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Abstract  Artificial hummingbird algorithm (AHA) is one 
of the recent bio-inspired meta-heuristic algorithms which 
is based on hummingbirds’ intelligent behaviours. Just like 
many meta-heuristic algorithms, it also suffers from freezing 
in local optima and slow convergence speed. In this paper, 
the authors have proposed a novel chaotic artificial hum-
mingbird algorithm (ChAHA) obtained by incorporating 
chaos theory in the original AHA with the aim of escaping 
it from local minima stagnation along with high convergence 
rate and more precise results. Firstly, detailed studies have 
been performed on six different unimodal and multimodal 
constrained benchmark functions by employing ten differ-
ent chaotic test mappings in order to determine the most 
enhanced and efficient one. Later, statistical testing and 
graphical analysis prove that incorporation of chaotic maps 
(especially tent map) in AHA improves the original AHA by 
showing promising performance. Finally, the performance 
of the ChAHA (with tent map) is also validated by finding 
the optimum gain values of a fractional order proportional-
integral-derivative (FOPID) controller, meticulously tailored 
to meet the specific requirements of DC motor speed control 
in MATLAB/Simulink. It has been unambiguously affirmed 
that the closed loop system with the proposed ChAHA-
FOPID controller has better performance than certain pre-
existing controllers such as grey wolf optimization based 
FOPID (GWO-FOPID), atom search optimization based 
FOPID (ASO-FOPID) and manta ray foraging optimization 

based FOPID (MRFO-FOPID) controllers. Finally, robust-
ness analysis is also carried out with parameter variations 
of DC motor and the final simulation results validate the 
superiority of the proposed approach.

Keywords  Chaotic map · Artificial hummingbird 
algorithm · DC motor · Fractional order PID controller · 
ITAE objective function · Robustness analysis

1  Introduction

In computational intelligence, the aim of optimization is to 
find the optimal or near-optimal solutions to a given issue 
within a predetermined search space. The urge to address 
complex and non-linear optimization issues has led to con-
stant evolution of algorithmic approaches. Though classical 
optimization techniques are fruitful in limited situations, 
they fail to overcome insurmountable barriers while address-
ing high-dimensional, complex and non-linear problem envi-
ronments [1]. Many researchers have been attracted towards 
metaheuristic algorithms owing to their special ability to 
penetrate through solution spaces efficiently in the process of 
solving such intricate problems. Getting inspired from social 
and natural phenomena, these algorithms have a built-in 
capacity to thoroughly explore and exploit the search space 
in an attempt to discover the global optima in reasonable 
time-period.

One of the research domains with the most rapid devel-
opment is meta-heuristic optimization approaches. Credit 
belongs to the No Free Lunch (NFL) theorem, which pro-
claims that there isn’t an ideal algorithm that can resolve 
every problem better than any other method [2]. This 
encouraged the authors of this paper to come up with a 
novel meta-heuristic method through improving an existing 
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one. A typical shortcoming of most meta-heuristics is their 
inability to dynamically change user-defined parameters, and 
diverse control parameter selections have varying impacts 
on optimization results [3]. Moreover, many optimizers have 
several control parameters. Consequently, it is imperative to 
examine the trend of parameter influence on the entire algo-
rithm, as this will unavoidably lead to an increase in needless 
computation and operating expenses. Furthermore, a lot of 
optimizers consist of several control parameters. Selecting 
different parameters to solve various optimization problems 
proves to be difficult. Because of this, an algorithm with 
fewer control parameters must be designed.

An algorithm meeting the above criteria is artificial 
hummingbird algorithm (AHA), a very recent bio-inspired 
optimization algorithm that draws inspiration from the intel-
ligent behaviour of hummingbird [4]. It mimics the hum-
mingbird’s unique flight abilities and foraging techniques 
which includes axial, diagonal and omnidirectional flights. 
It has been established that this algorithm produces better 
results than other meta-heuristic algorithms in real world 
scenarios [5–8]. However, similar to majority of meta-heu-
ristic algorithms, the basic problem with AHA is its slow 
search performance, poor optimization precision, and pre-
mature convergence leading to researchers for developing 
its improved versions [9–16]. Table 1 lists some of the rel-
evant works based on AHA and its modified version with 
different approaches. Wang et al. [9] introduced the golden 
sine factor in the AHA to solve truss topology engineering 
problem considering both static and dynamic constraints. 
Ramadan et al. [10] employed an opposition-based learning 
method for improving AHA and is experimented on static 
and dynamic models of photovoltaic solar cell to prove its 

