses 
only few limitations for the mathematical characteristic 
of the problem with maximized degree pf adaptation [13]. 
Inspite of above-mentioned swarm intelligent algorithms 
being successful in optimizing the problem of network cov-
erage in WSNs in reality such that they focus on achieving 
approximate optimal solution compared to the best feasible 
solution. Further, the search methodologies adopted in the 
swarm intelligent algorithms are completely greedy. Most 
of the swarm intelligent algorithms used for sensor nodes’ 
coverage optimization failed in handling the imbalance 
between local and global search process. Most of the uti-
lized swarm intelligent algorithms faces the challenges that 
needed to be addressed for achieving rapid convergence of 
the algorithm, improved population diversity and preventing 
the solution from entering into the local point of optimality. 

The proposed research formulates and contributes a Hybrid 
Sand Cat Swarm Optimization Algorithm-based Reliable 
Coverage Optimization Strategy (HSCOARCS) for optimiz-
ing the coverage and connectivity of sensor nodes in WSNs.

1.1 � Major contributions

The major contributions of the proposed HSCOARCS 
scheme is listed as follows.

	 (i)	 It specifically used a Hybrid Sand Cat Optimization 
Algorithm (HSCOA) for improving the quality of the 
population such that maximized network coverage and 
connectivity is achieved.

	 (ii)	 It also included into SCOA for improving the objec-
tive of faster convergence such that it prevents the 
algorithm from falling into a local point of optimality 
such that search space is widened during the aspect of 
sensor nodes’ coverage optimization.

	(iii)	 It is proposed with the well-balanced potential of 
exploitation and exploration offered by SCOA which 
helped in better network coverage even under the 
existence of obstacles in the network.

	(iv)	 The performance evaluation is conducted using cov-
erage ratio and connectivity efficiency with different 
number of iterations.

In addition, Fig. 1 presents the Overall View of the pro-
posed HSCOARCS scheme contributed for guaranteeing 
Reliable Coverage Strategy in heterogeneous WSNs.

The remaining section of the paper is organized as follows. 
Section 2 presents the comprehensive review of the existing 
swarm intelligent algorithms-based sensor nodes’ coverage 
optimization techniques contributed to the literature over the 
recent years with the merits and limitations. Section 3 details 
the WSN coverage model and the background of the adopted 
Hybrid SCOA algorithm used for achieving better sensor 
nodes’ coverage optimization. Section 4 demonstrates the 
results and discussion of the proposed HSCOARCS scheme, 
and the benchmarked approaches evaluated in terms of net-
work coverage and connectivity ratio with different number 
of iterations, Sect. 5 concludes the paper with major contri-
butions and future scope of enhancement.

2 � Related work

In this section, the comprehensive review of the existing 
swarm intelligent algorithms-based sensor nodes’ coverage 
optimization techniques contributed to the literature over 
the recent years is presented with the merits and limitations.

Yao et  al. [14] have proposed an improved coverage 
mechanism for WSNs using Virtual Force-directed Ant Lion 
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Optimization (VF-IALO) algorithm. This ALO-based algo-
rithm involves reassignment of ALs with dynamic reduction 
of number of ALs. It includes a factor for continuous ant 
arbitrary walk boundary reduction. It limits random walk 
range of ants to decrease the moving node distance during 
secondary positioning. It introduces virtual force incorporat-
ing force of neighbouring nodes, gravity of grid point along 
with repulsion of boundary. It updates the co-efficients rep-
resenting weights of virtual force, AL as well as elite AL to 
dynamically modify the location of ant. It aids in preventing 
the algorithm from falling into local optimum, accelerating 
convergence speed as well as enhancing the overall opti-
mization capability of the algorithm. Zhu and Wang [15] 
have dealt with the irregular node distribution that leads to 
issues of increased and incomplete coverage of areas that are 
monitored. To handle this challenge, an optimization model 
for dealing with network coverage is proposed along with 
coverage optimization scheme using Improved hybrid Weed 
algorithm (LRDE_IWO). Initially, in seed diffusion phase, 
it employs tangent function-based Standard Deviation (SD) 
of normal as step size of seed for balancing global and local 
searches of weed algorithm. To overcome the issue of early 
convergence, it uses a disturbance scheme which combines 
improved Levy flight and dynamic Random walk (LR) for 
seed breeding. In invasive weed phase, it involves Differen-
tial Evolution (DE) approach for optimising the operation 
and speeding up convergence. The proposed weed algorithm 
optimises coverage. The proposed scheme offers improved 
coverage rate, superiority as well as validity in contrast to 
standard schemes for optimising coverage in WSNs.

Then Zhang et al. [16] have proposed an optimized Grey 
Wolf Algorithm (GWA) based on Simulated Annealing (SA) 
in which the nodes involve increased aggregation degree and 
reduced coverage rate when arbitrarily deployed. Initially, 
it establishes a mathematical model to handle coverage 

optimization in WSNs. Secondly, it includes SA in GWOA 
once siege behavior finishes and before GW is updated to 
improve global optimization capability and convergence 
rate of GWA. It is seen that the enhanced SA optimised 
GWA is applied to coverage optimization of WSNs. It 
offers improved optimization speed, network coverage and 
lifetime along with reduced energy consumption. Ma and 
Duan [17] have focussed on effectively increasing node cov-
erage of WSN. Enhanced Butterfly Optimization Algorithm 
(H-BOA), a hybrid strategy is proposed. It introduces Kent 
Chaotic Map (KCM) for initialising population to assure 
unvarying search space. It also includes an inertial weight 
that is based on modified Sigmoid function to balance global 
as well as local search capacities. It uses elite-fusion as 
well as elite-based local mutation approaches to improve 
diversity. It involves perturbation that is based on normal 
distribution to lessen likelihood of algorithm dropping into 
premature convergence. It also introduces SA to assess the 
quality of solution and enhances algorithm’s capability that 
is helpful in moving out of local optimum. The proposed 
scheme offers improved network coverage in contrast to opti-
mization algorithms.

Liang et al. [18] have proposed Adaptive Cauchy Vari-
ant Butterfly Optimization Algorithm (ACVBOA) for effi-
ciently enhancing network coverage in Soil Moisture WSNs 
(SMWSNs). It involves Cauchy variants as well as dynamic 
factors for enhancing global as well as local search capabili-
ties of ACBOA. Further, it offers a coverage optimization 
model which includes node coverage along with network 
QoS. Performance is analysed in terms of fairness for cer-
tain population size and number of iterations. The proposed 
scheme offers improved convergence rate. Dao et al. [19] 
have proposed a system for offering ideal node coverage of 
unstable WSN distribution while performing arbitrary posi-
tioning depending on Enhanced Archimedes Optimization 

Fig. 1   Overall view of the pro-
posed HSCOARCS scheme
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Algorithm (EAOA). It collectively takes network coverage 
from numerous sub-areas. As AOA is inefficient in deal-
ing with complex scenarios, EAOA adapts equations using 
reverse learning as well as multi-direction schemes. The 
proposed scheme offers better range of coverage as well as 
convergence speed.

Chawra and Gupta [20] have focussed on finding ideal 
wakeup schedule for nodes with acceptable coverage as well 
as connectivity demands. The existing schemes focus on 
only coverage or connectivity. Only a few mechanisms take 
both into consideration, hence do not offer an ideal solution 
and get struck into local minima. An enhanced Memetic 
Algorithm-based energy-efficient wakeup scheduling mecha-
nism is propounded based on connectivity, energy, coverage 
and ideal wakeup schedule. It forms new mutation, crosso-
ver, as well as local search operators. The proposed mech-
anism better offers better results based on coverage ratio, 
ideal quantity of live nodes as well as network lifespan. The 
existing algorithms do not consider optimising energy or 
enhancing network coverage together with reducing equip-
ment cost. Zulfiqar et al. [21] have proposed bio-stimulated 
algorithm that mimics the digestive system of ruminant ani-
mals. These animals consume huge quantity of raw food 
and produce ideal value of food which is filled with energy. 
The propounded algorithm focuses on enhancing network 
coverage offering optimized energy and node distribution 
that improves device lifespan. It enhances network cover-
age thus offering optimized energy value without increase 
in the quantity of sensors deployed in the network. It offers 
improved more network coverage and enhanced lifespan 
involving same equipment cost.

