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Abstract The degraded quality of the speech input signal 
has a negative impact on speaker recognition techniques. We 
address the issues of speaker recognition from noise-cor-
rupted audio signals in the presence of four noise variants, 
including factory noise, car noise, street traffic noise, and 
voice babble noise, as well as noise-suppressed enhanced 
speech. The goal of this research is to create a speaker rec-
ognition algorithm that is resistant to a diverse spectrum of 
speech capture quality, background scenarios, and interfer-
ences. In this work, three distinct features, including Mel 
Frequency Cepstral Coefficients (MFCC), Normalized Pitch 
Frequency (NPF), and Normalized Phase Cepstral Coeffi-
cients (NPCC) are combined. The analysis that MFCC, NPF, 
and NPCC illustrate distinct features of speech underlies our 
observation. A Convolutional Neural Network (CNN) is used 
in our speaker recognition strategy to learn speaker-depend-
ent attributes from fragments of Mel features, normalized 
pitch features, and phase cepstral features of clean speech, 
corrupted speech, and enhanced speech. The performance 
is measured using the ITU-T test signals and compared to 
previous algorithms at different Signal-to-Noise-Ratios of 
0 dB, 5 dB, 10 dB, and 15 dB. For enhanced speech, all 
three features, MFCC, NPF, and NPCC, provided productive 
speaker identification and verification performance.

Keywords Convolutional neural network · Feature 
extraction · Feature fusion · Speaker identification · 
Speaker verification · Speech enhancement

1 Introduction

Speaker recognition, a biometric method, utilizes speech 
features to authenticate a user’s uniqueness through auto-
mated analysis of voice signals. Over recent decades, Auto-
matic Speaker Recognition (ASR) systems have advanced 
significantly, finding applications in forensics, banking, and 
security. These systems comprise preprocessing, feature 
extraction, and speaker modeling components. Preprocess-
ing involves refining input signals by eliminating non-speech 
elements and performing tasks like pre-emphasis and end-
point detection [1] [2]. Feature extraction, termed "front 
end preprocessing," transforms voice signals into numeri-
cal characteristics essential for training and testing speaker 
recognition systems. Speaker modeling constructs methods 
for speaker feature matching, crucial in the recognition stage 
for identification or verification purposes. Thus, speaker rec-
ognition systems serve vital roles across various domains, 
ensuring efficient and secure user authentication [3] (Fig. 1).

Speaker recognition systems often struggle in chal-
lenging acoustic environments due to factors like low 
audio SNR, diverse accents, and ambient noise, such as 
babble noise in crowded places. Conventional methods 
heavily rely on short-term spectral features like MFCC 
and Linear Prediction Cepstral Coefficients (LPCC), lim-
iting their effectiveness in the presence of acoustic deg-
radations. To address this, our research proposes a deep 
learning-based method called 1D-Frame Level-Feature 
Fusion-CNN. By combining MFCC with normalized pitch 
and phase features, this approach enhances recognition 
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capabilities, even in scenarios with varying background 
noise strengths [4]. This research aligns with existing 
literature and offers promising advancements in speaker 
identification and verification techniques.

2  Overview of previous work

2.1  Earlier approach

Over the last decade, speaker recognition has undergone 
significant advancements, notably leveraging cepstral 
characteristics like MFCC [5]. Statistical and machine-
learning methods such as Gaussian Mixture Model [6], 
Support Vector Machine (SVM) [7], and various score 
normalization techniques have been instrumental in 
speaker recognition systems. Recent improvements 
include the adoption of Gaussian Mixture Model-Uni-
versal Background Model (GMM-UBM) approaches [6], 
Support Vector (SV) techniques [8], and Factor Analysis-
based engine voice (i-vector) architecture [9]. However, 
technical challenges persist in the domain, with environ-
mental background noise and associated variations pos-
ing significant hurdles, particularly in scenarios with low 
signal-to-noise ratio.