efficacy over supply-demand-based optimization (SDO), 
wild horse optimizer (WHO), and tunicate swarm algo-
rithm (TSA). Ali et al. [11] proposed two improved AHA 
versions, random opposition-based learning (ROBL) and 
opposition-based learning (OBL), in tackling waste classi-
fication problem based on relevant feature selection along 
with a comparative analysis among twelve advanced opti-
mizers. Aquila optimization (AO) is hybridized with AHA 
by Elaziz et al. [12] for effective feature selection from four 
different raw medical image datasets. Sarhana et al. [13] 
proposed an enhanced artificial hummingbird optimizer 
(EAHO) by integrating linear control mechanism (LCM) 
and diverse territorial foraging strategies (TFSs) into the 
traditional AHA for optimizing power flow in IEEE 30, 
57, and 118-bus test grids. Yildiz et al. [14] presented in a 
hybrid model of AHA and simulated annealing (AHA-SA) 
and had used to solve complex multi-constrained optimiza-
tion problems prevalent in mechanical engineering domains. 
In Emam et al. [15], local escape operator (LEO) and OBL 
are integrated together in basic AHA resulting in a modi-
fied AHA (mAHA). This is then applied in modified IEEE-
30 bus and IEEE-118 bus systems for solving real-world 
OPF problem in addition to performance comparison with 
whale optimization algorithm (WOA), sine cosine algorithm 
(SCA), TSA, slime mould algorithm (SMA), harris hawks 
algorithm (HHA), RUNge kutta optimization algorithm 
(RUN), and basic AHA. AHA is amalgamated with genetic 
operators to generate mAHA by Alhumade et al. [16] for 
solving maximum power point tracking (MPPT) on a single 
sensor-based photovoltaic systems.

Literature has shown us that chaos theory is a strong con-
tender for improving the efficacy of meta-heuristic methods 

Table 1   Some significant works on AHA

Approach Areas of application References

AHA RDGs planning optimization under uncertainties [5]
AHA Parameter estimation of solar modules [6]
AHA Energy management of microgrids with demand response [7]
AHA Optimization of biomass-based DGs in radial distribution 

network
[8]

Golden sine factor based enhanced AHA (DGSAHA) Optimization of truss topology in engineering [9]
Adaptive opposition AHA (AOAHA) Accurate static and dynamic photovoltaic models [10]
Improved AHA using random opposition-based learning (AHA-

ROBL)
Feature selection-based waste classification problem [11]

Hybrid AHA with aquila optimization (AHA-AO) Optimal feature selection in medical image classifier [12]
AHA with linear control mechanism (LCM) and diverse territo-

rial foraging strategies (TFSs)
Power flow optimization in IEEE 30, 57, and 118-bus test grids [13]

Hybrid AHA with simulated annealing (AHA-SA) Constrained mechanical engineering issues [14]
AHA with local escape operator (LEO) and OBL Optimal power flow (OPF) problem in modified IEEE-30 bus 

and IEEE-118 bus systems
[15]

AHA with genetic operators Maximum power point tracking (MPPT) optimization for photo-
voltaic (PV) cells