Hanh et al. [22] have designed a multi-Objective design 
for Maximizing lifetime with Target Coverage (MO-MMTC) 
that deals with fluctuation of energy among mobile nodes 
after every movement. Enhanced Non-dominated Sorting 
Genetic Algorithm II (ENSGA-II), a multi-population GA 
is proposed to handle this issue. It determines numerous 
ideal movement plans that offers optimised energy balance 
in mobile WSNs. It simultaneously reduces the total and 
maximal movement distance of sensors. A 2-phase frame-
work is proposed for handling the issue. It uses geometri-
cal computing schemes to handle the initial stages. Multi-
objective optimization-based bi-population GA is proposed 
for dealing with relocation involving coverage constraints. 
Heterogeneous WSNs (HWSNs) demand sufficient network 
coverage along with connectivity. Zeng et al. [23] have pro-
posed Improved Wild Horse Optimizer (IWHO) algorithm 
to deal with this issue. It improves population quality by 
using SPM CM during initialization. It hybridises WHO 
and Golden Sine Algorithm (Golden-SA) to enhance accu-
racy and offer quicker convergence. IWHO aids in escaping 
from local optimum as well as broadening search space by 
employing Opposition-Based Learning (OBL) and Cauchy 

variation. IWHO offers better optimization capacity. The 
proposed scheme offers improved sensor connectivity with 
coverage ratios.

Wang et al. [24] proposed an enhanced Grey Wolf Opti-
mization Algorithm with multi-strategy for achieving effi-
cient coverage and energy conservation in WSNs. This 
IGWOAMS was proposed as an energy efficient network 
coverage optimization solution which improved coverage 
area and minimized energy consumptions. This model used 
a sort-driven hybrid opposition-based learning and higher-
order multinomial sensing models for addressing the number 
of obstacles in the network area. It was proposed a better 
approach for sustaining scalability and enhanced connectiv-
ity with the option of minimizing the node deployment costs 
in the network.

Ma et al. [25] proposed a Reptile Search algorithm-based 
network coverage optimization method This network cover-
age was proposed with the idea for tracking the movement 
of each optimal CHs in the network during each round of 
lifetime. It included the strategy of distribution estimation 
for comprehensive determination of all information associ-
ated with the sensor nodes deployed in the entire network. 
This RSA-based network coverage method when tested with 
different optimization test benchmarked function confirmed 
better convergence and optimal results. The experiments 
conducted using different influential factors and scenarios 
confirmed the efficiency of this approach in optimization the 
network coverage facilitated by the deployed sensor nodes 
using the random initialization of search agents.

Yue et al. [26] proposed a Monarch Butterfly Optimi-
zation Algorithm (MBOA)-based network coverage solu-
tion using the model that included the factors of coverage, 
energy consumptions and operational performance during 
the determination of optimal results. It facilitated potential 
sensor placement for guaranteeing required coverage in the 
network. It used the parameter of butterfly adjustment ratio 
as the iteration number for the objective of preventing local 
extremes, increasing the search space and rapid up the rate of 
convergence. It divided the population of search agents into 
particle swarm update, butterfly adjustment and migration 
for the process of attaining hybrid update mechanism. The 
This MBOA-based network coverage method when tested 
with different optimization test benchmarked function con-
firmed better convergence and optimal results. The results 
of this MBOA-based network coverage algorithm confirmed 
better results in terms of node utilization and minimized 
network expenses.

Kurian et al. [27] implemented a Hill Climbing and simu-
lated annealing integrated the binary ant colony algorithm 
(HCSABACA) for addressing the issue of energy efficiency 
during the process of achieving maximized network cov-
erage. This approach was modelled based on the concept 
of pheromone trails and foraging behaviour of ants while 
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determining the location of sensor nodes deployed in the 
network. This method specifically adopted HC and SA for 
refining the solution that are determined initially during the 
inclusion of BACA over the initial part of the network life-
time. This hybridisation of HC and SA balanced the trade-
off between exploration and exploitation such that superior 
solutions are only determined during the process of network 
coverage. The results of this HCSABACA approach con-
firmed better energy potential coverage in the two-dimen-
sional network field (Table 1).

3 � Proposed Hybrid Sand Cat Swarm 
Optimization Algorithm‑based Reliable 
Coverage Strategy (HSCOARCS)

3.1 � Network coverage model of WSNs

Let us consider an area of monitoring which is repre-
sented using a two-dimensional region with the dimen-
sion M × N. In this area of monitoring, number of sensor 
nodes are deployed randomly which is represented using 
NS(i) = {n1, n2,…… .., nm} . If the sensor nodes in this moni-
toring area are heterogeneous in nature with different radius 
of sensing (Rs) and communication radii which is equivalent 
to Rc and Rc ≥ 2Rs . At the same time, the sensor nodes is 
determined to move such that the position cam be instantly 
updated. Then the Euclidean distance between the random 
sensor node and targeted sensor node is represented using 
Eq. (1)

where, ( x(i), y(i) ) and ( x(j), y(j) ) represents the random sensor 
nodes coordinates and targeted sensor nodes coordinates.

Then the probabilities related to the joint perception of 
random and targeted sensor nodes is determined based on 
Eq. (3)

At this juncture, the coverage ratio being a significant 
indicator of heterogeneous WSN problem of deployment is 
computed based on Eq. (4)
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The degree to which the sensor nodes’ coverage gets 
evaluated depends on coverage efficiency The maximized 
coverage efficiency represents that only few numbers of sen-
sor nodes are used for achieving the same coverage area. The 
coverage efficiency is computed based on Eq. (5)

where, NS(Area(i) represents the area enveloped by each of 
the ith sensor nodes deployed in the network of area M × N.

The ratio of connectivity which represents the proportion 
of connected paths to the number of maximized connected 
paths determined between the sensor nodes is determined 
based on Eq. (7)

In this situation, the number of paths determined between 
two specific sensor nodes is determined to be n(n − 1)/2.

Hence, the objective function for the proposed model 
depending on sensor node coverage and connectivity is 
determined based on Eq. (8)

Such that W1 +W2 = 1

In this context, the weights [28–31] associated with W1 
and W2 related to two functions F1 and F2 after several 
number of experiments is determined to be 0.8 and 0.2, 
respectively.

3.2 � Primitives of Sand Cat Swarm Optimization

The adopted Sand Cat Swarm Optimization (SCSO) algo-
rithm mimics the foraging nature of Sand Cats (SCs) that 
are found in deserts. It is efficient in identifying noise of low 
frequency to localise prey, be it under or above the ground. 
It determines the prey by taking optimal value seen in explo-
ration space. The Search Agent (SA) constantly examines 
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search space based on position updates, finally gets nearer to 
location of optimal value. It includes prey search and attack 
schemes. The scheme designed to handle the search for prey 
simulates SCs foraging for prey. The SC population is given 
by,

where,
�⃗P—Position vector of SA; t—Present iteration; �⃗Pb—Posi-

tion of best candidate; �⃗Pc—Current position of SA; r—Range 
of SCs’ sensitivities to low frequency noise

where, r⃗c—Common sensitivity range linearly decreased 
from 2 to 0

where, ItrCurr—Current iteration; ItrMax—Maximum itera-
tions; sM = 2.

