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Abstract The degraded quality of the speech input signal
has a negative impact on speaker recognition techniques. We
address the issues of speaker recognition from noise-cor-
rupted audio signals in the presence of four noise variants,
including factory noise, car noise, street traffic noise, and
voice babble noise, as well as noise-suppressed enhanced
speech. The goal of this research is to create a speaker rec-
ognition algorithm that is resistant to a diverse spectrum of
speech capture quality, background scenarios, and interfer-
ences. In this work, three distinct features, including Mel
Frequency Cepstral Coefficients (MFCC), Normalized Pitch
Frequency (NPF), and Normalized Phase Cepstral Coeffi-
cients (NPCC) are combined. The analysis that MFCC, NPF,
and NPCC illustrate distinct features of speech underlies our
observation. A Convolutional Neural Network (CNN) is used
in our speaker recognition strategy to learn speaker-depend-
ent attributes from fragments of Mel features, normalized
pitch features, and phase cepstral features of clean speech,
corrupted speech, and enhanced speech. The performance
is measured using the ITU-T test signals and compared to
previous algorithms at different Signal-to-Noise-Ratios of
0 dB, 5 dB, 10 dB, and 15 dB. For enhanced speech, all
three features, MFCC, NPF, and NPCC, provided productive
speaker identification and verification performance.
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1 Introduction

Speaker recognition, a biometric method, utilizes speech
features to authenticate a user’s uniqueness through auto-
mated analysis of voice signals. Over recent decades, Auto-
matic Speaker Recognition (ASR) systems have advanced
significantly, finding applications in forensics, banking, and
security. These systems comprise preprocessing, feature
extraction, and speaker modeling components. Preprocess-
ing involves refining input signals by eliminating non-speech
elements and performing tasks like pre-emphasis and end-
point detection [1] [2]. Feature extraction, termed "front
end preprocessing,” transforms voice signals into numeri-
cal characteristics essential for training and testing speaker
recognition systems. Speaker modeling constructs methods
for speaker feature matching, crucial in the recognition stage
for identification or verification purposes. Thus, speaker rec-
ognition systems serve vital roles across various domains,
ensuring efficient and secure user authentication [3] (Fig. 1).

Speaker recognition systems often struggle in chal-
lenging acoustic environments due to factors like low
audio SNR, diverse accents, and ambient noise, such as
babble noise in crowded places. Conventional methods
heavily rely on short-term spectral features like MFCC
and Linear Prediction Cepstral Coefficients (LPCC), lim-
iting their effectiveness in the presence of acoustic deg-
radations. To address this, our research proposes a deep
learning-based method called 1D-Frame Level-Feature
Fusion-CNN. By combining MFCC with normalized pitch
and phase features, this approach enhances recognition
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Fig. 1 A basic framework for an automated speaker recognition sys-
tem

capabilities, even in scenarios with varying background
noise strengths [4]. This research aligns with existing
literature and offers promising advancements in speaker
identification and verification techniques.

2 Overview of previous work
2.1 Earlier approach

Over the last decade, speaker recognition has undergone
significant advancements, notably leveraging cepstral
characteristics like MFCC [5]. Statistical and machine-
learning methods such as Gaussian Mixture Model [6],
Support Vector Machine (SVM) [7], and various score
normalization techniques have been instrumental in
speaker recognition systems. Recent improvements
include the adoption of Gaussian Mixture Model-Uni-
versal Background Model (GMM-UBM) approaches [6],
Support Vector (SV) techniques [8], and Factor Analysis-
based engine voice (i-vector) architecture [9]. However,
technical challenges persist in the domain, with environ-
mental background noise and associated variations pos-
ing significant hurdles, particularly in scenarios with low
signal-to-noise ratio.

The complex process of human speech involves various
organs, yielding features indicative of pronunciation qual-
ities in voice signals [10]. Speaker recognition algorithms
integrate multiple speech characteristics to enhance accu-
racy [11]. Common feature extraction methods include
LPCC, MFCC, Perceptual Linear Predictive Analysis,
cepstrum differential coefficients, and RASTA filters [5,
12]. Spectrograms on the other hand offer a concise rep-
resentation of acoustic features [13].