The complex process of human speech involves various 
organs, yielding features indicative of pronunciation qual-
ities in voice signals [10]. Speaker recognition algorithms 
integrate multiple speech characteristics to enhance accu-
racy [11]. Common feature extraction methods include 
LPCC, MFCC, Perceptual Linear Predictive Analysis, 
cepstrum differential coefficients, and RASTA filters [5, 
12]. Spectrograms on the other hand offer a concise rep-
resentation of acoustic features [13].

2.2  Deep learning approach

Recent advancements in speaker recognition, particularly 
with the adoption of deep learning, have significantly 
improved recognition rates and robustness [14]. MFCC, 
known for its resistance to noise and session variations, 
remains a cornerstone in this field [15]. Strategies for iden-
tifying similar MFCC feature vectors have been proposed 
[16], and CNN architectures have shown promise in enhanc-
ing accuracy [17]. Combining learned features with MFCC 
characteristics has yielded improved performance [18]. 
However, the computational demands of deep learning mod-
els remain a challenge [19], prompting the exploration of 
noise reduction techniques for robust speaker authentication.

Deep Neural Networks (DNNs) have demonstrated 
greater resilience to noise and acoustic reverberation com-
pared to i-vectors, a machine learning approach incorpo-
rating GMM-UBM front-end with Probabilistic Linear 
Discriminant Analysis (PLDA) as the back-end classifier 
[20]. The benefits of voice-enhancing strategies with DNN 
embeddings in speaker recognition was investigated in [21]. 
El-Moneim et al. [22] focused on text-independent speaker 
recognition in noisy and reverberant environments, employ-
ing MFCCs, spectrum, and log-spectrum features analyzed 
by Long-Short Term Memory (LSTM)-Recurrent Neural 
Network (RNN) classifiers. Hourri et al. [23] proposed a 
novel method using CNN filters to extract speaker features, 
resulting in convVectors, which demonstrated enhanced per-
formance under noise conditions.

A Two-level noise-robust PNN model (2LNR-PNN), 
addressing noise during preprocessing and feature extraction 
stages using spectral subtraction and GMM was introduced 
in [24], resulting in improved performance, reliability, and 
resilience in noisy and real-time scenarios. Hamidi et al. 
[25] utilized a Hidden Markov Model (HMM) based auto-
matic speech recognition system to analyze cough signals, 
enabling the classification of coughs into sick or healthy 
category of speakers. AL-Shakarchy et al. [26] described a 
model designed to authenticate individuals based on their 
unique voice characteristics using deep learning techniques 
by leveraging the distinctive features present in their voices. 
Radha and Bansal [27] developed a child speaker identifica-
tion system for non-native English speakers, evaluating flu-
ency impact in text-dependent and text-independent tasks. 
Chelali [28] focused on audiovisual data fusion for robust 
speaker recognition in noisy environments, by extracting 
low-level features (LPC, MFCC for acoustic; ZM, HOG for 
visual) and fusing them to enhance modality efficiency.
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Fig. 1  A basic framework for an automated speaker recognition sys-
tem
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3  Proposed methodology

Recognizing speakers in environments with minimal noise 
poses a challenge due to disruptions in crucial acoustical 
cues. This research aims to bolster system resilience and 
accurately identify desired speakers by simultaneously refin-
ing noise suppression techniques and speaker identification-
verification procedures. This involves aligning learned 
features or enhanced speech signals with the necessary 
information for speaker identification-verification.

Speaker recognition involves identifying and confirming 
individuals based on their voice characteristics. This pro-
cess facilitates tasks like personalized speech adaptation and 
speaker authentication for security purposes. Central to this 
process is feature extraction, which precisely characterizes 
speech signals amidst variations. By employing methods like 
Normalized Pitch information, MFCC, and Phase informa-
tion, the feature extraction process translates acoustic input 
signals into patterns of acoustic feature vectors, providing 
a comprehensive depiction of speech signals. Deep Neural 
Networks are subsequently utilized to categorize speakers as 
either target or non-target based on these extracted features.