Further, SCs observe low-frequencies of 2 kHz. At the 
end of prey search, the algorithm attacks it, and the attack 
method for SCs population is shown below.

where, θ—Random angle in range [0, 360]; cos θ—Values 
in range [−1, 1]; �⃗Prand—Random location produced by best 
and current locations.

Every member in population moves in varying circular 
directions. Every SC selects an arbitrary angle. SCs circum-
vent local optimum traps while moving toward prey location. 
Random angle in Eq. (5) facilitates influencing hunt as well 
as direction of search of SA.

3.3 � Exploration and exploitation

SCSO balances exploration as well as exploitation stages 
using dynamic factor ( ��⃗R ) that is given by,

where, ‘ ⃗rc’—Linearly decreases from 2 to 0 with increase 
in number of iterations.

The updated description of location of each SC during 
exploration and exploitation stage is given by:

(9)�⃗Pt+1 = r⃗.
(
�⃗P
b

t
− rand(0,1). �⃗P

c

t

)

(10)r⃗ = r⃗c × rand(0,1)

(11)r⃗c = sM −

(
sM × ItrCurr

Itrmax

)

(12)�⃗Prand =
||||rand(0,1).

�⃗P
b

t
− �⃗P

c

t

||||

(13)�⃗Pt+1 =
�⃗P
b

t
− r⃗. �⃗Prand.cos𝜃

(14)R = 2 × r⃗c × rand(0,1) − r⃗c

where, SA attacks prey when |R| < 1 ; else SA globally 
searches for promising solutions.

Every SC has its own search radius in exploration stage, 
thereby preventing the algorithm from dropping into local 
ideal solution.

4 � Discussion

SCSO has the ensuing features:

–	 It has a simple structure involving less number of factors 
that is easy for implementation

–	 It considers position of ideal solution as prey. It does not 
lead to search stagnation by following angle

–	 It is capable of balancing exploration as well as exploita-
tion stages to increase the algorithm’s convergence accu-
racy

–	 It retains location of global optimal solution in every iter-
ation, and decrease of population quality has no impact 
on prey location

–	 Every member in the population moves in diverse direc-
tions which guarantees that the algorithm can move 
toward prey offering increased convergence accuracy

SCSO has some demerits:

–	 In case of multi-peak functions, it easily falls into 
local optimal solutions which demands enhancement 
approaches to be included to reinforce transition amid 
exploration as well as development stages of algorithm 
and assign a sensible sensitivity range lessening approach

–	 Quality of arbitrarily produced populations is diminished 
as they are in want of diversity

–	 There are chances for presence of insufficient commu-
nication among individuals along with global optimal 
solution which guides the population to cause search 
stagnation

Algorithm 1: SCSO Algorithm

Initialize population
Determine fitness function
Set r, rc, R
while (t ≤ itrmax)

for (every agent)

(15)�⃗Pt+1 =

⎧
⎪⎨⎪⎩

r⃗.
�
�⃗P
b

t
− rand(0,1). �⃗P

c

t

�
, �R� > 1

�⃗P
b

t
− r⃗. �⃗Prnd.cos𝜃, �R� ≤ 1
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Obtain an arbitrary angle ‘ � ’ in the range [0°, 360°]
if (|R| ≤ 1) then
Update location of SA using Eq. (13)
else
Update location of SA using Eq. (9)
end /*if*/
end /*for*/
t = t + 1
end /*while*/

4.1 � Stochastic difference‑based SCSO with elite 
collaboration

4.1.1 � Non‑linear periodic modification approach

For population-based optimization schemes like SCSO, a 
stable shift amid global exploration as well as local exploi-
tation (R) is essential for optimising the algorithm. In early 
iterations, improved global exploration capability is vital for 
maintaining diverse population distributions. In later itera-
tions, improved local exploitation ability is indispensable 
for ensuring fine exploitation in local scale and accelerating 
algorithm convergence.

‘R ’ aids in finding the switch between exploitation 
and exploration, and indicates algorithm’s capability to 
determine the finest. This arbitrary value lies in the range [
−2rc, 2rc

]
 , where ‘ ⃗rc ’ drops from 2 to 0 by using linear 

iteration.

When |R| > 1 , location of SC is modified at present and 
prey arbitrary locations amid present and prey locations 
conforming to algorithm’s global detection stage
When |R| ≤ 1 , cat targets the prey conforming to algo-
rithm’s local exploitation

From Eq. (11), it is evident that ‘ ⃗rc ’ decreases linearly 
in single-period. As this process is iteratative, it becomes 
erratic with natural rule which demands several rounds of 
co-operative prey capture for population, leading to lin-
ear conversion of varying range of ‘R’. So the algorithm 
involves a non-linear periodic modification approach for 
‘ ⃗rc ’ to define prey hunting performed by the population. 
Precisely, a logarithmic function that is used to represent 
non-linear periodicity is shown below:

where, t—Present amount of iterations; itrmax—Maximum 
quantity of iterations; e—Natural constant; SM = 2.

Based on Eq.  (6), the value of ‘R’ decays slowly in 
initial iterations which is faster in later iterations. The 

(16)r⃗c = SM − SM × ln

[
1 +

itrc

itrmax

(e − 1)3
]

population performs sufficient global exploration as well 
as improves population diversity in initial iteration; in 
latter iteration, algorithm may converge faster to attain 
a balanced and steady switch among global exploration 
(initial iteration) and local exploitation (late iterations). It 
improves accuracy of optimization as well as algorithm’s 
convergence speed.

4.1.2 � Pseudo‑oppositional and pseudo‑reflection learning 
schemes

OBL improves diversity of population, accuracy as well 
as convergence speed of smart optimization algorithms 
using synchronised consideration of candidate entities 
along with opposition solutions. In correlation model, 
location of entity ( i ) in d-dimensional space is given by 
Xi = (X1

i
, X2

i
… .Xd

i
) ; xi,j ∈

[
Lj, Uj

]
[
Lj, Uj

]
—Range values in j-dimensional space; 

X�
i
=
(
x�1
i
, x�2

i
… .x�d

i

)
— E n t i t y ’s  o p p o s i n g  p o i n t ; 

X��
i
=
(
x��1
i
, x��2

i
,… .x��d

i

)
—Entity’s Pseudo-Opposite Point 

(POP); X���
i

=
(
x���1
i

, x���2
i

,… .x���d
i

)
—Entity’s Pseudo-Reflec-

tion Point (PRP)

The PRP is always closer to Candidate Solution (CS) 
when compared to POP, and may be locally exploited com-
pletely in CS’ neighbourhood. In case, the POP is away 
from the location of CS, then wider global exploration can 
be obtained and unexplored space of CS can be opened.

When |R > 1| , the prey may escape from encirclement, 
and hence the SC should enlarge search range to seize prey. 
To handle this, PO Learning (POL) scheme is included in 
location update phase of global search. As POP is distant 
from CS location, once PO solution of present solution in 
the area far from CS is generated, the entity may attain a 
broader global search and increase the area not examined 
by CS. This improves the population diversity and holds the 
original and POS into population of ensuing generation by 
using greedy selection approach. Let ‘ Xt+1

i,old
 ’ be the location 

update in global search. After including POL, the location 
update is given by,

(17)x
�j

i
= Li+Uj − x

j

i

(18)x
��j

i
= rand

[
Li+ Uj

2
, x

�j

i

]

(19)x
���j

i
= rand

[
x
j

i
,
Li+ Uj

2

]
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By including POL and PRL schemes in local exploitation 
and coalescing diverse search approaches of entities, it acceler-
ates search efficacy of SCSO algorithm and enhances universal 
convergence capability.

