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Abstract  The languages derived from Petri Net provides 
a efficient technique for verification, validation and syn-
thesis for the system. Partial words are extensively used in 
the fields such as bioinformatics, pattern matching and text 
searching. In this paper, we introduce a Partial Petri Net and 
then define its associated languages. Further, we discuss the 
closure properties that hold over these derived languages.
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1  Introduction

The Petri Net, a  formal model for the flow of information, 
was first presented in 1962 by Carl Adam Petri [1]. Petri 
Nets have found applications in the analysis of systems that 
exhibit concurrent, asynchronous, distributed, parallel, non 
deterministic and stochastic behaviors. Tokens, which are 
identical and represented as black dots, are used in Petri 

Nets to emulate the system’s dynamic and simultaneous 
processes. A language can be associated with the execution 
of a Petri Net. By formulating a labeling function for transi-
tions over a given alphabet, a language over the alphabet 
is generated from all firing sequence set that origin from 
a particular starting marking and lead to a final marking 
set. The firing rule is solely dependent on the presence of 
these tokens and the number available in the input places 
for the transition to fire [1]. Henry Baker investigated Petri 
Net and its languages in 1972 [2]. This was followed by 
Michael Hack on Petri Net languages in 1976 [3] and in 
the same year, James L. Peterson introduced Petri Net as an 
automaton and investigated its languages [4]. In 1978, Starke 
studied the free terminal language of a Petri Net [5]. Jantzen 
investigated the hierarchy of Petri Net languages in 1979 
[6]. During the year 1981, Valk et al. discussed Petri Nets 
and regular languages [7], while Araki et al. discussed that 
flow languages for some restricted class of flow expressions 
are equivalent to Petri Net languages [8]. Vidal Naquet, in 
1982, investigated deterministic languages of Petri Nets [9]. 
Parigot et al. investigated the Buichi-like theorem, which 
characterizes Petri Net languages in terms of second-order 
logical formulas [10]. In 1987, the language theory of Petri 
Nets was studied by Jantzen [11] and Pelz investigated clo-
sure properties of deterministic languages of Petri Nets [12]. 
Various classes of Petri Net languages have been identified, 
based on the selection of transition labeling (free, �-free and 
with �-transitions) and the choice of the final markings set. 
In the literature [1, 11], three options for final markings are 
commonly chosen.

Tiplea investigated the selective Petri Net languages in 
1992 [13]. In 1996, Gaubert and Giua explored Petri Net 
languages with infinite sets of final markings [14] and fur-
ther extended their research in 1999 to investigate the infinite 
subsets within these sets [15]. In 2005, Valk et al. studied 

 *	 R. Arulprakasam 
	 r.aruljeeva@gmail.com

	 A. Mahadeer 
	 ma1637@srmist.edu.in

	 V. R. Dare 
	 rajkumardare@yahoo.com
1	 Department of Mathematics, College of Engineering 

and Technology, SRM Institute of Science and Technology, 
Kattankulathur 603203, Tamilnadu, India

2	 Department of Mathematics, Madras Christian College, 
Tambaram, Chennai 600 059, Tamilnadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-024-01903-0&domain=pdf
http://orcid.org/0000-0001-5652-4346


3664	 Int. j. inf. tecnol. (August 2024) 16(6):3663–3676

1 3

the rationality of Petri Net languages [16] and in 2006, mini-
mal representations of Petri net languages were studied by 
Sreenivas R. S. [17]. Kunimochi Y. investigated the alge-
braic properties of Petri Net languages and codes in 2009 
[18]. In 1974, Fischer and Paterson [19] introduced partial 
words, which are defined as strings that include “do not care” 
symbols. In 1999, Berstel and Boasson [20] inaugurated the 
investigation into “Combinatorics on partial words”. This 
was further studied by Blanchet-Sadri [21, 22]. Periodicity in 
partial words and primitive partial words was investigated by 
Blanchet-Sadri [23, 24]. Certain properties of partial words 
was studied in [25]. Blanchet-Sadri [26] initiated the study 
of partial languages by presenting the notion of pcodes, 
defined as sets of partial words that maintain the uniqueness 
of factorization. Sasikala et al. [27] investigated the study of 
regular partial languages and local partial languages. Das-
sow et al. [28] presented a relationship between regular lan-
guages and partial words. Blanchet-Sadri et al. [29] explored 
questions posed by Dassow et al. regarding the relationship 
between the sizes of these structures, while Dassow et al. 
[30] investigated the regular languages of partial words. 
Sasikala et al. [31] introduced the Partial Array Token Petri 
Net to generate partial array languages.

Moreover, Mary Ann et al. proposed a bio-model engi-
neering framework using Petri Nets [32]. Recent advance-
ments, such as the improved database concurrency control 
algorithm [33] and the wavelet neural network model for 
intrusion detection [34], have significantly contributed to 
diverse computing tools and applications [35]. The explora-
tion of secure keyword search in cloud computing has also 
been notable [36]. Muhammad Rizwan Ali et al. proposed 
cloud computing modeling and analysis based on Petri Net 
[37]. A timed neural network for the shortest path problem 
was investigated [38]. Toeplitz matrices-based key exchange 
protocols for the Internet of Things have been proposed [39].