[16]
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and has been extensively applied in many applications 
since the advent of nonlinear dynamics. The incorporation 
of chaos theory with optimization techniques is one of the 
most well-known applications in this domain [17–19]. Lit-
erature reveals that several meta-heuristic optimization tech-
niques have so far been effectively paired with chaos theory 
[20–32]. Kohli and Arora [20] introduced ten different cha-
otic maps in grey wolf optimization (GWO) algorithm in an 
attempt to accelerate its convergence rate and is analyzed on 
thirteen constrained benchmark functions. Chebyshev map 
is found out to be the most efficient map and the proposed 
approach is validated on five constrained engineering prob-
lems. Ahmad et al. [21] introduced chaotic particle swarm 
optimization (PSO) in the area of image encryption where 
logistic map helps in initial population generation followed 
by PSO in achieving optimization of encryption process. 
Misaghi and Yaghoobi [22] proposed and investigated cha-
otic invasive weed optimization (IWO) algorithm on five 
benchmark functions. The authors have used logistic cha-
otic map for determining the optimal gain values of a PID 
controller for a DC motor speed control. Arora and Anand 
[23] have successfully improved the global convergence rate 
of grasshopper optimization algorithm (GOA) through the 
utilization of chaotic map functions with circle map proving 
to be the most efficient one. Hybridization of salp swarm 
algorithm (SSA) with chaos theory was proposed by Sayed 
et al. [24]. SSA with ten chaotic maps are applied on four-
teen benchmark problems and twenty benchmark datasets 
resulting in logistic chaotic map as the efficient one. In Kaur 
and Arora [25], the performance of WOA is improved by 
employing ten chaotic maps (especially tent map) with an 
enhanced speed of convergence. Twenty benchmark func-
tions have been used for qualitative analysis and statistical 
testing of this proposed technique. Arora and Singh [26] 
examined the functionality of ten varied chaotic maps in 
enhancing butterfly optimization algorithm (BOA). Also, 
the proposed approach is employed on certain test functions 
for proper validation along with solving engineering design 
problems. With the goal of enhancing biogeography-based 
optimization (BBO), Saremi et al. [27] utilized ten chaotic 
maps for defining certain probabilistic parameters. Perfor-
mance evaluation is done on ten test functions and the result 
showed that gauss map can significantly enhance the original 
algorithm. Verma et al. [28] has proposed chaotic Archime-
des optimization algorithm (AOA) as an improved version 
of the original algorithm which is further employed in solv-
ing Regression test selection issue. Statistical testing proved 
singer map to be the most effective chaotic map among ten 
selective chaotic maps. Shinde et al. [29] presented modified 
enhanced version of SCA with the help of ten chaotic maps 
and comparative analysis of the work was done on nineteen 
benchmark functions along with other advanced algorithms 
besides solving four engineering problems. Bansal and 

Sahoo [30] introduced chaos dynamics into gorilla troops 
optimizer (GTO) for improving its global search capability. 
This is further employed in non-negative matrix factoriza-
tion (NMF) problem for successful integrative analysis of 
four varied cancer data source. Alam and Muqeem [31] have 
proposed chaos game optimization (CGO) based Recurrent 
Neural Network (RNN) for prediction of heart disease with 
greater efficiency and accuracy. Mirjalili and Gandomi [32] 
suggested a chaotic version of gravitational search algo-
rithm (GSA) employing ten chaotic maps for proper bal-
ancing exploration and exploitation phases. Evaluation of 
the proposed approach was performed on twelve benchmark 
functions and upon statistical testing sinusoidal map came 
out to be the best map in performance improvement of GSA.

With the goal of accelerating AHA’s rate of conver-
gence, the authors of the present work have proposed 
a novel hybridization methodology based on AHA and 
chaos theory. It has been demonstrated in the literature 
that substituting chaotic systems for random numbers in 
mathematical models enhances the algorithm’s capacity 
for global convergence and avoids local optimum stag-
nation [33]. As a result, the major parameters of AHA 
are replaced with ten different one-dimensional chaotic 
maps in order to completely assess the efficaciousness of 
chaos theory for boosting its exploration and/or exploita-
tion capabilities. Six benchmark unimodal and multimodal 
functions are chosen to estimate the performance of the 
proposed method. The findings of the simulations dem-
onstrate that the chaotic artificial hummingbird algorithm 
(ChAHA) outperforms the original AHA in context of pro-
ficiency and precision. For emphasizing the persuasiveness 
of the proposed ChAHA, the authors have implemented 
it to conduct meticulous optimum tuning of a Fractional 
Order Proportional-Integral-Derivative (FOPID) controller 
for accomplishing precise DC motor speed control. FOPID 
controller have additional fractional order parameters in 
addition to traditional proportional-integral-derivative 
(PID) parameters. This expanded parameter space leads 
to increased system complexity and the tuning process 
more intricate [34]. As such, tuning of a FOPID control-
ler for DC motor speed control remains to be a matter 
of great concern for the control engineers as the system 
performance greatly depends on the optimal values of its 
five functioning parameters. Heuristic optimization tech-
niques are often tested in real-world scenarios through 
the tuning of controller parameters for DC motor speed 
regulation. Some of the recent notable metaheuristic opti-
mization methods used to tune FOPID controllers so as to 
obtain DC motor speed control as found in literature works 
are gazelle optimization algorithm (GOA) [35], improved 
slime mould algorithm (SMA) [36], GWO [37], atom 
search optimization (ASO) [38], and manta ray foraging 
optimization (MRFO) [39]. Furthermore, the authors have 
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not found any existing literature where a FOPID control-
ler has been tuned using artificial hummingbird algorithm 
(AHA), thereby making it a novel approach.