4.1.3 � Stochastic variation (SV) with elite collaboration

Elite collaboration approach is employed in heuristic algo-
rithms. PSO employs dimensional elites as well as population 
elites for population guidance. Ideal guidance is repetitious 
and does not offer significance to intelligence of population. 
The GWO algorithm performs association of 3 ideal GW posi-
tions. The chosen Elites have similar weights which mean that 
every elite has similar location update for GW. The selected 
elites do not involve any weight variation as every elite has 
similar role weight on location update of GW leading to non-
ideal location update of elite collaboration. Hence, an elite 
association approach involving elite weights is proposed to dif-
ferentiate elite entities’ roles on updating population location. 
Furthermore, the elite approach overcomes the challenge per-
taining to communication lack amid population entities during 
iterations and prevents the algorithm from dropping into local 
optimum solutions.

There is a likelihood that the elite association may fail in 
latter iterations when elite locations are comparatively uni-
form. T-distribution-based random disparity is included to 
increase the arbitrariness of elite association approach. Elite 
SCs are chosen for adaptation and they collaborate to gener-
ate a fresh SC location to direct the process of searching. Elite 
SCs are allocated varying weights depending on the value of 
the objective function. Smaller the cost, greater is the weight. 
Weights are assigned as shown below:

(20)Xt+1
i

=

⎧
⎪⎪⎨⎪⎪⎩

XOld
it+1

f

�
XOld

it+1

�
< f

�
X���

it+1

�

X���
it+1

f
�
XOld

it+1

�
≥ f

�
X���

it+1

�

(21)X���
it+1

=
(
X���

i,1.Oldt+1
… ..X���

i,1d.Oldt+1

)

(22)X���
i,j.Oldt+1

= rand

[
XOld

i,jt+1
,

(
Li + Uj

2

)]

(23)W1
gb

=
1

2
−

f(X1
gb
)

2
(
f
(
X1

gb

)
+ f

(
X2

gb

)
+ f

(
X3

gb

))

where, W1
gb

 , W2
gb

 , W3
gb

—Elite weights; Xlead—Global opti-
mal solution location following collaboration of elites.

Variation of locations of optimal solution after collabo-
ration of elites using SV strategy is given by,

where, X′
lead

—Optimal location of solution after variation; 
t(itr)—Present amount of iterations for t-distribution of free-
dom degrees.

SV with collaboration of elites guides the search by 
using ‘ X′

lead
 ’ instead of ideal solution ( ��⃗Xb ) in Eqs. (1) and 

(5). At the beginning of iteration, t-distribution moves to 
Coasey distribution which is smoother. The t-distribution 
operator takes huge values involving increased probabil-
ity along with huge steps of location variation. The algo-
rithm involves improved universal exploration capability. 
In latter iterations, t-distribution looks like typical normal 
distribution which is more focused. The operator takes 
small values involving high probability. Further, step size 
of position variation is lesser as it is favourable for algo-
rithm convergence.

Algorithm 2: SCOA

Initialize population
Determine fitness function
Set r, rc, R
While (t ≤ itrmax)
for (Every agent)
Mutate present ideal solution
Modify ideal solution using Eq. (22)
Obtain an arbitrary angle ‘ � ’ in the range [0°, 360°]
if (|R| ≤ 1) then
Modify SA location depending on Eq. (23)
else
Modify SA location depending on Eq. (20)
end /*if*/
end /*for*/
 t+ = 1

end /*while*/

(24)W2
gb

=
1

2
−

f(X2
gb
)

2
(
f
(
X1

gb

)
+ f

(
X2

gb

)
+ f

(
X3

gb

))

(25)W3
gb

=
1

2
−

f(X3
gb
)

2
(
f
(
X1

gb

)
+ f

(
X2

gb

)
+ f

(
X3

gb

))

(26)Xlead =
W1

gb
. X1

gb
+W2

gb
. X2

gb
+W3

gb
.X3

gb

3

(27)X�
lead

= Xlead + Xlead.titr
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4.2 � The classical seagull optimization algorithm

Recently, SOA is studied by several scholars [7, 8]. SA 
represents a seagull in search space. Every SA slowly 
approaches global optimal solution by mimicking migra-
tion as well as attacking behaviours.

4.2.1 � Migration behaviour

It aids SOA to widely explore the whole search space. In this 
stage, SA satisfies the ensuing conditions:

•	  Avoiding Collisions: Collision avoidance deals with 
increasing the distance amid neighbouring SAs to over-
come collisions as shown in Eqs. (28) and (29).

where, SA = 1,2,… Size; Size—Population size; Itr—
Present iteration; LItr

SA
—Present location of SA; CSA—

Location of SA after evading collision; ItrMax—Maxi-
mum quantity of iterations; fc—Constant; A—Movement 
of SA.

	   During every iteration, ‘ A ’ decreases linearly from ‘ fc ’ 
to 0.

•	 Direction of Best SA: Once collision is avoided, SAs 
move along best SA as shown in Eqs. (30) and (31).

where, LItr
SA

—Best SA in population; DSA—Direction of 
best SA; B—Responsible for balancing exploration as 
well as exploitation; r—Random number in range [0,1]]

•	 Searching for best SA: The SA updates the location 
depending on best SA.

where, DistSA—Distance between SA and best SA.

4.2.2 � Attacking behaviour

As seagulls attack the prey around them, flight trajectory 
approaches a spiral curve. In the planes (X, Y, Z), attacking 
behaviour is observed as shown below.

(28)CSA = A.LItr
SA

(29)A = fc −

(
itr

(
fc

ItrMax

))

(30)DSA = B
(
LItr
Best

− LItr
SA

)

(31)B = 2.A2.r

(32)DistSA = ||CSA + DSA
||

(33)X� = rad.Cos(k)

where, k—Arbitrary number in range [0, 2π] signifying 
attack angle; rad—Spiral flight trajectory radius; u and v—
Constants which describe spiral flight trajectory shape; LItr

SA

—Best solution that updates the location of other SAs.

4.3 � SOA based on gaussian distribution (GD)

SOA is an efficient optimizer that is capable of handling 
challenging problems with more number of constraints. 
But in case of Chemical Dynamic Optimization Prob-
lems (CDOPs), SOA finds it tedious to approximate opti-
mal control flight. GD-based SOA (GSOA) is propounded 
for CDOPs. GSOA offers an initialization concept which 
depends on GD and Dimension-Order Mutation Operator 
(DOMO) that effectively enhances the capability of SOA to 
handle CDOPs.

4.3.1 � GD‑based initialization

Practically, control mechanism must have continuity, and 
the one with minor fluctuation is found to be in-line with 
features of CDOP [9, 10]. SOA is based on the concept of 
conventional random initialization to produce primary popu-
lation that makes every region in search space to have a par-
ticular probability for producing initial entity. Nevertheless, 
this concept is not applicable for solving CDOPs as the idea 
involves some amount of blindness as well as uncertainty. 
It produces chaotic entities and it is observed that the vari-
ance amid neighbouring dimensions in the entity is huge. 
Such entities are not typically in-line with the endurance of 
CDOP. To enhance the quality of preliminary population, an 
initialization concept based on GD is proposed. This concept 
efficiently employs the features of GD to produce initial pop-
ulation that can significantly enhance the population quality.

The steps are detailed below.
SA initialization

Initially, ‘ l1
SA

 ’ is arbitrarily produced in control 
domain[U

⋅

min
, U

⋅

max
] using Eq. (39).

