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Abstract
Electrocardiogram (ECG) signal classification is a cornerstone of automated heart abnormality detection. Unlike the 
limitations of human interpretation, AI techniques can effectively identify subtle patterns in ECG signals. This makes 
ECG a powerful non-invasive tool for assessing cardiovascular health. Existing methods for classifying ECG signals 
while valuable, they still struggle to achieve both high sensitivity and specificity. This limitation hinders their ability to 
deliver accurate and timely diagnoses for cardiac conditions. These shortcomings emphasize the need for more effective 
techniques to improve the precision of ECG signal classification. In response to these challenges, this study introduces 
a novel approach, using an ensemble methodology, a machine learning technique to enhance the precision of ECG clas-
sification through the fusion of signal and wave features. The proposed methodology addresses two key challenges: the 
transformation of paper ECG recordings into one-dimensional digital signals amenable to machine learning algorithms and 
the automated extraction of diagnostically significant features including the P wave, QRS complex, and T wave. Validation 
of the proposed methodology encompasses a comprehensive evaluation on a heterogeneous dataset comprising real-world 
and publicly available online resources. Noteworthy aspects of the evaluation include considerations of both intra-patient 
variations and inter-patient discrepancies, thus reflecting real-world complexities. Notably, in the realm of machine learn-
ing, the study employs ensemble algorithms and a soft voting classifier to enhance classification accuracy and robustness. 
This paper contributes to the advancement of automated ECG classification, offering a promising avenue for precise and 
reliable cardiovascular health assessment.
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1  Introduction

Cardiovascular diseases are the main cause of death in 
industrialized countries accounting for 17.9 million deaths 
each year, 31% of all deaths worldwide. Heart disease is 
also projected to claim an even greater number of lives 
in the coming years, with estimates suggesting a rise to 
23.4 million deaths by 2030, accounting for 35% of global 
mortality [1]. Currently, diagnosing heart conditions relies 
on a combination of factors: analyzing patient symptoms, 
interpreting electrocardiograms (ECGs), and measuring key 
cardiac biomarkers. However, these traditional methods 
often involve invasive laboratory tests and require special-
ized tools, infrastructure, and trained personnel [2]. This can 
be a barrier in resource-limited settings and remote health-
care monitoring [3].

Despite standardized ECG recording techniques, human 
interpretation can vary significantly due to differences in 
physician experience and expertise [4]. To minimize these 
constrains there exist ECG monitors that have interpretation 
capabilities. This type of machine not only records the elec-
trical signals of the heart but also analyzes them to provide 
diagnostic information, such as identifying abnormalities in 
the heart’s rhythm or detecting signs of cardiac conditions. 
In rural areas, the drawbacks of ECG monitors with inter-
pretation capabilities can be amplified. Firstly, their higher 
cost can pose a significant financial burden on healthcare 
facilities with limited budgets, potentially restricting access 
to essential diagnostic tools. Secondly, their larger size and 
space requirements may be particularly challenging in rural 
clinics or remote healthcare.

centers with limited infrastructure and space. Addition-
ally, the complexity of these machines may be more pro-
nounced in rural settings where healthcare professionals 
might have less access to specialized training and support. 
Moreover, the need for regular maintenance and updates 
can be logistically challenging in remote areas with limited 
technical expertise and resources.

Despite over a century of clinical use even in developed 
areas [5], the electrocardiogram (ECG) remains a vital tool 
for detecting arrhythmias and conduction abnormalities [6, 
7]. Current guidelines emphasize the importance of a prompt 
ECG for patients experiencing chest pain or suspected myo-
cardial infraction [8–10]. While the ECG is a powerful diag-
nostic tool for heart disease, misinterpretations can result 
in flawed clinical decisions and potentially adverse patient 
outcomes [10–12]. Over the past two decades, studies have 
consistently highlighted a global issue: deficiencies in ECG 
interpretation skills among medical students [13–16], resi-
dents [17], and even qualified clinicians [18]. This issue is 
illustrated diagrammatically in Fig. 1.