The signifcant contributions of this research are:

•	 To understand the behavior of a system, analyzing its 
execution is essential. This approach is more useful and 
efficient in comprehending the system’s behavior.

•	 We study partial languages generated from the Partial 
Petri Net.

•	 We investigate closure properties over partial languages 
to provide a precise technique for verification, valida-
tion and synthesis for the important class of uncertain 
distributed systems.

•	 In existing literature, partial array languages have been 
studied with the introduction of Partial Array Token 
Petri Net [31], focusing on partial array languages. No 
prior work has been found to directly address this study. 
Notably, our study is specifically focused on the partial 
languages derived from the Partial Petri Net.

•	 The Partial Petri Net model established here is useful to 
enhance the modeling and analysis of concurrent, dis-
tributed systems characterized by uncertainty or partial 
observability of process executions. This potential appli-
cation of the Partial Petri Net opens up new possibilities 
for research and exploration in the field.

The paper is organized as follows. Section 2 presents the basic 
definitions used in this paper. The Partial Petri Net is defined 
and its execution, state space and labelings, including an algo-
rithm, are discussed in Sect. 3. In Sect. 4, Partial Petri Net lan-
guages and closure properties of these languages are studied. 
Finally, Sect. 5 gives the conclusion along with future scope.

2 � Preliminaries

In this section, we have given some basic definitions and 
notations of partial words, partial languages and Petri Net.

Let Σ be a finite set of symbols or letters that is not empty. 
A sequence of letters from Σ is referred to as a string or word 
over Σ . The empty word is represented by the symbol � . All 
strings that are made up of letters from Σ , including � , are 
represented by Σ∗ . On the other hand, Σ+ represents the set 
of all strings in Σ , but excludes � . A language L is defined 
as any subset of Σ∗ . A finite partial word (or partial word) 
is a sequence of symbols that has a number of unspecified 
symbols, denoted by ♢ , that are called “holes” or “do not care 
symbols”. Consider a partial word u = u[1...n] over the alpha-
bet Σ . u is a partial function that maps the set {1, 2, ..., n} to Σ . 
If u(i) is defined for any i where 1 ≤ i < n , then i is part of the 
domain of u, represented as D(u). If not, i is included in the 
set of holes of u, represented as H(u). To represent the posi-
tions of the holes in u, we define the partial word u♢ (Eq. 1) 
to be the total function u♢ ∶ {1, 2, ..., n} → Σ

♢ that maps to 
the extended alphabet Σ♢

= Σ ∪ {♢} and ♢ ∉ Σ , such that:

The set of all finite partial words over Σ♢ is denoted by Σ♢

∗ . 
Within this, Σ♢

+ denotes the subset containing all non-empty 
partial words over Σ♢ . A partial language L♢ is then defined 
as any subset L♢ ⊆ Σ

♢

∗ , that is, a set of partial words over 
the extended alphabet Σ♢.

A Petri Net structure, denoted as C, can be expressed as a 
quintuple: C = (P, T , I,O,�0) . Here, P represents a set of finite 
places, and T represents a finite transitions set. The intersec-
tion of the sets of transitions and places is empty, indicated by 
P ∩ T = � . The input function, denoted as I ∶ T → P∞ , maps 
transitions to bags of places, while the output function, denoted 
as O ∶ T → P∞ , performs a similar mapping. The initial mark-
ing, represented by �0 ∶ P → {0, 1, 2,…} , defines the initial 

(1)u
♢
(i) =

{
u(i) if i ∈ D(u)

♢ if i ∈ H(u).
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state of the places in the Petri Net. if pi ∈ I(tj) then a place 
pi serves as an input place of an transition tj . Conversely if 
pi ∈ O(tj) , pi acts as an output place. The inputs and outputs 
associated with a transition are bags of places. A bag is a con-
cept that builds upon the notion of a set. Similar to a set, a bag 
constitutes a group of elements from a certain domain. However, 
in contrast to a set, the elements in a bag can recur multiple 
times. A function, denoted as #(⋅, ⋅) , is represented for compo-
nents in a given domain and bags within that domain, this deter-
mines the frequency of each component in the bag. Specifically, 
#(x, �) = k ≥ 0 indicates that element x appears k times exactly 
in the bag � . Since set theory is a subset of bag theory when the 
range of the # function is {0, 1} , we utilize a significant amount 
of the symbols and fundamental concepts of sets when deal-
ing with bags. A Labeled Petri Net, denoted as A = (C,Σ, �) 
where C = (P, T , I,O,�0) , Σ is the input alphabet and a labe-
ling function � ∶ T → Σ . The labeling function extends to fir-
ing sequences, where if � represents a firing sequence, �(�) is 
termed a label sequence. The languages generated by Petri Nets 
consist of the sets of label sequences corresponding to all firing 
sequences or just all terminal firing sequences.