In this work, the authors have selected integral of time 
multiplied absolute error (ITAE) as the objective function 
which needs to be minimized in order to accomplish the 
controller tuning. An honest comparison of the suggested 
ChAHA-FOPID and AHA-FOPID controllers are performed 
with some of the pre-existing approaches in literature such 
as GWO-FOPID [37], ASO-FOPID [38], and MRFO-
FOPID [39] controllers. Additionally, the proposed control-
ler’s robustness analysis is performed when the DC motor 
configurations are varied, and the findings are shown in both 
graphical and tabular formats for easier comprehension.

The major contributions and novelties of this paper are 
listed as follows:

(i)	 A novel chaotic version of AHA obtained by incorpora-
tion of chaos theory into AHA is proposed for acceler-
ating the convergence rate of AHA.

(ii)	 Ten different chaotic maps are used and the proposed 
chaotic version of AHA (i.e. ChAHA) is applied on 
six constrained benchmark functions and their detailed 
performance evaluations are carried out along with sta-
tistical testing and graphical analysis.

(iii)	 Both the proposed ChAHA and the original AHA tech-
niques are employed for the first time in motor drive 
application area of electrical engineering field in per-
forming efficient tuning of a FOPID controller in DC 
motor speed control.

(iv)	 Comparative analysis of the proposed approaches with 
certain pre-existing cutting-edge controller types such 
as GWO-FOPID [37], ASO-FOPID [38], and MRFO-
FOPID [39] are performed in terms of time domain 
transient response analysis by minimization of same 
ITAE objective function.

(v)	 Robustness analysis of the proposed ChAHA approach 
under sudden variations of DC motor parameter vari-
ations are done and are also compared with the other 
pre-existing approaches.

The remaining of the paper is arranged as follows: Sect. 2 
contains briefly an overview of the conventional AHA. Sec-
tion 3 describes the chaotic maps that depict chaotic sequences 
for AHA. The proposed ChAHA is presented in Sect. 4. Per-
formance evaluations in terms of statistical testing and graph-
ical analysis of proposed ChAHA are described in Sect. 5. 
This is followed by Sect. 6 consisting of mathematical model 

of both DC motor and FOPID controller. Design and imple-
mentation of ChAHA-FOPID controller for controlling the 
speed of DC motor is presented in Sect. 7. Section 8 includes 
comparative analysis with some of the pre-existing control-
ler approaches while Sect. 9 contains the robustness analysis. 
Finally, conclusion in Sect. 10 marks the end of the paper.

2 � Artificial hummingbird algorithm (AHA)

AHA is a newly developed bio-inspired meta-heuristic opti-
mization algorithm, basically getting inspired from the astute 
feeding behaviour of hummingbirds [4]. The AHA algorithm 
involves three main steps: exploration, exploitation, and updat-
ing and is mathematically presented as follows.

2.1 � Initialization

The algorithm starts with a population of m hummingbirds 
placed on m sources of food which gets randomly initialized 
by Eq. (1).

where, lb and ub represents respective lower and upper lim-
its for a specific issue, r1 is a vector of random values within 
[0, 1], and ya denotes the ath source of food position marking 
the specified issue solution.

The visit table of food sources is created as in Eq. (2).

where, the first condition states that the ath hummingbird 
has just visited the bth source of food while the second con-
dition says that a hummingbird is feeding at its designated 
source of food.

2.2 � Guided foraging

This algorithm uses a direction switch vector to control and 
supervise omnidirectional, diagonal and axial flight directions 
of hummingbirds during foraging in the s-dimension space.

The above-mentioned flight sequences can be expanded to 
a s-S space, with Eq. (3) defining the axial flight ability.

Equation (4) defines the diagonal flight ability while Eq. (5) 
is for omnidirectional flight ability.