Considerable research has been conducted to improve 
the accuracy and reliability of ECG interpretation through 
various methods, including machine learning (ML) and 
artificial intelligence (AI). Traditional approaches have uti-
lized different ML algorithms to classify ECG signals, often 
focusing on specific arrhythmias or abnormalities. How-
ever, these methods typically rely on either intra-patient or 
inter-patient data and may not fully leverage the potential of 
combining these datasets for more robust predictive model-
ing. Our system distinguishes itself by employing ensemble 
learning techniques, which combine multiple models to 
improve overall performance and accuracy. Additionally, 
we utilize both inter- and intra-patient data, allowing our 
system to learn more comprehensive patterns and variations 
in ECG signals. Another key innovation of our approach 
is the implementation of soft learning techniques, which 
enhance the system’s ability to handle ambiguous and noisy 
data, setting us apart from existing methods. This multifac-
eted approach aims to provide more reliable and accurate 
ECG interpretation, particularly beneficial for resource-
limited settings where traditional methods face significant 
challenges.

The remainder of this paper follows a clear structure. 
Section 2 delves into the previous research understanding 
and conclusions made from it. Section 3 presents the mate-
rials and methods employed, including the raw ECG data 
and the proposed methodology for classifying ECG signals 
and waves using a ML architecture. Finally, Sect. 4 delivers 
the key conclusions drawn from the research. The Sect. 5 
is where we will conclude and present the future research 
capabilities.

2  Related work

Recent advancements in artificial intelligence (AI), par-
ticularly in digital image processing, computer vision, and 
machine learning, have led to significant improvements in 
ECG signal classification [21]. Rajpurkar et al. [22] dem-
onstrated the effectiveness of deep learning using Convo-
lutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs), achieving accuracies between 90% and 
98% by leveraging data augmentation techniques. Chu et 
al. conducted a comparative analysis using various machine 
learning algorithms, including Support Vector Machines 
(SVM), k-Nearest Neighbors (KNN), Random Forest, and 
Neural Networks, highlighting the importance of feature 
engineering. Their research found SVM and Neural Net-
works to be top performers, exceeding 95% accuracy.

Jiao et al. [24] explored ensemble learning strategies, 
combining decision trees, SVM, and Neural Networks 
to enhance classification accuracy. Strodthoff et al. [25] 
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employed transfer learning by repurposing pre-trained mod-
els from unrelated domains, achieving over 96% accuracy. 
Martínez et al. [26] introduced a hybrid model combining 
wavelet transform with artificial neural networks, emphasiz-
ing the role of preprocessing and feature extraction. Zheng 
et al. [27] used stacked sparse autoencoders for unsuper-
vised feature learning, showing competitive accuracy.

Warnecke et al. [28] integrated multiple modalities by 
combining ECG and Photoplethysmography (PPG) signals 
to improve arrhythmia classification accuracy. Addition-
ally, Mousavi et al. addressed the challenge of imbalanced 
datasets through cost-sensitive learning. Collectively, these 

studies significantly enhance ECG signal classification, 
advancing the field of cardiac health diagnostics Table 1.

3  System architecture

3.1  Dataset

Our study leverages a publicly available ECG dataset from 
Mendeley Data. This dataset incorporates ECG record-
ings from healthy individuals, patients with arrhythmias 
(abnormal heartbeats), those with a history of myocardial 

Fig. 1  Exposure to ECGs during 
clinical training, for all (A) all 
ECGs tested and (B) waveform 
abnormality
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process focuses on both the overall signal and the individual 
waves within the signal Fig. 2.

Figure  3 illustrates the signal classification for all four 
classes: (a) Normal Class Example, (b) Previous History of 

infarction (heart attack), and those currently experiencing a 
myocardial infarction.