3 � Partial Petri Net

In this section, we define Partial Petri Net with an example 
and discuss its execution, state space and labelings, includ-
ing an algorithm.

Definition 1  A Partial Petri Net, PN♢ , is a quintuple 
defined by

where

P is a finite set of places,
T
♢
= Tr ∪ Tp and Tr ∩ Tp = � , here

Tr is a finite set of regular transitions and Tp is a finite set 
of partial transitions,
Σ
♢ is the input alphabet,

S ∈ P is the start place,
F ⊆ P is the finite set of final places.

Every transition, denoted as �j from the set T♢ , is defined by 
an ordered triple, expressed as

where

�j ∈ Σ
♢ representing the label for �j,

Ij ⊆ P denotes the input places of the transition,

PN
♢
= (P, T

♢
,Σ

♢
, S,F),

�j = (�j, Ij,Oj)

Oj ⊆ P denotes the output places of the transition.

Example 1  Consider the PN♢
= (P, T

♢
,Σ

♢
, S,F), where 

P = {p1, p2, p3} , T♢ = {�r1, �r2, �r3, �p} , Σ♢
= {a, b, c} ∪ {♢} , 

S = {p1} and F = {p3}.

When dealing with Partial Petri Nets, it is necessary to 
mention the individual elements of the ordered triples that 
constitute transitions. To aid in the precise recognition of 
these elements within a transition, we present three map-
ping functions (Eq. 2): the label function denoted by ( � ), 
the input function represented by (I) and the output function 
represented by (O) . For a transition �j = (�j, Ij,Oj) , where 
�j ∈ T

♢ , the definitions of these functions are as follows:

To map transition sequences to label sequences, we expand 
the label function by

3.1 � Execution rules

The Definition (1) focus on describing the structural charac-
teristics of a PN♢ . As an abstract machine, the PN♢ exhibits 
computational properties that govern its behaviour during 
firing. The firing process of a PN♢ is influenced by the pres-
ence and positioning of tokens, which are represented as 
black dots and traverse according to the firing rules for PN♢ 
Fig. 1). These rules can be summarized as follows:

•	 Initialization: Initiate the PN♢ by placing a single token 
in the start state (Fig. 2).

•	 Final State Check: If the net reaches a terminal state, the 
execution may halt; otherwise, compute the firing transi-
tion set, V (Fig. 3).

•	 Transition Firing: If V is nonempty, initiate the firing 
of one transition from V and subsequently revert to step 
second step (Fig. 4). If V is empty, the firing comes to a 
halt (Fig. 5).

(2)�(�j) = �j, I(�j) = Ij,O(�j) = Oj

(3)�(y) =

{
� if y = �

�(�j)�(x) if y = �jx, �j ∈ T
♢
, x ∈ T

♢

∗

Fig. 1   An example of the PN
♢



3666	 Int. j. inf. tecnol. (August 2024) 16(6):3663–3676

1 3

When there are enough tokens in each of a transition’s input 
places, the transition becomes enabled. Tokens are taken out 
of all of a transition’s input places and deposited into all of 
its output places when the transition is fired. These defini-
tions are clarified further by

Definition 2  A transition, �j ∈ T
♢ , is enabled if for every 

pn ∈ P , the number of tokens in pn is atleast #(pn, I(�j)).

Definition 3  An firable transition, �j , initiates by first elimi-
nating the token #(pn, I(�j)) from every place pn ∈ P and pro-
ceeds by inserting the token #(pn,O(�j)) to each place pn ∈ P.

3.2 � The state space

Token distribution and number inside the net define the struc-
ture of a PN♢ . Alternatively, this can be written as the cardinal-
ity of tokens, permitting zero, at every place within the PN♢ , 
which is known as a marking. An n-vector of non-negative 
numbers represents the place of a PN♢ and the token cardinal-
ity in each place is always a non-negative integer. A change 
in the place of PN♢ is indicated by the firing of a transition. If 
there is a sequence of firings that can change the initial state-
which corresponds to one token at the beginning and no tokens 
everywhere else into the target state, then that state is said to 
be reachable. We define M as the reachable state space, which 
is also commonly known as the marking of a PN♢.

If we represent the set of non-negative integers as N, then 
M ⊆ Nn . Every element in M is structured as an n−vector, with 
its �th element indicating the tokens cardinality at place pn 
where 1 ≤ � ≤ n) . The symbol S is used to denote the initial 
state and the vector (1, 0, 0,…), whereas F represents the final 
state set and the vector (0, 0,… , 1).

The subsequent-state function, represented as �, is a func-
tion mapping from Nn

→ T
♢ into Nn . For a m and a �j ∈ T

♢ , 
the subsequent-state function, denoted as �(m, �j), is defined 
iff for all n,(1 ≤ n ≤ k),

Therefore, �j ∈ T
♢ is considered firable in a state m iff 

�(m, �j) is defined. If �(m, �j) is defined, the resulting state 
vector from firing �j is determined. The nth element of the 
subsequent state is

(4)mn ≥ #(pn, I(�j))

If �(m, �j) is defined and Eq. (4), with #(pn, I(�j)) ≥ 0 , it fol-
lows that �(m, �j) ≥ 0 , ensuring �(m, �j) ∈ Nn.