@ Springer

2.2 Deep learning approach

Recent advancements in speaker recognition, particularly
with the adoption of deep learning, have significantly
improved recognition rates and robustness [14]. MFCC,
known for its resistance to noise and session variations,
remains a cornerstone in this field [15]. Strategies for iden-
tifying similar MFCC feature vectors have been proposed
[16], and CNN architectures have shown promise in enhanc-
ing accuracy [17]. Combining learned features with MFCC
characteristics has yielded improved performance [18].
However, the computational demands of deep learning mod-
els remain a challenge [19], prompting the exploration of
noise reduction techniques for robust speaker authentication.

Deep Neural Networks (DNNs) have demonstrated
greater resilience to noise and acoustic reverberation com-
pared to i-vectors, a machine learning approach incorpo-
rating GMM-UBM front-end with Probabilistic Linear
Discriminant Analysis (PLDA) as the back-end classifier
[20]. The benefits of voice-enhancing strategies with DNN
embeddings in speaker recognition was investigated in [21].
El-Moneim et al. [22] focused on text-independent speaker
recognition in noisy and reverberant environments, employ-
ing MFCCs, spectrum, and log-spectrum features analyzed
by Long-Short Term Memory (LSTM)-Recurrent Neural
Network (RNN) classifiers. Hourri et al. [23] proposed a
novel method using CNN filters to extract speaker features,
resulting in conv Vectors, which demonstrated enhanced per-
formance under noise conditions.

A Two-level noise-robust PNN model (2LNR-PNN),
addressing noise during preprocessing and feature extraction
stages using spectral subtraction and GMM was introduced
in [24], resulting in improved performance, reliability, and
resilience in noisy and real-time scenarios. Hamidi et al.
[25] utilized a Hidden Markov Model (HMM) based auto-
matic speech recognition system to analyze cough signals,
enabling the classification of coughs into sick or healthy
category of speakers. AL-Shakarchy et al. [26] described a
model designed to authenticate individuals based on their
unique voice characteristics using deep learning techniques
by leveraging the distinctive features present in their voices.
Radha and Bansal [27] developed a child speaker identifica-
tion system for non-native English speakers, evaluating flu-
ency impact in text-dependent and text-independent tasks.
Chelali [28] focused on audiovisual data fusion for robust
speaker recognition in noisy environments, by extracting
low-level features (LPC, MFCC for acoustic; ZM, HOG for
visual) and fusing them to enhance modality efficiency.
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3 Proposed methodology

Recognizing speakers in environments with minimal noise
poses a challenge due to disruptions in crucial acoustical
cues. This research aims to bolster system resilience and
accurately identify desired speakers by simultaneously refin-
ing noise suppression techniques and speaker identification-
verification procedures. This involves aligning learned
features or enhanced speech signals with the necessary
information for speaker identification-verification.

Speaker recognition involves identifying and confirming
individuals based on their voice characteristics. This pro-
cess facilitates tasks like personalized speech adaptation and
speaker authentication for security purposes. Central to this
process is feature extraction, which precisely characterizes
speech signals amidst variations. By employing methods like
Normalized Pitch information, MFCC, and Phase informa-
tion, the feature extraction process translates acoustic input
signals into patterns of acoustic feature vectors, providing
a comprehensive depiction of speech signals. Deep Neural
Networks are subsequently utilized to categorize speakers as
either target or non-target based on these extracted features.

The proposed feature extraction process involves extract-
ing cepstral features, Normalized Pitch Frequency, and phase
information from the speech signal. Cepstral analysis, using
Mel filter banks, decomposes speech signal frames into
logarithmic spectral domain coefficients to model human
ear effectiveness. Incorporating pitch frequency [29] with
MFCCs [30] and phase information [31] aims to improve
recognition outcomes. The classification process includes
training and testing phases. During training, features from
the enhanced speech signal train the Deep Neural Network
model for each speaker. In testing, an unknown speaker’s
model is compared with learned features to decide on identi-
fication-verification. Speech signals from the ITU-T P-series
recommendations directory [32] are used, with various real-
world noise signals introduced before recognition.