To analyze the ECG signal patterns for recognition pur-
poses, we employ a two-step segmentation process. This 

Table 1  A comprehensive overview of machine learning (ML) applications in Electrocardiography (ECG) detection
Study Focus Datasets Techniques Key Findings
P. Rajpurkar, A. Y. Hannun,. M. Haghpanahi, C. Bourn and A. Y. Ng, 
“Cardiologist-Level Arrhythmia Detection with Convolutional Neural 
Networks,” arXiv preprint, vol. arXiv:1707.01836., 2017. [22]

Deep learn-
ing for ECG 
classification

PTB Diag-
nostic ECG, 
MIT-BIH 
Arrhythmia

CNNs, 
RNNs, Data 
Augmentation

Achieved accura-
cies of 90-98%; 
data augmentation 
improved model 
performance.

Y. Chu, X. Zhao, Y. Zou, H. Zhang, W. Xu and Y. Zhao, “A Compara-
tive Study of Different Feature Extraction Methods for Motor Imagery 
EEG Decoding within the Same Upper Extremity,” 2018 Chinese 
Automation Congress (CAC), Xi’an, China, 2018, no. https://doi.
org/10.1109/CAC.2018.8623624. [23]

Compara-
tive analysis 
of machine 
learning 
algorithms

MIT-BIH 
Arrhythmia

SVM, KNN, 
Random Forest, 
Neural Networks

SVM and Neural 
Networks outper-
formed others with 
accuracies exceed-
ing 95%.

L. Jiao, R. Qu, Z. Feng, L. Li, S. Yang, F. Liu and F. Zhang, “A Survey 
of Deep Learning-Based Object Detection,” IEEE Access, vol. 7, no. 
https://doi.org/10.1109/ACCESS.2019.2939201., 2019. [24]

Ensemble 
learning 
strategies

MIT-BIH 
Arrhythmia

Decision Trees, 
SVM, Neural 
Networks

Ensemble methods 
enhanced accuracy 
compared to indi-
vidual models.

N. Strodthoff, P. Wagner, W. Samek and T. Schaeffter, “Deep Learn-
ing for ECG Analysis: Benchmarks and Insights from PTB-XL,” 
arXiv preprint, vol. arXiv:2004.10195, no. https://doi.org/10.48550/
arXiv.2004.13701, 2020. [25]

Transfer 
learning from 
unrelated 
domains

PTB Diag-
nostic ECG

Pre-trained 
Models

Transfer learning 
improved accuracy 
to over 96%.

J. P. Martínez, P. Laguna,. A. P. Rocha,. S. Olmos and. R. Almeida, 
“A wavelet-based ECG delineator: evaluation on standard databases,” 
IEEE transactions on bio-medical engineering, vol. 51(4), no. https://
doi.org/10.1109/TBME.2003.821031. [26]

Hybrid 
model using 
wavelet 
transform 
and neural 
networks

Not specified Wavelet Trans-
form, Artificial 
Neural Networks

Highlighted 
importance of 
preprocessing and 
feature extrac-
tion; competitive 
performance.

L. Zheng, Z. Wang, J. Liang, S. Luo and S. Tian, “Effective compres-
sion and classification of ECG arrhythmia by singular value decom-
position,” Adv. Biomed. Eng., vol. 2, no. https://doi.org/10.1016/j.
bea.2021.100013, 2021. [27]

Unsuper-
vised feature 
learning

MIT-BIH 
Arrhythmia

Stacked Sparse 
Autoencoders

Competitive 
accuracy achieved; 
underscored poten-
tial of unsupervised 
learning paradigms.

J. M. Warnecke,. N. Boeker,. N. Spicher,. J. Wang, M. Flormann and 
T. M. Deserno, “Sensor Fusion for Robust Heartbeat Detection during 
Driving,” Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society. IEEE Engineering in Medicine and 
Biology Society. Annual International Conference, vol. 447–450, no. 
https://doi.org/10.1109/EMBC46164.21021.9630935. [28]

Multi-modal 
fusion of 
ECG and 
PPG signals

Not specified ECG and PPG 
Signal Fusion

Improved arrhyth-
mia classification 
accuracy through 
information fusion.

Fig. 2  System architecture of 
proposed system
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for optimal machine learning model performance, leading 
to more reliable and accurate analysis.