The definition of �(m, �j) can be reformulated as a 
system of vector replacement [40]. For every �j ∈ T

♢ , 
we define uj and vj , where (uj)n = −(pn, I(�j)) and 
(vj)n = −#(pn, I(�j)) + #(pn,O(�j)) . �(m, �j) is defined if 
m + uj ≥ 0 , and if �(m, �j) is defined, then �(m, �j) = m + vj . 
The reachable state space of the PN♢ is analogous to the 
reachability set of a vector replacement system.

We expand the subsequent-state function from a single 
transition to the transition sequence, similar to the label 
function (Eq.  3). If y represents a transition sequence, 
denoted as y ∈ T

♢

∗ , then

Certainly, the subsequent-state functions mentioned in the 
Eq. (5) are defined for their corresponding inputs if and only 
if Eq. (6) is defined.

We can now define the smallest subset of Nn defined by 
the reachable state space, M.

•	 S ∈ M

•	 if m ∈ M , and Eq. (6) is defined for y ∈ T
♢

∗ , then Eq. (6) 
∈ M

We constrain the subsequent-state function to the reach-
able set M, since we are only focus in reachable states. As a 
result, � ∶ M × T

♢
→ M , and with the possible exception of 

the initial state, this mapping is surjective.

(5)�(m, �j)n = mn − #(pn, I(�j)) + #(pn,O(�j))

(6)�(m, y) =

{
m if y = �

�(�(m, �j), x) if y = �jx, �j ∈ T
♢
, x ∈ T

♢

∗

p1 p2 p3

ba

c♦♦

Fig. 2    Initially, place p1 contains one token and the set of tokens is 
denoted as V = �r1, �p

p1 p2 p3

ba

c♦♦

Fig. 3   After firing �r1 , then V = {�r1, �p}

p1 p2 p3

ba

c♦♦

Fig. 4   After firing �p , then V = {�r2, �r3}
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3.3 � Labelings

A distinct labeling of the PN♢ means that each transition pos-
sesses a unique label [that is, if �(�i) = �(�j) , then �i = �j ]. On 
the other hand, the �−free Partial Petri Net Language class 
permits transitions to have the same labels, but it does not 
allow transitions to be empty, (i.e)., for every 
�j ∈ T

♢
∶ �(�j) ≠ � . Additionally, a more inclusive labelling 

function has been considered, permitting null-labelled transi-
tions, denoted as �(�j) = � . These transitions are not present 

in the language and their existence in the PN♢ execution is not 
recorded. Furthermore, the deterministic labeling has an addi-
tional property. For each marking and each label, only one 
transition with that label is eligible for firing. (i.e)., for every 
mi and for every �j, �j

�
∈ T

♢
∶ (�(�j) = �(�j

�
) and mi(�j) and 

mi(�
�

j
)) ⟹ �j = �

�

j
 . These various types of labelings, includ-

ing distinct (d), �−free, �−transitions (�) and deterministic 
(def), yield four distinct languages types.

Algorithm 1   Partial Petri Net Execution and Language Study

Input: Place a single token in the initial place of PN♦
Output: After reaching the terminal state, study the partial languages associated
with PN♦.

1: procedure PartialPetriNet(PN♦)
2: Initialization:
3: M ← {S}
4: V ← {Compute initial firing transitions}
5: while M is not empty do
6: if V is empty then
7: return “No more firable transitions. Execution halted.”
8: end if
9: for each m in M do

10: if m is in F then
11: return “Final state reached. Execution halted.”
12: end if
13: for each τ in V do
14: if τ is enabled in m then
15: Compute δ(m, τ)
16: if δ(m, τ) is defined then
17: Add δ(m, τ) to M
18: Remove m from M
19: end if
20: end if
21: end for
22: end for
23: end while
24: for each τ in T do
25: if τ has a distinct label then
26:

27: else if τ has a λ-free label then
28:

29: else if τ has a λ-transition label then
30:

31: else if τ has a deterministic label then
32:

33: end if
34: end for
35: for each m in M do
36:

37: end for
38: end procedure
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4 � Partial Petri Net Languages and its closure 
properties

This section defines Partial Petri Net Language classes and 
studies their closure properties.

Definition 4  A partial language L♢ ∈ Σ
♢

∗ is said to be an 
L
♢-type Partial Petri Net Language (PPNL) if there exists 

a PN♢ such that L♢ = {�(y) ∈ Σ
♢

∗|y ∈ T
♢

∗ & �(m, y) ∈ F}.

Definition 5  A partial language L♢ ∈ Σ
♢

∗ is said to 
be an G♢-type PPNL if there exists a PN♢ such that 
L
♢
= {�(y) ∈ Σ

♢

∗|y ∈ T
♢

∗ , ∃ mf ∈ F : �(m, y) ≥ mf } . 