(1)ya = lb + r1 ⋅ (ub − lb); a = 1,… ,m

(2)VTa,b =

{
0; a ≠ b; a = 1,… ,m; b = 1,… ,m

null; a = b

(3)Sa =

{
1; a = randa([1, s]); a = 1,… , s

0; else

(4)Sa =

�
1; a = P(b); b ∈

�
1, f

�
; P = randperm(f ); for f ∈ [2, ⌈r2(s − 2)⌉ + 1]

0; else
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where, randa([1, s]) creates an arbitrary integer between 1 to 
s, randperm(f) generates an arbitrary permutation of integers 
between 1 to f, and r2 is any arbitrary number within [0, 1].

Guided foraging behaviour and a potential source of 
food are represented mathematically as in Eqs. (6) and (7) 
respectively.

where ya(t) denotes the ath source of food position at t time, 
ya,tgt(t) denotes position of the intended source of food, GF 
denotes guided factor, and N(0, 1) is the normal distribution 
with a mean of 0 and standard deviation of 1.

As per Eq. (8), the ath source of food position gets updated.

where f (∙) represents value of fitness function.

2.3 � Territorial foraging

In territorial foraging strategy, Eq. (9) can be useful in tracing 
of hummingbirds locally while a candidate source of food is 
obtained mathematically as in Eq. (10).

where TF denotes territorial factor and N(0, 1) is the normal 
distribution with a mean of 0 and standard deviation of 1.

2.4 � Migration foraging

A hummingbird with the lowest rate of nectar refilling 
migrates to hunt randomly from the previous source to a new 
one, as given by Eq. (11).

where, ywst represents source of food with the lowest nec-
tar refiling rate, and r3 is a random vector within [0, 1]. The 
algorithm suggests Eq. (12) as a desirable definition for the 
migration coefficient (MC) in terms of population size (m).

(5)Sa = 1; a = 1,… , s

(6)ua(t + 1) = ya,tgt(t) + GF ⋅ S ⋅ (ya(t) − ya,tgt(t))

(7)GF ∼ N(0, 1)

(8)ya(t + 1) =

{
ya(t); f (ya(t)) ≤ f (ua(t + 1))

ua(t + 1); f (ya(t)) > f (ua(t + 1))

(9)ua(t + 1) = ya(t) + TF ⋅ S ⋅ ya(t)

(10)TF ∼ N(0, 1)

(11)ywst(t + 1) = lb + r3 ⋅ (ub − lb)

(12)MC = 2m

3 � Chaotic maps

In any dynamic non-linear system characterized by non-
repetitive, non-converging, and constrained, chaos is a 
randomized deterministic method which replaces random 
variables by chaotic variables. As a result, it can execute 
more faster search operation than probabilistic or stochastic 
search. In the realm of optimization, a broad range of unique 
chaotic maps are available [40]. In the current work, the ten 
most popular unidimensional chaotic maps have been used 
[22–29]. Table 2 provides an overview of the mathematical 
variations of these chaotic maps where, k stands for index 
count corresponding to chaotic series x; xk represents the 
chaotic series of the kth number; a and b denotes the control-
ling parameters, influencing the dynamic system’s chaotic 
nature. All the chaotic maps are initialized from the same 
starting point x0 = 0.7, the reason being that the initial value 
greatly influences the fluctuation patterns on chaotic maps 
[27]. Figure 1 shows the visualization of chaotic maps for 
100 number of iterations.

4 � The proposed novel chaotic artificial 
hummingbird algorithm (ChAHA)

In this section, a novel chaotic artificial hummingbird 
algorithm (ChAHA) is proposed wherein chaotic maps are 
employed to replace the three random variables r1, r2 and 
r3 with chaotic variables. The original algorithm has three 
main parameters r1, r2 and r3 which affect its performance. 
Parameter r1 is responsible for random initialization of 
the solutions as given in Eq. (1), r2 refers to guided forag-
ing strategy (exploration as well as exploitation) as given 
in Eq. (4), while r3 refers to migration foraging strategy 
(exploration) as given in Eq. (11). During guided foraging, 
r2 controls the direction switch vector which in turn manages 
the three special flight skills for the speedy merging of hum-
mingbirds approaching the destination updating repeatedly 
throughout the course of iterations as can be seen in Eq. (4). 
According to Eq. (6), exploration is prioritized initially due 
to significant distance between food sources, but progres-
sively as the distance reduces, exploitation is prioritized. 
Thus, r2 significantly impact on balancing between explora-
tion and exploitation. In this study, the authors have used the 
chaotic map to adjust the r2 parameter of AHA and is named 
as the ChAHA which is shown in Eq. (13). An illustration 
of the flowchart of proposed ChAHA algorithm is presented 
in Fig. 2.