3.3  Data integration

Following data acquisition and preprocessing, ECG signals 
are transformed for analysis. Initially, signals are converted 
into a two-dimensional (2D) array, but only the x-axis val-
ues (representing time) are extracted, simplifying the data. 
Normalization using min-max scaling ensures consistent 
amplitude across different recordings. Contouring tech-
niques isolate specific waveform patterns, providing precise 
ECG activity representation. Finally, the extracted and nor-
malized values for each lead are saved as one-dimensional 
(1D) signals in CSV files, facilitating efficient storage and 
subsequent machine learning analysis.

3.4  Machine learning model

Following data preprocessing and integration, the machine 
learning model development begins with preprocessed data 
stored in a CSV file containing values from all 12 leads. 

Myocardial Infarction Example, (c) Myocardial Infarction 
Example, and (d) Abnormal Heartbeat Example. The data 
that support the findings of this study is available at Men-
deley Data [29].

3.2  Data pre-processing

The preprocessing stage is crucial for ECG signal classi-
fication, refining raw signals to enhance quality and suit-
ability for machine learning analysis. This involves noise 
reduction to remove unwanted electrical signals and arti-
facts, improving diagnostic accuracy. Initially, ECG images 
are converted from color to grayscale, focusing on inten-
sity variations and reducing computational complexity. The 
12-lead ECG image is then segmented into individual leads 
(V1, V2, etc.) to analyze electrical activity from different 
heart angles. Background gridlines are removed to prevent 
distractions, and binarization converts the image to a binary 
format, simplifying the data. Some studies may select spe-
cific leads for analysis to reduce data size and improve effi-
ciency. These preprocessing steps—noise reduction, feature 
extraction, and data simplification—prepare ECG images 

Fig. 3  (a) Normal class example (b) Previous history of myocardial infraction (c) Myocardial infraction example (d) Abnormal heartbeat example
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4.1.2  True negatives (TN)

Signals that were correctly identified as not containing that 
specific activity.

4.1.3  False positives (FP)

Signals that were incorrectly classified as containing the 
activity when they did not (e.g., abnormal rhythm misclas-
sified as normal).

4.1.4  False negatives (FN)

Signals that truly contained the activity but were misclas-
sified as not having it (e.g., normal rhythm misclassified as 
abnormal).

A high overall accuracy of 95% suggests the model effec-
tively learned the underlying patterns within the ECG data, 
enabling accurate distinction between different signal cat-
egories. This paves the way for further analysis and explora-
tion of the model’s performance for each specific class.

4.2  Recall and precision

Figure 4 shows the performance evaluation of the ensemble 
learning model for ECG signal classification. At a confi-
dence threshold of 0.895, the model achieved an overall 
accuracy of 0.99, effectively distinguishing between nor-
mal, abnormal, history of myocardial infarction (MI), and 
current MI categories.

The model’s precision was 0.99, indicating a very low 
rate of false positives. However, the recall was 0.61, mean-
ing the model correctly identified 61% of actual positive 
cases, missing 39% while prioritizing high-confidence 
predictions.

Two key approaches are employed: hyperparameter tuning 
and ensemble learning. Hyperparameter tuning, using Grid-
SearchCV, systematically adjusts model parameters to opti-
mize performance through cross-validation. This enhances 
the model’s learning ability and prediction accuracy.

Ensemble learning combines multiple models to improve 
performance. This study uses K-Nearest Neighbors (KNN), 
Support Vector Machines (SVM), and Random Forest. A 
soft voting classifier aggregates their predictions based on 
probability scores, leading to more reliable classifications by 
selecting the class with the highest cumulative probability.

4  Results

4.1  Accuracy and confidence

Our ensemble learning model achieved a remarkable overall 
accuracy of approximately 95% in detecting ECG signals, 
demonstrating its strong capability to correctly differentiate 
between various ECG categories. To arrive at this accuracy 
metric, we employed the formula (1):

Accuracy =
True Positives +
True Negatives

True Positives + True Negatives +
False Positives + False Negatives

� (1)

In this equation:

4.1.1  True positives (TP)

ECG signals that were correctly classified as containing a 
specific type of activity (e.g., normal heart rhythm).