Definition 6  A partial language L
♢
∈ Σ∗

♢
 is said to 

be an P♢-type PPNL if there exists a PN♢ such that 
L
♢
= {�(y) ∈ Σ

♢

∗|y ∈ T
♢

∗ & ∃ �(m, y) but ∀ �j ∈ T
♢
, ∄ 

�(�(m, y), �j)}.

Definition 7  A partial language L
♢
∈ Σ∗

♢
 is said to 

be an R♢-type PPNL if there exists a PN♢ such that 
L
♢
= {�(y) ∈ Σ

♢

∗|y ∈ T
♢

∗ & ∃ �(m, y)}.

Example 2   Consider the PN
♢
= (P, T

♢
,Σ

♢
, S,F), 

w h e r e  P = {p1, p2, p3, p4}  ,  T
♢
= {�r1, �r2, �r3, �p}  , 

Σ
♢
= {a, b, c} ∪ {♢} , S = {p1} and F = {p3}.

 The languages generated by the PN♢ in Fig. (6) are 
shown in Table (1). In addition to the four types of partial 
languages (definitions 4, 5, 6 and 7) defined by differences 
in the final state set, further classifications arise from vari-
ations through labelings (Table 2).

Although the definitions vary, the classes of PPNLs 
exhibit a close relationship. Specifically, the distinct 
labelings set is contained within the set of deterministic 
labelings, which in turn, is contained within the �−free 
labelings set and this set is also contained within the �−
labelings set (Eqs. 7, 8, 9 and 10).

Our investigation is confined to a specific set of standard 
form Partial Petri Nets, even though our interest extends to 
the entire class of L♢

−type PPNLs. This limitation narrows 
the class of PPNLs without making the proofs and constructs 
more difficult. Every PN♢ language can be generated by mul-
tiple Partial Petri Nets, however we only work with nets 
which have specific characteristics. We show that a standard 
form of PN♢ exists, which generates a language of L♢

−type 
for every PPNL, proving that this is not reducing the lan-
guage set. First, we define the PN♢ in standard form.

(7)L
d
♢
⊆ L

def

♢
⊆ L

♢
⊆ L

𝜆

♢

(8)G
♢

d ⊆ G
♢

def ⊆ G
♢
⊆ G

♢

𝜆

(9)P
♢

d ⊆ P
♢

def ⊆ P
♢
⊆ P

♢

𝜆

(10)R
♢

d ⊆ R
♢

def ⊆ R
♢
⊆ R

♢

𝜆

p1 p2 p3

ba

c♦♦

Fig. 5   After firing �r3 , then V = {�}

p1

p2

p3

a

b c

p4

♦♦

Fig. 6   An example PN
♢
 to illustrate the different partial languages

Table 1   Four different PPNLs

Language Type Language

L
♢
−type L

♢
= {anb♢n|n ≥ 0}

G
♢
−type L

♢
= {amb♢n|m ≥ n ≥ 0}

P
♢
−type L

♢
= {amb♢nc|m ≥ n ≥ 0}

R
♢
−type L♢ = {an|m ≥ 0}

∪ {amb♢n
|m ≥ n ≥ 0} ∪ {amb♢nc|m ≥ n ≥ 0}

Table 2   Different Classes of PPNLs

Language/label distinct deterministic �−free �−transitions

L
♢
−type L

♢

d
L
♢

def L
♢ L

♢

�

G
♢
−type G

♢

d
G
♢

def G
♢ G♢

�

P
♢
−type P

♢

d
P
♢

def P
♢ P

♢

�

R
♢
−type R

♢

d
R

♢

def R
♢ R

♢

�
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Definition 8  A Partial Petri Net, PN♢
= (P, T

♢
,Σ

♢
, S,F) 

is in standard form if 

1.	 I(�j) ≠ � and O(�j) ≠ � ∀ �j ∈ T
♢.

2.	 S ∉ O(�j) ∀ �j ∈ T
♢

3.	 ∃ pf ∈ P such that

•	 F = pf  ( i f  � ∉ L
♢
(PN

♢
)) o r  F = {pf , S} ( i f 

� ∈ L
♢
(PN

♢
)),

•	 pf ∉ I(�j) ∀ �j ∈ T
♢

•	 For any �j ∈ T
♢ and m ∈ M with a token in pf  (i.e., 

mf > 0) ), �(m, �j) is undefined.

The standard form for Partial Petri Nets requires tran-
sitions to possess both non-empty input bags and output 
bags. Additionally, this standard formulation necessitates 
the existence of two special places: a separate final place 
that connects to no transition inputs, as well as a single start 
place that does not defined as the output for any transitions.

When executed, the PN♢ in standard form initiates with 
a solitary token placed in the starting place. This token gets 
removed upon the firing of the first transition, resulting in 
an empty start place thereafter. A token reaching the desig-
nated final place can halt the PN♢ , as no transitions accept 
input from the final place. As a result, the token remains in 
the final place. To demonstrate standard-form Partial Petri 
Nets possess equivalent capability as the generalized form, 
we provide the subsequent theorem.

Theorem 1  For any PN♢ , there exists an equivalent PN♢ 
in standard form.