Mel-Frequency
Cepstral Coefficients

Speech Signal (Clean/
Noise-Corrupted/
Enhanced)

Normalized Pitch

Feature Extraction
Frequency

Normalized Phase
Cepstral Coefficients

Fig. 2 Schematic overview of the proposed approach

3.1 Convolutional neural network processing

The presence of significant quantities of training data has
driven primarily significant advancements in deep learning.
However, such data is rarely available for particular tasks
like speaker recognition, where significant amounts of infor-
mation cannot be collected in real situations. As a result, in
this work, we propose recognizing speakers using just a few
training sets. To accomplish this, we employ a deep neural
network with the Mel cepstral coefficients, normalized pitch
spectrum, and phase cepstral coefficients as input, depicted
in Fig. 2.

Our strategy for speaker recognition employs a CNN
that is designed primarily to learn speaker dependent
attributes from fragments of Mel features, normalized
pitch features, and phase cepstral features of clean speech,
corrupted speech, and enhanced speech. We developed a
CNN-based feature level fusion method for combining and
projecting speech attributes from the MFCC, Normalized
Pitch, and Phase feature spaces into a d-dimensional joint
feature space (explained in the later section). The value of
d here is determined by the CNN architecture. The joint
feature space is learned so that the joint feature representa-
tion encompasses highly discriminative speaker-dependent
speech attributes, thereby enhancing speaker recognition
accuracy. Before the feature extraction phase, we employ
the speech enhancing method [33], to suppress the impact
of noise on speech encountered in real-world scenarios. We
deal with three instances including the clean speech, noise-
corrupted speech and enhanced version of speech obtained
from the method [33] for speaker identification-verification
tasks. We will concentrate on text-independent speaker rec-
ognition throughout this work because it represents a more
generalized form and has significant usage in a wide range
of applications.

Convolutional Neural
Network Classification

Target/Non-Target

Feature Fusion Speaker

@ Springer



3496

Int. j. inf. tecnol. (August 2024) 16(6):3493-3501

4 Analysis of proposed method

The described procedures extract 40-dimensional Mel, nor-
malized pitch, and normalized phase cepstral feature frames
from speech frames. Each MFCC feature frame consists of
20 mel-cepstral coefficients (including the zeroth order coef-
ficient), 20 first-order delta coefficients, 40 phase cepstral
coefficients, and a normalized pitch. Cepstral Mean Variance
Normalization (CMVN) is applied for feature normalization,
enhancing generalizability in experiments. The number of
speech frames obtained from a single voice file depends on
the sampling frequency and voice length. For training the
CNN with fixed-dimensionality input, 200 consecutive fea-
ture frames, termed “feature patches,” are randomly sampled
from each voice signal in every batch, resulting in feature
patches of size 40x200. These MFCC, Normalized Pitch,
and NPCC patches are stacked along the three-dimensional
space to form a 40x 200 x 3 dimensional, three-channel
feature patch named MFCC-NP-NPCC. Each channel rep-
resents MFCC, NP, and NPCC patches respectively. These
features are integrated using 1D convolution filters in the
CNN architecture, as illustrated in Fig. 3.

The CNN’s objective is to transform each MFCC-NP-
NPCC feature frame, with its 3-channel, 40-dimensional
representation, into a 128-channel, 1-dimensional frame-
level feature embedding. This 128-dimensional Joint Feature
Space encapsulates speaker-dependent information linked to
the input features. The arrangement of convolutional layers
in a CNN significantly impacts its learning capability and
effectiveness, as each layer learns distinct concepts from
the data and refines information for deeper layers. ReLU
non-linearity is applied to filter observations from each con-
volutional layer, mitigating the vanishing gradient problem
commonly encountered with sigmoid activation functions.
Additionally, max-pooling is employed to reduce the dimen-
sionality of the network’s learned space. Dropout layers are
incorporated into the CNN during training to introduce regu-
larization, offering the dual benefit of enhancing the CNN’s
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resilience to input data variations while mitigating overfit-
ting issues with the training data.