The proposed feature extraction process involves extract-
ing cepstral features, Normalized Pitch Frequency, and phase 
information from the speech signal. Cepstral analysis, using 
Mel filter banks, decomposes speech signal frames into 
logarithmic spectral domain coefficients to model human 
ear effectiveness. Incorporating pitch frequency [29] with 
MFCCs [30] and phase information [31] aims to improve 
recognition outcomes. The classification process includes 
training and testing phases. During training, features from 
the enhanced speech signal train the Deep Neural Network 
model for each speaker. In testing, an unknown speaker’s 
model is compared with learned features to decide on identi-
fication-verification. Speech signals from the ITU-T P-series 
recommendations directory [32] are used, with various real-
world noise signals introduced before recognition.

3.1  Convolutional neural network processing

The presence of significant quantities of training data has 
driven primarily significant advancements in deep learning. 
However, such data is rarely available for particular tasks 
like speaker recognition, where significant amounts of infor-
mation cannot be collected in real situations. As a result, in 
this work, we propose recognizing speakers using just a few 
training sets. To accomplish this, we employ a deep neural 
network with the Mel cepstral coefficients, normalized pitch 
spectrum, and phase cepstral coefficients as input, depicted 
in Fig. 2.

Our strategy for speaker recognition employs a CNN 
that is designed primarily to learn speaker dependent 
attributes from fragments of Mel features, normalized 
pitch features, and phase cepstral features of clean speech, 
corrupted speech, and enhanced speech. We developed a 
CNN-based feature level fusion method for combining and 
projecting speech attributes from the MFCC, Normalized 
Pitch, and Phase feature spaces into a d-dimensional joint 
feature space (explained in the later section). The value of 
d here is determined by the CNN architecture. The joint 
feature space is learned so that the joint feature representa-
tion encompasses highly discriminative speaker-dependent 
speech attributes, thereby enhancing speaker recognition 
accuracy. Before the feature extraction phase, we employ 
the speech enhancing method [33], to suppress the impact 
of noise on speech encountered in real-world scenarios. We 
deal with three instances including the clean speech, noise-
corrupted speech and enhanced version of speech obtained 
from the method [33] for speaker identification-verification 
tasks. We will concentrate on text-independent speaker rec-
ognition throughout this work because it represents a more 
generalized form and has significant usage in a wide range 
of applications.

Speech Signal (Clean/
Noise-Corrupted/

Enhanced)

Mel-Frequency 
Cepstral Coefficients

Normalized Pitch 
Frequency

Normalized Phase 
Cepstral Coefficients

Convolutional Neural 
Network ClassificationFeature Extraction Target/Non-Target 

SpeakerFeature Fusion

Fig. 2  Schematic overview of the proposed approach
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4  Analysis of proposed method

The described procedures extract 40-dimensional Mel, nor-
malized pitch, and normalized phase cepstral feature frames 
from speech frames. Each MFCC feature frame consists of 
20 mel-cepstral coefficients (including the zeroth order coef-
ficient), 20 first-order delta coefficients, 40 phase cepstral 
coefficients, and a normalized pitch. Cepstral Mean Variance 
Normalization (CMVN) is applied for feature normalization, 
enhancing generalizability in experiments. The number of 
speech frames obtained from a single voice file depends on 
the sampling frequency and voice length. For training the 
CNN with fixed-dimensionality input, 200 consecutive fea-
ture frames, termed “feature patches,” are randomly sampled 
from each voice signal in every batch, resulting in feature 
patches of size 40 × 200. These MFCC, Normalized Pitch, 
and NPCC patches are stacked along the three-dimensional 
space to form a 40 × 200 × 3 dimensional, three-channel 
feature patch named MFCC-NP-NPCC. Each channel rep-
resents MFCC, NP, and NPCC patches respectively. These 
features are integrated using 1D convolution filters in the 
CNN architecture, as illustrated in Fig. 3.