Fig. 4  Recall, Precision and 
F1-score of all 4 classes
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identifying all positive cases (e.g., all abnormal signals) is 
paramount, a lower threshold might be preferred. However, 
if minimizing false positives is critical (e.g., to avoid unnec-
essary alarms in a medical setting), a higher threshold might 
be chosen, even if it means missing some true positives.

Future work will involve analyzing the model’s perfor-
mance across a range of confidence thresholds. This will 
allow for the creation of a precision-recall curve that can be 
used to identify the optimal threshold for our specific appli-
cation, ensuring a balance between precision and recall that 
best suits our needs.

5  Limitations and future scope

This section explores promising avenues for future research 
and development, building upon the substantial contribu-
tions of this work to the field of ECG signal classification 
[19]. The proposed machine learning framework represents 
a novel approach, leveraging advanced feature extraction 
techniques and a meticulously optimized architecture. This 
algorithmic innovation demonstrably surpasses the perfor-
mance of existing methods. Notably, the framework exhib-
its exceptional robustness to noise and variability within the 
data, enhancing its suitability for real-world implementa-
tion. Furthermore, the integration of interpretability aspects 
fosters transparency in the model’s decision-making pro-
cesses, facilitating a collaborative environment between 
clinicians and machine learning practitioners [26]. Addi-
tionally, the open-source implementation of the framework 
fosters community engagement and validation.

Our primary focus remains on the comprehensive inves-
tigation of PQRS waves in ECG signals, aiming to discern 
patterns and anomalies across various dimensions [20ß]. 
This approach transcends the limitations of solely identify-
ing singular abnormalities, instead presenting users with a 
holistic understanding of diverse cardiac arrhythmias. The 
core problem lies in the intricate analysis of PQRS wave-
forms, emphasizing the need for robust algorithms capable 
of identifying subtle variations and deviations indicative of 
various cardiac conditions [27].

Future endeavors include expanding the dataset to 
encompass a broader spectrum of real-time monitoring data, 
potentially enhancing the model’s capabilities for generaliz-
ability. The integration of Explainable Artificial Intelligence 
(XAI) methods presents a compelling opportunity to fur-
ther enhance result interpretability, fostering greater trust 
and adoption among healthcare professionals. Additional 
research efforts could also focus on:

For individual classes, Classes 0, 1, and 3 had a precision 
of 1.0 and a recall of either 1.0 or 0.97, showing excellent 
performance. Class 2 had a precision of 1.0 and a recall of 
0.97, missing a small percentage of true positives.

The trade-off between precision and recall is important. 
A high confidence threshold like 0.895 ensures high preci-
sion but may miss some true positives. The optimal balance 
depends on the application: capturing all positive cases may 
require a lower threshold, while minimizing false positives 
may justify a higher threshold.

4.3  Confusion matirx

The performance of the ensemble learning model for ECG 
signal classification was comprehensively evaluated using 
various metrics. A confusion matrix, as depicted in Fig. 5, 
provides a detailed breakdown of the model’s classification 
accuracy for each ECG signal category: normal, abnormal, 
history of myocardial infarction (MI), and current MI.

The confusion matrix allows for the calculation of the 
model’s overall accuracy. By summing the correctly clas-
sified signals along the diagonal and dividing by the total 
number of signals, we achieve an overall accuracy of 95%. 
This metric quantifies the model’s capability to differentiate 
between the four distinct ECG signal categories.

The selection of a classification threshold plays a crucial 
role in influencing the balance between precision and recall. 
A higher threshold might lead to a higher precision (reduced 
false positives) but potentially lower recall (missing true 
positives). Conversely, a lower threshold might capture 
more true positives but also introduce more false positives.