Next, ‘ l2
SA

 ’ is produced using Eq. (40)

(34)Y� = rad.Sin(k)

(35)Z� = k.rad

(36)rad = u.ekv

(37)LItr
SA

= DistSA.X
�.Y�.Z�

(38)LSA =
(
l1
SA
, l2
SA

… .lN
SA

)
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Let, �2
SA

—Random number produced from a GD having 
mean � = l1

SA

Standard deviation, � =
U
⋅

max
−U

⋅

min

10

If �2
SA

∉ [U
⋅

min
, U

⋅

max
] 

Equation (30) is used for producing ‘ l2
SA

’.
‘�2

SA
 ’ continues to be an arbitrary number produced from 

a GD having mean μ = l1
SA

 and ‘ σ ’ has the same value, till 
�2
SA

∉ [U
⋅

min
, U

⋅

max
]

Similarly, l3
SA
, l4
SA

… .lN
SA

 are produced in sequence.

where, SA = 1, 2,… . Size ; Size—Size of population; 
I = 2, 3,… . N ; N—Search space dimension; lI

SA
—Value of 

the ‘ lth ’ dimension of SA

lI
SA

—‘Ith ’ dimension of SA; U
⋅

max
, U

⋅

min
—Upper and lower 

bounds of control domain; r—Arbitrary number in the range 
[0,1]; �2

SA
—Arbitrary number produced from a GD using 

� = lI−1
SA

An arbitrary number produced from GD N
(
�, �2

)
 has 

increased probability to be within [� − 3�,� + 3�]

Assign the value of ‘ � ’, initialization based on GD cannot 
avoid producing huge quantity of chaotic initial entities but 
also has reduced probability in generating entities with huge 
fluctuation to circumvent missing possible best individual 
with huge fluctuation.

4.3.2 � DOMO based on GD

In case of CDOPs’ solution, SOA is likely to drop into local 
optimum as population evolution is directed by best SA. In 
complex search space involving high dimensions, the chosen 
SA may drop into local optimum leading to deprived popula-
tion quality. To enhance algorithm’s capability for handling 
CDOPs, DOMO based on GD is proposed. Mutation is a 
common enhancement approach used in optimization algo-
rithms that can efficiently improve efficiency of algorithms 
to move out of local optimum as well as accuracy [11–13]. 
Focussing on the features of CDOPs, GD-based DOMO per-
forms dimension-wise Gaussian mutation on best SA based 
on dimension order to enhance algorithm’s global search 

(39)l1
SA

= (U
⋅

max
− U

⋅

min
) ⋅ rd + U

⋅

min

(40)

⎧
⎪⎪⎨⎪⎪⎩

II
SA

= �I
SA

�I
SA

N

⎛⎜⎜⎝
lI−1
SA

,

�
U
⋅

max
− U

⋅

min

10

�2⎞⎟⎟⎠

LSA =
(
l1
SA
, l2
SA

… .lN
SA

)

performance. For a DOP named ‘max J’, the steps of GD-
based DOMO are listed below:

–	 LItr
Best

=
(
litr
Best,1

, litr
Best,2

,… .litr
Best,N

)
 shows the best SA at 

‘ itrth ’ iteration, and performance index is represented as 
‘ Jitr

Best
 ’. Litr

nb
=
(
litr
nb,1

, litr
nb,2

,… .litr
nb,N

)
 signifies fresh best SA.

–	 For Litr
Best

, , the ‘ lth’dimension mutates to produce mutated 
SA Litr,1

Mut
=
(
l
itr,1

Mut
, l
itr,2

Best
,… .l

itr,N

Best

)
. The value ‘ litr,1

Mut
 ’ of the 

I = 1st dimension of ‘ Litr,1

Mut
 ’ is determined using Eq. (36). 

I f  l
itr,1

Mut
> U

⋅

max

(
l
itr,1

Mut
< U

⋅

min

)
,  s e t 

l
itr,1

Mut
= U

⋅

max

(
l
itr,1

Mut
= U

⋅

min

)
. The remaining dimensions of 

‘ Liter,1

Mutant
 ’ are equal to values of conforming dimensions 

of ‘ Litr
Best

’.
–	 Determine performance index ‘ Jitr

Best
 ’ of ‘ Litr,1

Mut
 ’. If 

J
itr,1

Mut
> Jitr

Best
 , set litr

nb,1
= l

itr,1

Mut
 . If Jitr,1

Mut
≤ Jitr

Best
 , set litr

nb,1
= l

iter,1

Best

–	 For ‘ Litr
Lest

 ’, the ‘ 2nd ’ dimension mutates to produce 
mutated SA, Litr,2

Mut
= (liter,1

Best
, l
itr,2

Mut
,… .l

itr, N

Best
) . Value of ‘ litr,2mut ’ 

of I = 2nd dimension of ‘ Litr,2

Mut
 ’ is computed using 

E q .   ( 4 1 ) .  I f  l
itr,2

Mut
> U

⋅

max

(
l
itr,1

Mut
< U

⋅

min

)
,  s e t 

l
itr,2

Mut
= U

⋅

max

(
l
itr,1

Mut
= U

⋅

min

)
. Values of residual dimensions 

of ‘ Litr,2

Mut
 ’ are equal to values of conforming dimensions 

of ‘ Litr
Best

’.
–	 Determine performance index ‘ Jitr,2

Mut
 ’ of ‘ Litr,2

Mut
 ’. If 

J
itr,2

Mut
> Jitr

Best
 , set litr,2

nb
= l

itr,2

Mut
 . If Jitr,2

Mut
≤ Jitr

Best
 , set litr,2

nb
= l

itr,2

Best
.

–	 Likewise, in relation to dimension order, perform muta-
tion of residual dimensions of ‘ Litr

Best
 ’. Lastly, the fresh 

best SA Litr
nb

=
(
l
itr,1

nb
, l
itr,2

nb
,… .l

itr,N

nb

)
 is got.

where, I = 1,2,…N ; N—Search space Dimension; litr,Imutant—
Value of ‘ Ith ’ dimension of mutated SA 

(
L
itr,I

Mut

)
 ; liter,I

best
—Value 

of ‘ Ith ’ dimension of best SA 
(
Pitr
Best

)
 ; itr—Present iteration; 

ItrMax—Maximum quantity of iterations; �itr
I

—Random num-
ber produced from GD using � = L

itr,I

Best

Moreover, Fig. 2 presents the clustering process included 
into the process of the proposed HSCOARCS scheme.
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5 � Results and discussion

The simulation experiments of the proposed HSCOARCS 
scheme and the benchmarked approaches are conducted 
using the environment which has the configuration of 
Windows 10 Professional, 64-bit OS, Intel(R) Core (TM) 
i5-4210H CPU @2.90 GHz, 8 GB. This implementation of 
the proposed HSCOARCS scheme is conducted using the 
simulation software of MATLAB 2016a. The benchmark 
approaches used for comparing the proposed HSCOARCS 
scheme are ACVBOA, IWHOCOS, EBOA and SAOGWA 
mechanisms. The number of fitness evaluations considered 
in the experiment are unified to make the comparison fair 

between each of the implemented algorithms [32–34]. The 
number of fitness evaluations considered by each of the 
implemented algorithms is 30,000 [35, 36]. Table 2 presents 
the algorithmic parameters considered during the implemen-
tation of the proposed HSCOARCS scheme and the bench-
marked approaches.