The CNN’s objective is to transform each MFCC-NP-
NPCC feature frame, with its 3-channel, 40-dimensional 
representation, into a 128-channel, 1-dimensional frame-
level feature embedding. This 128-dimensional Joint Feature 
Space encapsulates speaker-dependent information linked to 
the input features. The arrangement of convolutional layers 
in a CNN significantly impacts its learning capability and 
effectiveness, as each layer learns distinct concepts from 
the data and refines information for deeper layers. ReLU 
non-linearity is applied to filter observations from each con-
volutional layer, mitigating the vanishing gradient problem 
commonly encountered with sigmoid activation functions. 
Additionally, max-pooling is employed to reduce the dimen-
sionality of the network’s learned space. Dropout layers are 
incorporated into the CNN during training to introduce regu-
larization, offering the dual benefit of enhancing the CNN’s 

resilience to input data variations while mitigating overfit-
ting issues with the training data.

4.1  Speaker Identification Procedure

As shown in Fig. 3, during the testing phase, the input 
MFCC-NPF-NPCC feature strip X  , is divided into MFCC-
NPF-NPCC patches, §�, ��{1, 2,… ,N} , where N  , represents 
the number of patches. The CNN returns a series of classifi-
cation scores, 

{

∫�,�
}

, ��{1, 2,… ,S} , for each input MFCC-
NPF-NPCC patch, §� , pertaining to the S speakers. The clas-
sification score attributed to the � th speaker for the � th patch 
is represented by ∫�,� . The combined classification scores, or 
{S�} , for the complete speech signal are obtained by adding 
the results from each of the patches that were extracted from 
the speech signal, represented by Eq. 1, as:

The speaker �∗ designated for the input speech signal is 
then chosen, given by Eq. 2, as:

4.2  Speaker verification procedure

For the verification of the intended speaker, Cosine Triplet 
Embedding Loss function is employed. In our scenario, we 
use the cosine similarity criterion, which offers superior 
learning dynamics than the Euclidean criterion and corre-
sponds to the research in [32]. The cosine triplet embedding 
loss for training the model is represented by Eq. 3, as:

(1)S� =

N
∑

�=1

∫�,�,∀�

(2)�∗ = argmax
�

{S�}

(3)

l
(

S
ĉ1,Sń1,Sĉ2

)

=

N
∑

ĉ1,ń1,ĉ2

cosine(f(ĉ1, ń1)) − cosine(f(ĉ1, ĉ2))
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Fig. 3  A schematic of the proposed 1D-frame level-feature fusion-CNN architecture’s feature fusion
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Here, l() represents the Cosine Triplet Embedding Loss 
function, ĉ1 corresponds to the clean speech utterance related 
to speaker 1, ń1 corresponds to the utterances of the noise-
corrupted speech utterance related to speaker 1, and ĉ2 cor-
responds to the clean speech utterance related to speaker 2.

A whole essential criterion considered is that, despite 
the fact that the speech signal is changing constantly, the 
speaker-dependent vocal attributes are presumed to be quasi-
stationary only over brief periods of time (15–35 ms) [34]. 
As a result, as mentioned in the feature extraction phase, 
we perform on short-term voice segments known as “voice 
frames”. The MFCC, NPF, or NPCC features that corre-
spond to that voice frame are referred to as the “Feature 
Frame”. Therefore, a feature frame derived from a voice 
frame reflects just that voice frame’s characteristics and has 
no correlation with its adjacent frames from the perspective 
of speaker recognition. Considering the above attribute lim-
its, we specified the incorporation of 1D convolutional filters 
in conjunction with the feature frame in our Convolutional 
Neural Network for learning speaker-specific characteristic 
attributes of the concerned speech.