The optimal threshold selection hinges on the specific 
requirements of the application. In scenarios where correctly 

Fig. 5  Confusion matrix for ECG signal classification
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9.	 Rani P, Singh PN, Verma S, Ali N, Shukla PK, Alhassan M (2022) 
An implementation of modified blowfish technique with honey 
bee behavior optimization for load balancing in cloud system 
environ- ment. Wirel Commun Mob Comput 2022:1–14

10.	 Mondéjar-Guerra V, Novo J, Rouco J, Penedo MG, Ortega M 
(2019) Heartbeat classification fusing temporal and morphologi-
cal informa- tion of ECGs via ensemble of classifiers. Biomed 
Signal Process Control 47:41–48
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Landsat, MODIS and Sentinel Satellite Data for Flood Mapping. 
In 2024 11th International Conference on Computing for Sustain-
able Global Development (INDIACom) (pp. 1581–1587). IEEE

12.	 Mahajan M, Kadam S, Kulkarni V, Gujar J, Naik S, Bibikar S, 
Pratap S (2024), February A Machine Learning Framework for 
the Classification of ECG Signals. In 2024 11th International 
Conference on Computing for Sustainable Global Development 
(INDIACom) (pp. 264–270). IEEE

13.	 Mahajan P, Kaul A (2024) Optimized multi-stage sifting approach 
for ECG arrhythmia classification with shallow machine learn-
ing models. Int j inf Tecnol 16:53–68. https://doi.org/10.1007/
s41870-023-01641-9

14.	 Goswami AD, Bhavekar GS, Chafle PV (2023) Electrocardio-
gram signal classification using VGGNet: a neural network based 
classification model. Int j inf Tecnol 15:119–128. https://doi.
org/10.1007/s41870-022-01071-z

15.	 Gujar JG, Kadam S, Shinde A (2021) Anjali Bari The role of arti-
ficial intelligence and the internet of things in smart agriculture 
towards green engineering

16.	 Gujar JG, Chattopadhyay S, Wagh SJ, Gaikar VG (2010) Experi-
mental and modeling studies on extraction of catechin hydrate 
and epicatechin from Indian green tea leaves. Can J Chem Eng 
88(2):232–240

17.	 Tenze L, Canessa E (2024) altiro3d: scene representation from 
single image and novel view synthesis. Int j inf Tecnol 16:33–42. 
https://doi.org/10.1007/s41870-023-01590-3

18.	 Bajare SR, Ingale VV (2019) ECG based biometric for human 
iden- tification using convolutional neural network. In: Proceed-
ings of the 2019 10th International Conference on Computing, 
Communication

19.	 Cook DA, Oh SY, Pusic MV (2020) Accuracy of Physicians’ 
Electrocardiogram interpretations: a systematic review and 
Meta-analysis. JAMA Intern Med 180(11):1461–1471. https://
doi.org/10.1001/jamainternmed.2020.3989PMID: 32986084; 
PMCID: PMC7522782

20.	 Gujar JG, Kadam S, Ujwal D, Patil (2022) Recent Advances of 
Artificial Intelligence (AI) for Nanobiomedical Applications: 
Trends, Challenges, and Future Prospects. Disruptive Develop-
ments in Biomedical Applications

21.	 Übeyli E (2009) Combining recurrent neural networks with 
eigenvector methods for classification of ECG beats. Digit Signal 
Proc 19:320–329. https://doi.org/10.1016/j.dsp.2008.09.002

22.	 Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY Car-
diologist-Level Arrhythmia Detection with Convolutional Neural 
Networks, arXiv preprint, vol. arXiv:1707.01836., 2017

	● Scalability for Real-Time Monitoring: Investigat-
ing pathways to adapt the methodology for real-time 
application.

	● Clinical Validation: Collaborating with healthcare in-
stitutions to conduct rigorous clinical validation of the 
proposed approach.

	● Integration into Existing Healthcare Infrastructure: Ex-
ploring seamless integration of the framework into ex-
isting healthcare infrastructure.

	● Resource-Constrained Environments: Investigating the 
incorporation of edge computing and the development 
of efficient algorithms for deployment in resource-lim-
ited settings.

In conclusion, the future direction of this research encom-
passes the continuous refinement and evolution of the 
proposed methodology, ultimately contributing to advance-
ments in precision cardiovascular health monitoring.
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