5.1 � Comparative results investigation of simulation 
experiment‑1

In this simulation experiment 1, the performance of the pro-
posed HSCOARCS scheme and the baseline approaches are 
compared based on improvement in coverage ratio as speci-
fied in Eq. (4) which is considered as the objective func-
tion of the problem. The algorithms were ren for thirty time 
independently for preventing the possibility of the algorithm 
from being struck into local point of optimality. In specific, 

Fig. 2   Clustering process 
adopted in the proposed HSCO-
ARCS scheme

Table 2   Algorithmic parameters used to implement of the proposed 
HSCOARCS scheme and the benchmarked approaches

Parameters used Values

Monitoring area 100 m × 100 square meters
Number of sensor nodes 50
Distribution of sensor nodes Random
Size of the data packets 0 512 Bytes
Sensing Radius of sensor nodes 10 m
Number of iterations 200
Initial energy of nodes 0.5 Joules and 2.0 Joules 

(Type 1 and 2)

Table 3   Parameter configurations for simulation experiment-1

Parameters used Values

Monitoring area 100 m × 100 
square 
meters

Radius for sensing 10 m
Number of iterations 200
Number of sensor nodes 50
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Table 3 highlights the parameter settings considered during 
the implementation of the proposed HSCOARCS scheme 
and the benchmarked approaches.

In this results investigation, the coverage maps that are 
initially covered by the sensor nodes deployed randomly in 
the monitoring area identified that the number of sensors 
nodes that overlap is more, but with the optimization of the 
proposed HSCOARCS scheme it started decreases. It also 
clearly demonstrated that the sensor nodes are evenly dis-
tributed in the entire area of monitoring.

Further Table 4 depicts the ratio of initial coverage ratio 
achieved by the proposed scheme and the coverage ration 
achieved by the same after the employed of the optimiza-
tion process.

The above-mentioned results confirmed that the initial 
coverage ratio and optimized coverage ratio confirmed 
during the implementation of the proposed HSCOARCS 
scheme are 81.32% and 97.96%, respectively. Thus the 
improvement in the coverage ratio offered by the proposed 
HSCOARCS scheme is 16.64%. This improvement in cover-
age ratio achieved by the proposed HSCOARCS scheme is 
mainly due to the following reasons that the region possesses 
more amount of energy voids and seems to be clustered at 
the beginning since there were a greater number of redun-
dant sensors in the region. But the sensor nodes distributions 
is visualized to be obviously uniform after the optimization 
process which eventually improved the coverage ratio to the 
expected level. Thus the proposed HSCOARCS scheme is 
effective in achieving better coverage optimization in WSNs.

Further Table 5 exemplars the coverage ratio and cov-
erage efficiency achieved by the proposed HSCOARCS 

approach on par with the baseline approaches used for 
comparison. From the result, it is transparent that the best 
optimization results are achieved during the employment 
of the proposed HSCOARCS approach compared to the 
baseline approaches, since it employed balanced local and 
global strategies that helped in better optimization process. 
The results of the proposed HSCOARCS approach on an 
average confirmed an improved coverage ratio and coverage 
efficiency of 5.13 and 9.81% after thirty independent runs.

From the results, it is also observed that the proposed 
HSCOARCS approach outperformed the other compared 
baseline algorithms in terms of coverage ratio and coverage 
efficiency. In specific, the coverage ratio and coverage effi-
ciency confirmed by the proposed HSCOARCS approach is 
higher than the worst SAOGWA scheme by 9.82 and 14.1%, 
respectively. On the other hand, the coverage ratio and cov-
erage efficiency confirmed by the proposed HSCOARCS 
approach is higher than the best SAOGWA scheme by 2.82 
and 6.45%, respectively.

Furthermore, Fig. 3 portrays the coverage convergence 
curves related to the proposed HSCOARCS approach and 
the baseline approaches used for comparison. This plots 
clearly highlighted that the proposed HSCOARCS approach 
confirmed a better coverage ratio independent to the number 
of iterations. In particular, the coverage efficiency achieved 
by the proposed HSCOARCS approach is 72.64% which is 
comparatively better than the worst SAOGWA algorithm 
by 14.1%. This improvement introduced by the proposed 
HSCOARCS approach demonstrated its efficacy in minimiz-
ing the degree of redundancy in the sensor coverage.

In addition, the excellence of the proposed HSCOARCS 
approach over the baseline approaches are verified with to 
sensors coverage optimization. In this experimentation, the 
parameters are kept constant with those that of the bench-
marked approach for guaranteeing fairness during the inves-
tigation process. The experimental result of this investiga-
tion is presented in Tables 6, 7, 8, and 9, respectively.

5.2 � Comparative results investigation of simulation 
experiment‑2

In general, categorizing the types of sensors is always dif-
ficult in a complex sensor coverage environment, and hence 
in real environments a greater number of the heterogeneous 
WSNs is often covered. In this simulation experiment 2, two 
different sensor types were randomly deployed throughout 
the entire area of monitoring. Then the proposed HSCO-
ARCS approach is employed for optimizing the coverage of 
the heterogeneous WSNs. In particular, Table 10 portrays 
the sensor parameter settings considered during the employ-
ment of the proposed HSCOARCS scheme with two differ-
ent types of sensors.

Table 4   Comparison between initial and optimized coverage ratio 
achieved by the proposed HSCOARCS scheme during simulation 
experiment-1

Number of sensor 
nodes

Initial coverage ratio 
(%)

Optimized coverage 
ratio (%)

50 81.32 97.96

Table 5   Comparison between coverage ratio and coverage efficiency 
achieved by the proposed scheme and the benchmarked approaches 
during simulation experiment-1

Bold indicates the proposed approach performance

Compared Algorithms Coverage ratio (%) Coverage 
efficiency 
(%)

SAOGWA​ 88.14 58.54
EBOA 93.84 61.94
IWHOCOS 95.16 66.19
ACVBOA 94.18 64.72
Proposed HSCOARCS 97.96 72.64
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Then Table 11 demonstrates the comparison between 
initial and optimized coverage ratio achieved by the pro-
posed HSCOARCS scheme during Simulation Experi-
ment-2. This experimentation is conducted over the 
monitoring area which comprises of two different types 

Fig. 3   Coverage conver-
gence curves of the proposed 
HSCOARCS approach and the 
baseline approaches with differ-
ent iterations
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Table 6   Experimental results comparing the proposed HSCOARCS 
approach and ACVBOA scheme

Methods used for comparison Coverage 
ratio (%)

ACVBOA 92.38
Proposed HSCOARCS 97.96

Table 7   Experimental results comparing the proposed HSCOARCS 
approach and ACVBOA scheme

Methods used for comparison Coverage 
ratio (%)

IWHOCOS 95.16
Proposed HSCOARCS 97.96

Table 8   Experimental results comparing the proposed HSCOARCS 
approach and ACVBOA scheme

Methods used for comparison Coverage 
ratio (%)

EBOA 93.84
Proposed HSCOARCS 97.96

Table 9   Experimental results comparing the proposed HSCOARCS 
approach and ACVBOA scheme

Methods used for comparison Coverage 
ratio (%)

SAOGWA​ 88.14
Proposed HSCOARCS 97.96

Table 10   Sensor parameter settings used by the proposed HSCO-
ARCS scheme with two different types of sensors-simulation experi-
ment-2

Parameters used Values

Monitoring area 100 m × 100 
square 
meters

Number of iterations 200
Number of sensor nodes (/Type 1, Type 2) 30
Radius of communication (Type 1) 25 m
Radius of communication (Type 2) 20 m
Sending radius (Type 1) 12 m
Sending radius (Type 2) 10 m
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of sensors deployed randomly in the network. This result 
clearly confirmed a better optimized coverage ratio of 
98.76%, which is a significant improvement of 12.58% 
over the initial coverage ration visualized at the initial 
stage.

On the other hand, the proposed HSCOARCS scheme 
confirmed a better optimized connectivity coverage ratio 
of 21.56%, which is a significant improvement of 3.22% 
over the initial connectivity ratio realized at the initial 
stage. In contrast to simulation experiment 1, the proposed 
HSCOARCS scheme achieved better network connectiv-
ity while concentrating on the improvement of network 
coverage. In the initial stage, some of the sensors were 

not connected and hence the initial connectivity ratio was 
21.56%. But after the inclusion of the proposed HSCO-
ARCS scheme-based optimization, the connectivity ratio 
is 24.78% which is realized as a potential improvement of 
3.22% better than the baseline approaches (Table 12 and 
Fig. 4).