4.1 Speaker Identification Procedure

As shown in Fig. 3, during the testing phase, the input
MFCC-NPF-NPCC feature strip &, is divided into MFCC-
NPF-NPCC patches, §;,ie{1,2, ..., N}, where N, represents
the number of patches. The CNN returns a series of classifi-
cation scores, {fi’i}, je{1,2,...,8}, for each input MFCC-
NPF-NPCC patch, §;, pertaining to the S speakers. The clas-
sification score attributed to the jth speaker for the ith patch
is represented by [; ;. The combined classification scores, or
{S;}, for the complete speech signal are obtained by adding
the results from each of the patches that were extracted from
the speech signal, represented by Eq. 1, as:

%
Si= Y LY,
i=1

The speaker j* designated for the input speech signal is
then chosen, given by Eq. 2, as:

ey

i* = argmax{S;}
i

@)

4.2 Speaker verification procedure

For the verification of the intended speaker, Cosine Triplet
Embedding Loss function is employed. In our scenario, we
use the cosine similarity criterion, which offers superior
learning dynamics than the Euclidean criterion and corre-
sponds to the research in [32]. The cosine triplet embedding
loss for training the model is represented by Eq. 3, as:

N
1SiSi) = Y cosine(f(¢1,71)) - cosine(f(¢1, ¢2))

elate
(3)
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Fig. 3 A schematic of the proposed 1D-frame level-feature fusion-CNN architecture’s feature fusion
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Here, /() represents the Cosine Triplet Embedding Loss
function, ¢1 corresponds to the clean speech utterance related
to speaker 1, 711 corresponds to the utterances of the noise-
corrupted speech utterance related to speaker 1, and ¢2 cor-
responds to the clean speech utterance related to speaker 2.

A whole essential criterion considered is that, despite
the fact that the speech signal is changing constantly, the
speaker-dependent vocal attributes are presumed to be quasi-
stationary only over brief periods of time (15-35 ms) [34].
As a result, as mentioned in the feature extraction phase,
we perform on short-term voice segments known as “voice
frames”. The MFCC, NPF, or NPCC features that corre-
spond to that voice frame are referred to as the “Feature
Frame”. Therefore, a feature frame derived from a voice
frame reflects just that voice frame’s characteristics and has
no correlation with its adjacent frames from the perspective
of speaker recognition. Considering the above attribute lim-
its, we specified the incorporation of 1D convolutional filters
in conjunction with the feature frame in our Convolutional
Neural Network for learning speaker-specific characteristic
attributes of the concerned speech.

5 Experimental approach
5.1 Experimental setup

Our suggested approach was evaluated using the ITU-T
speech dataset' [32] for clean speech signals. The collec-
tion from the ITU-T speech dataset contains 16 recorded
sentences in every one of the 20 languages. Also, every set
(or subset) contains half male speaker recordings and half
female speaker recordings. The speech samples, initially at
a 16 kHz sampling rate, were downsampled to 8 kHz to
minimize the computational limitations of the system. The
noise signals were chosen from the NOISEX-92 dataset*
[35], including factory noise. Each of the resulting datasets
was produced at one of three SNR levels: 0 dB, 5 dB, 10 dB,
or 15 dB. For enhancing the speech signal, the method
employed in [33] was incorporated as a preprocessing
approach to deal with noise-corrupted speech samples from
the speakers. Thus, three variants of speech signals, includ-
ing clean speech samples, noise-corrupted speech samples,
and enhanced speech samples, were provided as input to

! https://www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm.

2 https://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.
html.

the proposed speaker recognition system. Because the text
uttered by the speakers in the training and testing sets dif-
fer, the speaker recognition experimental studies are text-
independent. Table 1 illustrates the performance evaluation
of the proposed approach using state-of-the-art techniques.

5.2 Results and discussion

In this section, we evaluated the text-independent speaker
recognition observation employing MFCC, NPF, NPCC
information. Figures 4, 5, and Table 2 displays the results
of the independent method for recognizing speakers in terms
of Identification Accuracy (ID in %), Equal Error Rate (EER
in %), False Acceptance Rate (FAR), and False Rejection
Rate (FRR) for the factory noise scenario.

5.2.1 Speaker identification results

Figure 4 depicts the identification accuracy results of the
proposed approach in comparison with the state-of-the-art
techniques for factory noise, for noise-corrupted speech and
enhanced speech.