Proof  Consider a PN♢
= (P, T

♢
,Σ

♢
, S,F) . We illustrate the 

construction of an equivalent PN♢

�

= (P
�
, T

♢

�

,Σ
♢
, S

�
,F

�
) in 

standard form (Fig. 7). First, we introduce three additional 
places that are distinct from P: pr , S

′ , and pf  . The starting 

place is S′ , the terminal place is pf  and the run place is pr . 
Tokens in pr are required for the firing of any transition in 
T
♢ . One token will be present in S′ for the initial marking of 

PN
♢

′ and one token will be present in pf  [for � ∈ L
♢
(PN

♢
) ] 

or S′ [if � ∉ L
♢
(PN

♢
)].

At this point, we have to make sure that all of the transi-
tion sequences in PN♢ that move from the starting marking 
to the terminal marking are also in PN♢

′ respectively. In 
order to do this, we examine three different kinds of strings 
in L♢(PN♢

) . First, F′ is defined in a way that appropriately 
recognizes the empty string � . By examining if the starting 
marking is the terminal marking m ∈ F , we can determine 
whether � ∈ L

♢
(PN

♢
).

Second, we consider a particular transition from S′ to 
pf  in PN♢

′ for all strings of length 1 in L♢(PN♢
) , as fol-

lows: Define �� ∈ T
♢

� for � ∈ Σ with � ∈ L
♢
(PN

♢
) , where 

I(��) = {S
�
} and O(t�) = {pf } . Label � is associated with �� . 

By examining each transition �j ∈ T
♢ , with �(�j) = � , we can 

determine that � ∈ L
♢
(PN

♢
) . Also, we can determine that 

�(m, �j) ∈ F . Lastly, take into consideration all strings longer 
than 1. These strings forms a sequence in T♢ , denoted by 
�j1 , �j2 ,… , �jn . We then define a sequence incorporating new 
transitions a and b: a�j1

�
,… , �jn

�
b . To generate the initial 

marking m of PN♢ and a token in pr , the transition a would 
require a token from S′ . With the exception of pr , which 
functions as both an input and an output, each �j

�
∈ T

♢

� is 
identical to �j ∈ T

♢ . This allows us to remove the token in 
pr , hence disabling all transitions in T♢

′ . At last, the b tran-
sition would output a token to pf  and eliminate the token 
from pr along with a terminal marking of PN♢ . A sequence 
a�j1

�
,… , �jn

�
b would be the only way for the token in the 

initial to the terminal places in PN♢

′ under this construction. 
This sequence aligns with �j1 , �j2 ,… , �jn leading from m to a 
terminal marking in PN♢.

Incorporating the additional symbols for transitions a and 
b would make the sequence overly long, since those symbols 
would only apply to PN♢

′ and not the PN♢ . A null labeling 
for a and b would be one way to solve this, but null labelings 
are not allowed in L♢

−type languages. To resolve this, we 
need to merge transitions b and �j1

′ into a single transition 
denoted �j1

′′′ , as well as merge transitions a and �j1
′ into �j1

′′ . 
Therefore, we define the combined transitions in T♢

′ , cor-
responding to any �j ∈ T

♢:

•	 Define �j
�
∈ T

♢

� ,  where O(�j
�
) = O(�j) ∪ {pr} and 

I(�j
�
) = I(�j) ∪ {pr}.

•	 D e f i n e  �j
′′  w i t h  I(�j

��
) = {S

�
}  a n d 

O(�j
��
) = m − I(�j) +O(�j) ∪ {pr} if I(𝜏j) ⊆ m.

•	 For every m′ in F representing a terminal mark-
ing that could result from �j firing as the terminal 

Fig. 7   The built structure of a PN
♢
 in its standard form
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transition, we define �j
′′′ with O(�j

���
) = {pf } and 

I(�j
���
) = m

�
−O(�j) + I(�j) ∪ {pr}.

The labeling �′ (Eq. 11) is now defined by

Any string � that is in L♢(PN♢
) is generated, by �j1 , �j2 ,… , �jn 

such that � = �(�j1 , �j2 ,… , �jn ) . By formulation

and so Eq.  (12) ∈ L
♢
(PN

♢
) . Therefore, given that 

L
♢
(PN

♢
) = L

♢
(PN

♢

�

) , PN♢ and PN♢

′ are equivalent. 	� ◻

Figure (8) shows a simple PN♢ which is not in standard 
form. Applying the proof’s construction to this PN♢ results 
in the standard form, shown in Fig. (9).

We will delve into the closure properties of PPNL. Given 
two such languages, L♢1 and L♢2 , we know that the PN♢ 
in standard form generates each of these languages. We 
therefore consider two Partial Petri Nets in standard form. 
PN

♢1 = (P1, T♢1,Σ♢
, S1,F1) and PN♢2 = (P2, T♢2,Σ♢

, S2,F2) 
with L♢1 = L

♢
(PN

♢1) and L♢2 = L
♢
(PN

♢2) . Given that both 

(11)�
�

(�j
�

) = �
��

(�j
��

) = �
���

(�j
���

) = �(�j)

(12)� = �(�j1
��

, �j2
�

,… , �jn−1
�

, �jn
���

)

are in standard form, the start places of PN♢1 and PN♢2 are 
S1 ∈ P1 and S2 ∈ P2 , respectively. Further, F2 = {S2, pf2} or 
{pf2} and F1 = {S1, pf1} or {pf1}.