5  Experimental approach

5.1  Experimental setup

Our suggested approach was evaluated using the ITU-T 
speech dataset1 [32] for clean speech signals. The collec-
tion from the ITU-T speech dataset contains 16 recorded 
sentences in every one of the 20 languages. Also, every set 
(or subset) contains half male speaker recordings and half 
female speaker recordings. The speech samples, initially at 
a 16 kHz sampling rate, were downsampled to 8 kHz to 
minimize the computational limitations of the system. The 
noise signals were chosen from the NOISEX-92 dataset2 
[35], including factory noise. Each of the resulting datasets 
was produced at one of three SNR levels: 0 dB, 5 dB, 10 dB, 
or 15 dB. For enhancing the speech signal, the method 
employed in [33] was incorporated as a preprocessing 
approach to deal with noise-corrupted speech samples from 
the speakers. Thus, three variants of speech signals, includ-
ing clean speech samples, noise-corrupted speech samples, 
and enhanced speech samples, were provided as input to 

the proposed speaker recognition system. Because the text 
uttered by the speakers in the training and testing sets dif-
fer, the speaker recognition experimental studies are text-
independent. Table 1 illustrates the performance evaluation 
of the proposed approach using state-of-the-art techniques.

5.2  Results and discussion

In this section, we evaluated the text-independent speaker 
recognition observation employing MFCC, NPF, NPCC 
information. Figures 4, 5, and Table 2 displays the results 
of the independent method for recognizing speakers in terms 
of Identification Accuracy (ID in %), Equal Error Rate (EER 
in %), False Acceptance Rate (FAR), and False Rejection 
Rate (FRR) for the factory noise scenario.

5.2.1  Speaker identification results

Figure 4 depicts the identification accuracy results of the 
proposed approach in comparison with the state-of-the-art 
techniques for factory noise, for noise-corrupted speech and 
enhanced speech.

Even when the SNR is 0 dB for factory noise, it is evi-
dent that the suggested method outperforms other baselines 
in different noise scenarios with accuracy of 40.5%, 41.6% 
for 5 dB, 42.8% for 10 dB, and 44.9% for 15 dB SNR varia-
tions. Furthermore, by incorporating an enhancement strat-
egy, the proposed method improves identification perfor-
mance even further with 93.8% identification accuracy at 
0 dB, 94.7% at 5 dB, 95.4% at 10 dB, and 96.1% at 15 dB 
SNR levels, respectively. Before speaker identification, 
speech noise suppression is used, and a joint optimization 
is performed, which filters out some noise disruptions. The 
speaker-dependent speech improvement is implemented 
as well. With the exception of speaker-independent noise 
elimination, the incorporation of speaker knowledge not only 
recovers some of the noise-corrupted speech signals but also 
reveals speaker-specific characteristics that are important for 
speaker recognition.

5.2.2  Speaker verification results

Figure 5 depicts the speaker verification accuracy results of 
the proposed approach in comparison with the state-of-the-
art techniques for factory noise, for noise-corrupted speech 
and enhanced speech.

The results of speaker verification are presented in the 
form of an Equal Error Rate (EER). The noise-corrupted and 
enhanced utterances are observed under four different SNR 
conditions. The proposed approach clearly benefits from 

1 https:// www. itu. int/ net/ itu-t/ sigdb/ genau dio/ Pseri es. htm. 
2 https:// svr- www. eng. cam. ac. uk/ comp. speech/ Secti on1/ Data/ noisex. 
html. 

https://www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm
https://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html
https://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html
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speech noise suppression in all situations. The advantage 
is greatest at all the SNR levels, where the EER scores for 
noise-corrupted utterances are relatively high. At an input 
SNR of 0 dB, the EER score for noise-corrupted speech 
estimates to 16.11%, 14.21% for 5 dB, 10.39% for 10 dB, 
and 7.18% for 15  dB SNR levels. Using the proposed 
method for enhanced speech utterances, this score is reduced 
to 7.13% for 0 dB, 5.47% for 5 dB, 3.98% for 10 dB, and 
2.25% for 15 dB SNR values, respectively. In comparison 
to prior speaker verification systems, the proposed method 

outperforms them in all conditions. As a result, using MFCC 
in conjunction with NPF and PCC enhances speaker verifi-
cation performance uniformly over existing methods at all 
input SNR levels.