5.3 � Comparative results investigation of simulation 
experiment‑3

This simulation experiment is conducted for simulating 
a more realistic simulation environment by including an 

Table 11   Comparison between initial and optimized coverage ratio 
achieved by the proposed HSCOARCS scheme during simulation 
experiment-2

Number of sensor 
nodes

Initial coverage ratio 
(%)

Optimized coverage 
ratio (%)

30 86.18 98.76

Table 12   Comparison between initial and optimized connectivity 
ratio achieved by the proposed HSCOARCS scheme during Simula-
tion Experiment-2

Number of sensor 
nodes

Initial connectivity 
ratio (%)

Optimized connectiv-
ity ratio (%)

30 21.56 24.78

Fig. 4   Coverage convergence 
curves of the proposed HSCO-
ARCS approach and the base-
line approaches with different 
iterations (Experiment-2)
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Table 13   Sensor parameter settings used by the proposed HSCO-
ARCS scheme with obstacles-simulation experiment-3

Parameters used Values

Monitoring area 100 m × 100 
square 
meters

Dimension of the obstacle 20 m × 20 m
Number of iterations 200
Number of sensor nodes (/Type 1, Type 2) 30
Radius of communication (Type 1) 25 m
Radius of communication (Type 2) 20 m
Sending radius (Type 1) 12 m
Sending radius (Type 2) 10 m
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obstacle of dimension 20 m × 20 m around monitoring. 
This simulation experiment 3 is mainly conducted for eval-
uating the potential of the proposed HSCOARCS scheme 
towards the objective of coverage optimization under the 
presence of obstacles in the monitoring area. Table 13 
depicts the sensor parameters setting considered during 
the implementation of the proposed HSCOARCS scheme 
for achieving simulation experiment 3.

Then Table 14 and 15 demonstrates the comparative 
improvement in the coverage and connectivity ratio achieved 
by the proposed HSCOARCS scheme before and after opti-
mization process. The results from Table 14 clearly high-
lighted that the proposed HSCOARCS scheme ensured an 

optimized coverage ratio of 98.18%, which is a significant 
improvement of 9.62% over the initial coverage ratio visual-
ized at the initial stage.

On the other hand, the proposed HSCOARCS scheme in 
the presence of obstacles (Table 15) also confirmed a better 
optimized connectivity coverage ratio of 21.52%, which is a 
significant improvement of 4.33% over the initial connectiv-
ity ratio realized at the initial stage.

In addition, Fig. 5 demonstrates the curves of cover-
age convergence confirmed by the proposed HSCOARCS 
approach and the baseline approaches with different itera-
tions under the presence of obstacles in the network. The 
proposed HSCOARCS approach even under the existence 
of obstacles enveloped better network coverage ratio with 
optimized connectivity such that least number of sensor 
nodes are able to cover the network with their capability of 
sensing radius.

6 � Conclusion

The proposed HSCOARCOS achieved better coverage opti-
mization by addressing the issue of coverage redundancy 
and coverage blind areas, and maximally optimize the sensor 
node deployment location to achieve reliable sensing and 
monitoring of target area. This proposed HSCOARCOS is 
implemented over a HWSN coverage mathematical model 
which represents a problem of combinatorial optimiza-
tion. The hybridization of Sand Cat Swarm Optimization 

Table 14   Comparison between initial and optimized coverage ratio 
achieved by the proposed HSCOARCS scheme under obstacles dur-
ing simulation experiment-3

Number of sensor 
nodes

Initial coverage ratio 
(%)

Optimized coverage 
ratio (%)

30 88.76 98.18

Table 15   Comparison between initial and optimized connectivity 
ratio achieved by the proposed HSCOARCS scheme under obstacles 
during simulation experiment-3

Number of sensor 
nodes

Initial connectivity 
ratio (%)

Optimized connectiv-
ity ratio (%)

30 17.19 21.52

Fig. 5   Coverage conver-
gence curves of the proposed 
HSCOARCS approach and the 
baseline approaches with differ-
ent iterations (experiment-3)
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Algorithm (SCSOA) is achieved for enhancing the speed of 
the global convergence with the initial population achieved 
using the method of Gaussian distribution. It targets on the 
optimization objectives that aids in minimizing the network 
costs and improve its coverage. The simulation results of 
the proposed HSSCSOA confirmed better network reliabil-
ity of 21.38%, network coverage of 19.76%, and minimized 
energy consumption of 17.92% with different number of 
sensor nodes on par with the benchmarked schemes used 
for comparison.

7 � Future scope of improvement

The proposed CH selection approach can be improved based 
on security through the process of utilizing multi-criteria 
decision-making models which plays and indispensable role 
in trust computation. Further homomorphic encryption algo-
rithms can be used for ensuring the confidentiality of data 
transmitted from the selected CHs to the sink node.

Acknowledgements  Not applicable.

Author contributions  J David Sukeerthi Kumar formulated the 
problem, implemented, M V Subramanyam performed the experimen-
tal validation process, and conducted the literature review, A P Siva 
Kumar wrote the introduction part, supported in implementation, and 
reviewed the complete manuscript.

Funding  There is no funding received for this research work.

Data availability  Data sharing not applicable—no new data 
generated.

Declarations 

Conflict of interest  The authors declare that there is no competing 
interest.

Ethical approval and consent to participate  Not applicable.

Informed consent  Subscription only.

References

	 1.	 Deepa R, Venkataraman R (2021) Enhancing Whale Optimization 
Algorithm with Levy Flight for coverage optimization in wireless 
sensor networks. Comput Electr Eng 94:107359

	 2.	 Chowdhury A, De D (2021) Energy-efficient coverage optimi-
zation in wireless sensor networks based on Voronoi-Glow-
worm Swarm Optimization-K-means algorithm. Ad Hoc Netw 
122:102660

	 3.	 Shivalingegowda C, Jayasree PVY (2021) Hybrid gravita-
tional search algorithm based model for optimizing coverage 

and connectivity in wireless sensor networks. J Ambient Intell 
Humaniz Comput 12:2835–2848

	 4.	 Rahmani AM, Ali S, Yousefpoor MS, Yousefpoor E, Naqvi RA, 
Siddique K, Hosseinzadeh M (2021) An area coverage scheme 
based on fuzzy logic and shuffled frog-leaping algorithm (sfla) in 
heterogeneous wireless sensor networks. Mathematics 9(18):2251

	 5.	 Sachan S, Sharma R, Sehgal A (2021) Energy efficient scheme 
for better connectivity in sustainable mobile wireless sensor 
networks. Sustain Comput Informatics Syst 30:100504

	 6.	 He Q, Lan Z, Zhang D, Yang L, Luo S (2022) Improved marine 
predator algorithm for wireless sensor network coverage opti-
mization problem. Sustainability 14(16):9944

	 7.	 Cao Y, Li Y, Zhang G, Jermsittiparsert K, Razmjooy N (2019) 
Experimental modeling of PEM fuel cells using a new improved 
seagull optimization algorithm. Energy Rep 5:1616–1625

	 8.	 Jiang H, Yang Y, Ping W, Dong Y (2020) A novel hybrid clas-
sification method based on the opposition-based seagull opti-
mization algorithm. IEEE Access 8:100778–100790

	 9.	 Liu Z, Du WL, Qi R, Qian F (2010) Dynamic optimization in 
chemical processes using improved knowledge-based cultural 
algorithm. CIESC J 61(11):2889–2895