(13)Sa =

�
1; a = P(b); b ∈

�
1, f

�
; P = randperm(f ); f ∈ [2, ⌈r2(t) ⋅ (s − 2)⌉ + 1]

0; else
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where r2(t) is the chaotic variable produced from the cha-
otic map in the tth iteration and Sa represents the direction 
vector of ath hummingbird. Equation (13) illustrates that 

the chaotic maps are permitted to switch between omnidi-
rectional, diagonal, and axial flight modes during foraging 
strategy.

Table 2   Chaotic maps [22–29] No. Name Chaotic map equations

ChAHA1 Chebyshev xk+1 = cos(k cos−1(xk))

ChAHA2 Circle xk+1 = xk + b −
(

a

2�

)
sin

(
2�xk

)
mod(1); a = 0.5, b = 0.2

ChAHA3 Gauss/mouse
xk+1 =

{
0; xk = 0

1

xkmod(1)
; otherwise

1

xkmod(1)
=

1

xk
−
[

1

xk

]

ChAHA4 Iterative xk+1 = sin

(
a�

xk

)
; a = 0.7

ChAHA5 Logistic xk+1 = axk
(
1 − xk

)
; a = 4

ChAHA6 Piecewise

xk+1 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xk

a
; 0 ≤ xk ≤ a

xk−a

0.5−a
; a ≤ xk ≤ 0.5

1−a−xk

0.5−a
; 0.5 ≤ xk ≤ (1 − a)

1−xk

a
; (1 − a) ≤ xk ≤ 1

; a = 0.4

ChAHA7 Sine xk+1 =
a

4
sin

(
�xk

)
; a = 4

ChAHA8 Singer xk+1 = a
(
7.86xk − 23.31x2

k
+ 28.75x3

k
− 13.302875x4

k

)
; a = 1.07

ChAHA9 Sinusoidal xk+1 = ax2
k
sin

(
�xk

)
; a = 2.3

ChAHA10 Tent
xk+1 =

{
xk

0.7
; xk < 0.7

10

3

(
1 − xk

)
; xk ≥ 0.7

Fig. 1   Visualization of chaotic maps [27]
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5 � Simulation study on benchmark functions

Whenever a novel optimization algorithm is developed, it 
must address some pre-defined test functions in order to be 
examined and evaluated. Performance verification of the 
proposed meta-heuristic ChAHA method is carried out by 
implementing extensive simulations on optimization bench-
mark problems. We have used six widely known unimodal 
and multimodal benchmark functions to evaluate ChAHA’s 
performance [4]. Unimodal functions are best suited for 
benchmarking use because they possess single optimum 
value while multimodal functions are more complicated on 
account of multiple optima. The term ‘global optima’ refers 
to one of the optima, whereas ‘local optima’ refers to the 
remaining. Any effective meta-heuristic algorithm should 
focus on avoiding local optima while discovering the global 
optimum. Therefore, testing exploration and avoiding being 
trapped in local optima are the responsibilities of the mul-
timodal benchmark functions. Table 3 lists the characteris-
tics of benchmark unimodal and multimodal functions, with 
every function having an optimal value of 0 and dimension 
of 30 while ‘Range’ denotes the boundary limit of the search 
space.

5.1 � Performance evaluations of ChAHA with different 
chaotic maps

In order to obtain the outcomes of various ChAHA algo-
rithms, a population size of 50 and 100 iterations are being 
performed while taking an average across 30 independent 

Fig. 2   Flowchart of proposed ChAHA

Table 3   Selected benchmark functions employed in present study [4]

Type: U unimodal, S separable, M multimodal, N non-separable

No. Name Formula Type Range

F01 Sphere
f (x) =

n∑
i=1

x2
i

U, S [− 100,100]

F02 Schwefel 
2.22 f (x) =

n∑
i=1

��xi�� −
n∏
i=1

�xi�
U, N [− 10,10]

F03 Step
f (x) =

n∑
i=1

���xi�� + 0.5
�2 U, S [− 100,100]

F04 Ackley
f (x) = −20exp

�
−0.2 ×

�
1

n

n∑
i=1

x2
i

�
− exp

�
1

n

n∑
i=1

cos
�
2�xi

��
+ 20 + e

M, N [− 32,32]