Table 2 displays the results of the performance assess-
ment for noise-corrupted speech and enhanced speech under 
the influence of factory noise in terms of False Acceptance 
Rate (FAR) and False Rejection Rate (FRR). For factory 
noise, the presented approach successfully accomplished 
promising outcomes of 0.35942 FAR and 0.11096 FRR at 

Table 1  Performance evaluation of the proposed approach using state-of-the-art techniques

Research 
study

Samples Speech length Features derived Training/testing 
pairs

Method employed Parameters 
evaluated

Recognition 
accuracy (in %)

Yutai (2009) 
[5]

Text depend-
ent

Not men-
tioned

Dynamic 
MFCC

Not mentioned Mel filters for pitch 
and MFCC

GMM as classifier

Recognition 
rate

41.02 (10 dB)
73.28 (20 dB)
87.32 (30 dB)

Ali (2018) 
[18]

Text depend-
ent

Urdu Dataset Learned fea-
tures + MFCC

10 speakers DBN Accuracy 92.6%

Siam (2019) 
[19]

Text depend-
ent

ITU-T 4–12 s MFCC 50 speakers Spectral subtraction 
for noise + VQ for 
identification

Output SNR, 
recognition 
rate

36 (0 dB)
48 (5 dB)
68 (10 dB)
82 (15 dB)
94 (20 dB)
100 (25 dB)

Hourri (2021) 
[23]

Text inde-
pendent

THUYG-20 
SRE Corpus

30 s

MFCC + deriva-
tives

371 speakers RBM + UBM + CNN EER
DET

EER 1.05%

Juneja (2022) 
[24]

Text depend-
ent

THUYG-20 
SRE Corpus 
4771 train-
ing utter-
ances

MFCC, LPC, 
and statistical 
features

100M–100F/66M–
87F

Spectral subtrac-
tion and GMM for 
noise + robust PNN 
model for identifi-
cation

Accuracy, 
EER and 
FRR

Average accu-
racy 80%

Maximum FRR 
0.2

Proposed 
approach

Text inde-
pendent

ITU-T 4-12 s MFCC, NPF, 
PCC

10 speakers CNN EER, FAR, 
FRR, IDR

Maximum EER 
2.25%, FAR 
0.43205, FRR 
0.11217, 
IDR 96.1% 
at 15 dB 
(enhanced)

Fig. 4  Speaker Identification results (in %) for noise-corrupted speech and enhanced speech (factory noise)
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15 dB SNR for noise-corrupted speech. For the enhanced for 
of speech utterance, the FAR achieved is 0.43205 and FRR 
obtained is 0.11217 at 15 dB SNR level condition. Under all 
SNR conditions and noise variants, the proposed approach 
outperforms the existing techniques.

6  Conclusion and future scope

Noise in speech data frequently misrepresents the 
speaker-dependent features present, complicating speaker 
identification and verification approaches. Because 
MFCC is not very resistant to audio degradation pro-
cesses as a speech classification process, the speaker rec-
ognition performance of methods that depend exclusively 
on MFCC attributes will struggle in the presence of noise 
encountered in real-time scenarios. Conversely, as dem-
onstrated by the experimental observations, the proposed 

CNN classifier with the input features of MFCC, NPF, 
and PNCC is robust to a wide spectrum of audio dam-
ages. In terms of identification accuracy, equal error rate, 
false acceptance rate, and false rejection rate, the proposed 
technique significantly outperformed all standard procedures 
by a significant margin.

The future of voice enhancement and speaker recog-
nition is defined by the incorporation of sophisticated 
signal processing technologies, such as deep learning 
architectures, as well as the investigation of multimodal 
approaches that combine auditory and visual informa-
tion for increased accuracy. Adaptive systems capable 
of dynamically responding to ambient elements and user 
context are planned, coupled with attempts to improve 
resilience against numerous sources of variability such 
as accents, noise, and channel distortions. As these tech-
nologies become more widely used, there will be a greater 
emphasis on privacy and security concerns. Real-time 

Fig. 5  Speaker verification results (%EER) with MFCC, NPF, and PCC as the input features (factory noise)
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applications in a variety of fields, including healthcare, 
automotive, security, and customer service, will push the 
development of efficient algorithms and hardware imple-
mentations, allowing for seamless integration into com-
mon devices and systems.
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