Using the given Partial Petri Nets, we demonstrate the 
construction of another PN♢

�

= (P
�
, T

♢

�

,Σ
♢
, S

�
,F

�
) with a 

language L♢(PN♢

�

) , representing the combination of L♢1 
and L♢2.

Theorem 2  Let L♢1 and L♢2 be two PPNLs, then L♢1L♢2 
is also a PPNL.

Proof  Consider constructing a new PN♢

′ where the final 
place of PN♢1 , denoted pf1 , is made equivalent to the start 
place of PN♢2 , denoted S2 . This has the effect that the transi-
tion depositing a token in pf1 also signals the start of execu-
tion in PN♢2 . Due to this construction, any string formed by 
concatenating elements from L♢1 and L♢2 will have a valid 
path in PN♢

′ from the initial place S1 through the overlap 
place pf1 = S2 to the final place pf2 . Hence, the concatenated 
string must be an element of the language L♢(PN♢

�

) . A simi-
lar argument can show that any string generated from PN♢

′ 
must consist of a string from L♢1 followed by one from L♢2 . 
To properly account for the possibility of empty strings, the 

Fig. 8   A PN
♢
 which is not in 

standard form

p1p2 p3

a bc ♦♦

p1p2 p3

a bc ♦

S
′

pr

pf
♦

a

b
c

τ1
′

τ2
′

τ3
′ τ4

′

τ1
′′

τ3
′′

τ2
′′′

τ4
′′′

Fig. 9   A standard form of PN
♢
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formal definition of PN♢

′ requires defining it as the union 
of PN♢1 and PN♢2 along with some additional transitions. 
Specifically, for any transition �j in T♢2 with input place S2 , 
introduce a corresponding transition �j

′ in PN♢

′ with input 
place pf1 and output places O2(�j) . Also, if S1 is a final place 
in PN♢1 add another transition �j

′′ with input place S1 and 
output places from O2(�j) . The labeling functions �′ for the 

new transitions � ′
j and � ′′

j mirror those from PN♢2 . The final 
place set F′ for PN♢

′ is defined as the union of F1 and F2 , 
unless S′

2
 is not a final place, in which case F�

= F2 . The 
construction is illustrated in Fig.  (10). 	�  ◻

Theorem 3  Let L♢1 and L♢2 be two PPNLs, then L♢1 ∪ L
♢2 

is also a PPNL.

a,♦

a,♦

a,♦ a,♦

S1 pf1

a

a

♦

♦

♦

♦

S2 pf2

a

a

♦

♦

♦

♦

a,♦

a,♦

a,♦ a,♦

S
′

pf
′

L♦(PN♦1) = (a+♦)+

L♦(PN♦2) = an♦n(n ≥ 1)

L♦(PN♦
′
) = (a+♦)+an♦n(n ≥ 1)

Fig. 10   An example of concatenating two Partial Petri Net Languages
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Proof  The approach for proving this theorem follows a 
similar construction that was shown previously. Specifically, 
we introduce a new PN♢

′ defined such that its language satis-
fies L♢(PN♢

�

) = L
♢1 ∪ L

♢2 . This is accomplished via PN♢

′ 
containing a single new start place formed by combining 
the start places of PN♢1 and PN♢2 . An initial transition in 
PN

♢

′ removes the token from this unified start place. Sub-
sequently, depending on whether this initial transition lies 
in T♢1 or T♢2 , the underlying net PN♢1 or PN♢2 proceeds to 
execute as it normally would, just as defined previously. we 
introduce a new start place S′ along with additional transi-
tions �j1

′ and �j2
′ defined as follows. For each transition �j1 

in T♢1 that has the start place S1 as an input place, create a 
corresponding transition �j1

′ with input place S′ and output 
places identical to those of �j1 in PN♢1 , (i.e.) O1(�j1) . Simi-
larly, for each transition �j2 in T♢2 with start place S2 as input, 
add transition �j2

′ with input S′ and outputs O2(�j2) . The labe-
ling �′ map to �1 and �2 accordingly. The starting marking 
assigns a single token in S′ and the terminal marking set F′ 
is defined as the union of F1 and F2 . Further, if S1 ∈ F1 or 
S2 ∈ F2 , then S�

∈ F
� . The construction is demonstrated in 

Fig. (11). 	�  ◻

Theorem 4  The intersection of two PPNLs, L♢1 and L♢2 , 
is also a PPNL.