Even when the SNR is 0 dB for factory noise, it is evi-
dent that the suggested method outperforms other baselines
in different noise scenarios with accuracy of 40.5%, 41.6%
for 5 dB, 42.8% for 10 dB, and 44.9% for 15 dB SNR varia-
tions. Furthermore, by incorporating an enhancement strat-
egy, the proposed method improves identification perfor-
mance even further with 93.8% identification accuracy at
0 dB, 94.7% at 5 dB, 95.4% at 10 dB, and 96.1% at 15 dB
SNR levels, respectively. Before speaker identification,
speech noise suppression is used, and a joint optimization
is performed, which filters out some noise disruptions. The
speaker-dependent speech improvement is implemented
as well. With the exception of speaker-independent noise
elimination, the incorporation of speaker knowledge not only
recovers some of the noise-corrupted speech signals but also
reveals speaker-specific characteristics that are important for
speaker recognition.

5.2.2 Speaker verification results

Figure 5 depicts the speaker verification accuracy results of
the proposed approach in comparison with the state-of-the-
art techniques for factory noise, for noise-corrupted speech
and enhanced speech.

The results of speaker verification are presented in the
form of an Equal Error Rate (EER). The noise-corrupted and
enhanced utterances are observed under four different SNR
conditions. The proposed approach clearly benefits from

@ Springer
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Table 1 Performance evaluation of the proposed approach using state-of-the-art techniques

Research Samples Speech length  Features derived Training/testing Method employed Parameters Recognition
study pairs evaluated accuracy (in %)
Yutai (2009)  Text depend- Not men- Dynamic Not mentioned Mel filters for pitch ~ Recognition ~ 41.02 (10 dB)
[5] ent tioned MFCC and MFCC rate 73.28 (20 dB)
GMM as classifier 87.32 (30 dB)
Ali (2018) Text depend- Urdu Dataset Learned fea- 10 speakers DBN Accuracy 92.6%
[18] ent tures + MFCC
Siam (2019)  Textdepend- ITU-T4-12s MFCC 50 speakers Spectral subtraction ~ Output SNR, 36 (0 dB)
[19] ent for noise + VQ for recognition 48 (5 dB)
identification rate 68 (10 dB)
82 (15 dB)
94 (20 dB)
100 (25 dB)
Hourri (2021) Text inde- THUYG-20  MFCC+deriva- 371 speakers RBM+UBM+CNN EER EER 1.05%
[23] pendent SRE Corpus tives DET
30s
Juneja (2022) Text depend- THUYG-20 MEFCC, LPC, 100M-100F/66M—  Spectral subtrac- Accuracy, Average accu-
[24] ent SRE Corpus  and statistical 87F tion and GMM for EER and racy 80%
4771 train- features noise+robust PNN  FRR Maximum FRR
ing utter- model for identifi- 0.2
ances cation
Proposed Text inde- ITU-T4-12s MFCC, NPF, 10 speakers CNN EER, FAR, Maximum EER
approach pendent PCC FRR, IDR 2.25%, FAR
0.43205, FRR
0.11217,
IDR 96.1%
at 15dB
(enhanced)

speech noise suppression in all situations. The advantage
is greatest at all the SNR levels, where the EER scores for
noise-corrupted utterances are relatively high. At an input
SNR of 0 dB, the EER score for noise-corrupted speech
estimates to 16.11%, 14.21% for 5 dB, 10.39% for 10 dB,
and 7.18% for 15 dB SNR levels. Using the proposed
method for enhanced speech utterances, this score is reduced
to 7.13% for 0 dB, 5.47% for 5 dB, 3.98% for 10 dB, and
2.25% for 15 dB SNR values, respectively. In comparison
to prior speaker verification systems, the proposed method

Speaker Identification (%) Results for Factory Noise-Corrupted Speech
T T

-
I Siam (2015)
I ourr (2021)

Juneja (2022)

racy (%)

Speaker Identification Accur

Input SNR (dB)

outperforms them in all conditions. As a result, using MFCC
in conjunction with NPF and PCC enhances speaker verifi-
cation performance uniformly over existing methods at all
input SNR levels.