	10.	 Peng X, Qi R, Du W, Qian F (2012) An improved knowledge 
evolution algorithm and its application to chemical process 
dynamic optimization. CIESC J 63(3):841–850

	11.	 Feng ZK, Niu WJ, Liu S, Luo B, Miao SM, Liu K (2020) Mul-
tiple hydropower reservoirs operation optimization by adaptive 
mutation sine cosine algorithm based on neighborhood search 
and simplex search strategies. J Hydrol 590:125223

	12.	 Zhang Y, Cui G, Wu J, Pan WT, He Q (2016) A novel multi-
scale cooperative mutation fruit fly optimization algorithm. 
Knowl Based Syst 114:24–35

	13.	 Feng Y, Yang J, Wu C, Lu M, Zhao XJ (2018) Solving 0–1 
knapsack problems by chaotic monarch butterfly optimiza-
tion algorithm with Gaussian mutation. Memetic Comput 
10:135–150

	14.	 Yao Y, Li Y, Xie D, Hu S, Wang C, Li Y (2021) Coverage 
enhancement strategy for WSNs based on virtual force-
directed ant lion optimization algorithm. IEEE Sens J 
21(17):19611–19622

	15.	 Zhu F, Wang W (2021) A coverage optimization method for WSNs 
based on the improved weed algorithm. Sensors 21(17):5869

	16.	 Zhang Y, Cao L, Yue Y, Cai Y, Hang B (2021) A novel coverage 
optimization strategy based on grey wolf algorithm optimized by 
simulated annealing for wireless sensor networks. Comput Intell 
Neurosci 2021:1–14

	17.	 Ma D, Duan Q (2022) A hybrid-strategy-improved butterfly opti-
mization algorithm applied to the node coverage problem of wire-
less sensor networks. Math Biosci Eng 19(4):3928–3952

	18.	 Liang J, Tian M, Liu Y, Zhou J (2022) Coverage optimization of 
soil moisture wireless sensor networks based on adaptive Cauchy 
variant butterfly optimization algorithm. Sci Rep 12(1):11687

	19.	 Dao TK, Chu SC, Nguyen TT, Nguyen TD, Nguyen VT (2022) An 
Optimal WSN Node Coverage Based on Enhanced Archimedes 
Optimization Algorithm. Entropy 24(8):1018

	20.	 Chawra VK, Gupta GP (2022) Memetic algorithm-based energy 
efficient wake-up scheduling scheme for maximizing the network 
lifetime, coverage and connectivity in three-dimensional wireless 
sensor networks. Wireless Pers Commun 123:1507–1522

	21.	 Zulfiqar R, Javid T, Ali ZA, Uddin V (2023) Novel metaheuristic 
routing algorithm with optimized energy and enhanced coverage 
for (WSNs). Ad Hoc Netw 144:103133

	22.	 Hanh NT, Binh HTT, Toan VD, Ngoc DT, Lam BT (2023) A bi-
population Genetic algorithm based on multi-objective optimiza-
tion for a relocation scheme with target coverage constraints in 
mobile wireless sensor networks. Expert Syst Appl 217:119486



Int. j. inf. tecnol.	

	23.	 Zeng C, Qin T, Tan W, Lin C, Zhu Z, Yang J, Yuan S (2023) 
Coverage optimization of heterogeneous wireless sensor network 
based on improved wild horse optimizer. Biomimetics 8(1):70

	24.	 Wang Z, Huang L, Yang S, Luo X, He D, Chan S (2024) Multi-
strategy enhanced grey wolf algorithm for obstacle-aware WSNs 
coverage optimization. Ad Hoc Netw 152:103308

	25.	 Ma N, Wang S, Hao S (2024) Enhancing reptile search algorithm 
with shifted distribution estimation strategy for coverage optimi-
zation in wireless sensor networks. Heliyon 10(15):e34455

	26.	 Yue Y, Cao L, Zhang Y (2024) Novel WSN coverage optimiza-
tion strategy via monarch butterfly algorithm and particle swarm 
optimization. Wireless Pers Commun 135:2255–2280

	27.	 Kurian AM, Onuorah MJ, Ammari HM (2024) Optimizing cov-
erage in wireless sensor networks: a binary ant colony algorithm 
with hill climbing. Appl Sci 14(3):960

	28.	 Janakiraman S (2024) Energy efficient clustering protocol using 
hybrid bald eagle search optimization algorithm for improving net-
work longevity in WSNs. Multimed Tools Appl 83:66369–66391

	29.	 Janakiraman S (2023) Improved bat optimization algorithm and 
enhanced artificial bee colony-based cluster routing scheme for 
extending network lifetime in wireless sensor networks. Int J 
Commun Syst 36(5):e5428

	30.	 Jayalakshmi P, Sridevi S, Janakiraman S (2021) A hybrid artificial 
bee colony and harmony search algorithm-based metaheuristic 
approach for efficient routing in WSNs. Wireless Pers Commun 
121(4):3263–3279

	31.	 Sengathir J, Rajesh A, Dhiman G, Vimal S, Yogaraja CA, Viri-
yasitavat W (2022) A novel cluster head selection using Hybrid 

Artificial Bee Colony and Firefly Algorithm for network lifetime 
and stability in WSNs. Connect Sci 34(1):387–408

	32.	 Boopathi M, Parikh S, Awasthi A, Malviya A, Nachappa MN, 
Mishra A, Shyam GK, Narula GS (2024) OntoDSO: an ontologi-
cal-based dolphin swarm optimization (DSO) approach to perform 
energy efficient routing in Wireless Sensor Networks (WSNs). Int 
J Inf Technol 16(3):1551–1557

	33.	 Lekhraj, KumarKumar AA (2022) Multi criteria decision mak-
ing based energy efficient clustered solution for wireless sensor 
networks. Int J Inf Technol 14(7):3333–3342

	34.	 Ramya R, Padmapriya K (2023) Hybrid optimized using grey 
wolf-flower pollination for wireless sensor network routing. Int J 
Inf Technol 15(4):2263–2271

	35.	 Deepakraj D, Raja K (2021) Markov-chain based optimization 
algorithm for efficient routing in wireless sensor networks. Int J 
Inf Technol 13(3):897–904

	36.	 Agarkhed J, Kadrolli V, Patil SR (2022) Efficient bandwidth-aware 
routing protocol in wireless sensor networks (EBARP). Int J Inf 
Technol 14:1967–1979

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Hybrid Sand Cat Swarm Optimization Algorithm-based reliable coverage optimization strategy for heterogeneous wireless sensor networks
	Abstract 
	1 Introduction
	1.1 Major contributions

	2 Related work
	3 Proposed Hybrid Sand Cat Swarm Optimization Algorithm-based Reliable Coverage Strategy (HSCOARCS)
	3.1 Network coverage model of WSNs
	3.2 Primitives of Sand Cat Swarm Optimization
	3.3 Exploration and exploitation

	4 Discussion
	4.1 Stochastic difference-based SCSO with elite collaboration
	4.1.1 Non-linear periodic modification approach
	4.1.2 Pseudo-oppositional and pseudo-reflection learning schemes
	4.1.3 Stochastic variation (SV) with elite collaboration

	4.2 The classical seagull optimization algorithm
	4.2.1 Migration behaviour
	4.2.2 Attacking behaviour

	4.3 SOA based on gaussian distribution (GD)
	4.3.1 GD-based initialization
	4.3.2 DOMO based on GD


	5 Results and discussion
	5.1 Comparative results investigation of simulation experiment-1
	5.2 Comparative results investigation of simulation experiment-2
	5.3 Comparative results investigation of simulation experiment-3

	6 Conclusion
	7 Future scope of improvement
	Acknowledgements 
	References