Proof  Constructing a PN♢

′ that generates the intersection 
of two PPNLs poses certain difficulties. As sequences are 
being generated, a transition that fires in one PN♢ , neces-
sitates an equivalent labeled transition to be enabled in the 
other and vice versa. When multiple transitions carrying the 
same label exist across the pairs of nets, all possible pairings 
between these matching transitions require consideration. 
For each such pair, we introduce a new transition which acti-
vates iff both transitions in the pair can fire in their respec-
tive original Partial Petri Nets. The input and output places 
for this new transition are defined as the sums of the input 
and output places of the associated pair of old transitions. 

Formally, if �j ∈ T
♢1 and �k ∈ T

♢2 have �(�j) = �(�k) , the cor-

responding �j,k ∈ T
♢

� such that I
�

(�j,k) = I1(�j) + I2(�k) and 

O
�

(�j,k) = O1(�j) +O2(�k) . Any such �j,k with combined input 
places forming the set S1, S2 are replaced with a transition 
�j,k

′ with the unified start place S′ as its sole input. Through 
this merging process, the two Partial Petri Nets are effectively 
joined into one unified PN♢

′ capable of generating their lan-
guage intersection. Figure (12) illustrates this construction. 	
� ◻

Theorem 5  The concurrent of two PPNLs, L♢1 and L♢2 , 
is also a PPNL.

Proof  Constructing PN♢

′ to generates the concurrent prop-
erty of languages L♢1 and L♢2 can be formulated as follows, 
given Partial Petri Nets that generate L♢1 and L♢2 . First, ini-
tialize the marking by inserting tokens in the start places of 
PN

♢1 and PN♢2 . Then, define the set of terminal markings 
of the combined net to be any marking such that the restric-
tion of that marking to places P1 belongs to final marking 
set F1 of PN♢1 concurrently with its restriction to places P2 
belonging to final marking set F2 of PN♢2 . This construction 
is illustrated in Fig. (13) 	�  ◻

Theorem 6  Let L♢ be a PPNL, then its reverse, L♢R is also 
a PPNL.

Proof  The procedure for obtaining the reverse language 
is simple. Consider the PN♢ and construct the reverse PN♢

′ 
by swapping the initial and final markings and similarly 
transposing the places for each transition. This reversal 
of arcs and markings causes PN♢

′ to accept exactly the 
reverse strings of those accepted by the PN♢ . Thus we have 
L
♢
(PN

♢

�

) = L
♢
(PN

♢
)R , showing that operating PN♢ in 

reverse yields its reverse language. Consequently, this con-
struction inverts the order of all strings generated by PN♢ . 	
� ◻

Remark 1  Closure under complementation may not hold 
for PPNLs.

5 � Conclusion and future scope

In this paper, the Partial Petri Net is defined. By modifying 
final state markings reached through execution sequences, 
we generated associated PPNLs. Further, by varying the 
labeling of transitions, we categorized these language 
classes. We demonstrated closure properties like union, 
intersection, concatenation, concurrency and reversal hold 
for these languages. While these initial results developing 
the formal theory of Partial Petri Nets and their languages 
are significant, further exploration remains.

Future work includes a more extensive categorization 
and analysis of additional classes of PPNL beyond the L♢

−

type studied thus far. Relationships between properties of 
these classes of PPNL and those of regular and local par-
tial languages also warrant research. The incorporation of 
place-based labeling represents an open possibility that may 
yield valuable new insights into the process of behavioral 
languages and results. There remains a rich opportunity 
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Fig. 11   An example of union of two Partial Petri Net Languages



3674	 Int. j. inf. tecnol. (August 2024) 16(6):3663–3676

1 3

to enhance the understanding of concurrent systems using 
Partial Petri Nets. Moreover, future work could integrate 
Partial Petri Nets with bio-inspired techniques like neu-
ral networks and evolutionary algorithms for learning and 

optimization. Additional opportunities include improving 
concurrency control in databases extending intrusion detec-
tion systems formally verifying security and privacy in cloud 
platforms, optimizing concurrent paths with learning meth-
ods, and improving the efficiency of cloud task scheduling 

S1 pf1

a ♦

c c c

♦

S2
pf2

c

c c

a ♦

c c c

a
pf

′S
′

L♦(PN♦1) = ca3nc♦2nc

L♦(PN♦2) = ca2nc♦3nc

L♦(PN♦
′
) = ca3nc♦2nc ∩ ca2nc♦3nc

Fig. 12   An example of intersection of two Partial Petri Net Languages
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S1 pf1

a ♦

S2 pf2

a

a

♦

a

♦

c c c

S1 pf1

a

a

♦

a ♦

S2 pf2

c c c

pf
′

S
′

c

a

a

♦

c

a,♦

L♦(PN♦1) = a(a+♦)+

L♦(PN♦2) = ca3nc♦2nc

L♦(PN♦
′
) = a(a+♦)+||ca3nc♦2nc

Fig. 13   An example of concurrent of two Partial Petri Net Languages
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algorithms. Furthermore, Partial Petri Nets could be applied 
to analyse emerging lightweight security protocols tailored 
for Internet of Things and edge computing architectures. By 
pursuing both theoretical advancements and practical imple-
mentations, the understanding and impact of Partial Petri 
Nets can continue to expand.
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