Table 2 displays the results of the performance assess-
ment for noise-corrupted speech and enhanced speech under
the influence of factory noise in terms of False Acceptance
Rate (FAR) and False Rejection Rate (FRR). For factory
noise, the presented approach successfully accomplished
promising outcomes of 0.35942 FAR and 0.11096 FRR at

(%) Results for

\
:
] |

Al 2018)
Siam (2019)

Enhanced Speech

Junaja (2022

Input SR (dB)

Fig. 4 Speaker Identification results (in %) for noise-corrupted speech and enhanced speech (factory noise)
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2 Equal Error Rate (%) Results for Factory Noise Corrupted Speech
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Fig. 5 Speaker verification results (%EER) with MFCC, NPF, and PCC as the input features (factory noise)

15 dB SNR for noise-corrupted speech. For the enhanced for
of speech utterance, the FAR achieved is 0.43205 and FRR
obtained is 0.11217 at 15 dB SNR level condition. Under all
SNR conditions and noise variants, the proposed approach
outperforms the existing techniques.

6 Conclusion and future scope

Noise in speech data frequently misrepresents the
speaker-dependent features present, complicating speaker
identification and verification approaches. Because
MFCC is not very resistant to audio degradation pro-
cesses as a speech classification process, the speaker rec-
ognition performance of methods that depend exclusively
on MFCC attributes will struggle in the presence of noise
encountered in real-time scenarios. Conversely, as dem-
onstrated by the experimental observations, the proposed

CNN classifier with the input features of MFCC, NPF,
and PNCC is robust to a wide spectrum of audio dam-
ages. In terms of identification accuracy, equal error rate,
false acceptance rate, and false rejection rate, the proposed
technique significantly outperformed all standard procedures
by a significant margin.

The future of voice enhancement and speaker recog-
nition is defined by the incorporation of sophisticated
signal processing technologies, such as deep learning
architectures, as well as the investigation of multimodal
approaches that combine auditory and visual informa-
tion for increased accuracy. Adaptive systems capable
of dynamically responding to ambient elements and user
context are planned, coupled with attempts to improve
resilience against numerous sources of variability such
as accents, noise, and channel distortions. As these tech-
nologies become more widely used, there will be a greater
emphasis on privacy and security concerns. Real-time
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Table 2 False acceptance rate (FAR) and false rejection rate (FRR) results (factory noise)

@ Springer

Siam (2019) Hourri (2021) Juneja (2022) Proposed approach

Ali (2018)

Noise-corrupted speech  Yutai (2009)

Input SNR

FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

FAR

0.11026
0.11038
0.11045
0.11096

0.31547

0.32721

0.10824
0.10965
0.10986
0.10995

0.10472 0.04062 0.21746 0.09275 0.23648 0.09745 0.25164 0.10582 0.28371
0.13492 0.25813 0.10713

0.16839
0.19527

0.02023

0.05466
0.08257

0dB
5dB

0.29532

0.09857 0.26318 0.09869 0.27341

0.05049
0.05097

0.02059

0.10265 0.28146 0.10372 0.29843 0.10915 0.31469 0.34163
0.10693 0.32168

0.10543

0.27148

0.10251 0.04075

10dB
15dB

0.35942

0.10958

0.31467

0.29514

0.28631

0.07094

0.06094

0.13271

Siam (2019) Hourri (2021) Juneja (2022) Proposed approach

Yutai (2009) Ali (2018)

Enhanced speech

FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

FAR

0.11162
0.11184
0.11205
0.11217

0.38142

0.11073
0.11086
0.11092
0.11145

0.33925
0.34719

0.11059
0.11078
0.11082
0.11096

0.32517

0.10997
0.11047
0.11068
0.11085

0.29837

0.10984
0.11031
0.11053
0.11074

0.08362 0.22642 0.10571 0.29146
0.23752

0.08954

0.19531

0dB
5dB

0.39263
0.41603
0.43205

0.33194

0.31984
0.33132

0.31572
0.32174

0.10862
0.10958
0.10974

0.20472
0.23158

0.35928
0.36801

0.34912

0.25961

0.09163

10dB
15dB

0.27136 0.34281 0.34963 0.35871

0.10436

0.25837

The text reflected in bold specify the outcomes of our proposed approach

applications in a variety of fields, including healthcare,
automotive, security, and customer service, will push the
development of efficient algorithms and hardware imple-
mentations, allowing for seamless integration into com-
mon devices and systems.
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