F05 Griewank
f (x) =

1

4000

n∑
i=1

x2
i
−

n∏
i=1

cos

�
xi√
i

�
+ 1

M, N [− 600,600]

F06 Penalty 1 f (x) = �
n

{

10sin2
(

�y1
)

+
n
∑

i=1

(

y1 − 1
)2[1 + 10sin2

(

�yi + 1
)]

+
(

yn − 1
)2
}

+
n
∑

i=1
u
(

xi, 10, 100, 4
)

yi = 1 +
xi+1

4

M, N [− 50,50]

u
�
xi, a, k,m

�
=

⎧
⎪
⎨
⎪
⎩

k
�
xi − a

�m
; xi > a

0; −a < xi < a

k
�
−xi − a

�m
; xi < −a
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runs. As described in Sect. 3, notations ChAHA1 through 
ChAHA10 employ, respectively, chebyshev, circle, gauss/
mouse, iterative, logistic, piecewise, sine, singer, sinusoidal 
and tent maps. In terms of mean and standard deviation, 
Table 4 lines up the performance of the original AHA with 
various ChAHA algorithms for six unimodal and multi-
modal benchmark functions. The best obtained solutions in 
Table 4 are emphasised in bold. As seen, ChAHA with tent 
chaotic map (i.e., ChAHA10) outperforms the traditional 
AHA and nine chaotic versions of ChAHA in all four met-
rics in minimizing all the six selected benchmark functions. 

ChAHA10 achieves the best minimum value which is sig-
nificantly better than those obtained by other methods for 
functions F01 to F06. Furthermore, the mean, standard 
deviation and median values of the considered test functions 
are notably better (significantly lower values) as computed 
by ChAHA10. These highlight the effectiveness of ChAHA 
with tent chaotic map in optimising the objective function 
through the fact that its results are less scattered and more 
consistent than those with other nine chaotic map functions, 
reinforcing its higher and consistent efficacy.

Table 4   Comparison of statistical results of AHA and ten chaotic versions types of ChAHA for six selected benchmark functions

Bold values indicate the best obtained result

F01 (Sphere) Mean Std. Dev. Median Best value F02 (Schwefel 2.22) Mean Std. Dev. Median Best value

AHA 2.03E+01 1.87E+02 2.50E−12 7.48E−25 AHA 8.47E−01 5.08E+00 7.09E−06 1.67E−13
ChAHA1 4.30E+00 3.61E+01 7.43E−17 4.17E−38 ChAHA1 1.12E−01 6.24E−01 5.14E−09 9.28E−19
ChAHA2 1.20E+01 1.12E+02 5.17E−18 3.19E−37 ChAHA2 3.37E−01 2.27E+00 1.02E−09 1.05E−17
ChAHA3 5.99E+01 5.80E+02 8.79E−16 1.46E−35 ChAHA3 2.68E−01 1.91E+00 1.02E−10 1.52E−19
ChAHA4 2.52E+00 1.29E+01 5.54E−16 1.36E−32 ChAHA4 1.26E−01 3.81E−01 9.84E−10 1.12E−18
ChAHA5 1.59E+01 1.08E+02 1.60E−20 2.99E−38 ChAHA5 3.37E−01 1.92E+00 1.29E−11 9.42E−19
ChAHA6 9.72E+00 7.09E+01 9.33E−20 2.73E−35 ChAHA6 1.85E−01 1.27E+00 5.13E−10 1.44E−17
ChAHA7 1.36E+01 1.10E+02 6.14E−18 4.76E−36 ChAHA7 2.19E−01 1.20E+00 1.63E−09 4.87E−19
ChAHA8 1.90E+00 1.21E+01 4.66E−21 7.38E−35 ChAHA8 1.38E−01 7.52E−01 3.60E−10 6.53E−18
ChAHA9 4.21E+00 2.54E+01 9.19E−19 1.57E−33 ChAHA9 3.74E−01 1.89E+00 4.00E−09 2.74E−19
ChAHA10 8.70E−01 6.63E+00 1.14E−25 1.49E−41 ChAHA10 1.44E−02 6.68E−02 3.92E−12 6.12E−22

F03 (Step) Mean Std. Dev. Median Best value F04 (Ackley) Mean Std. Dev. Median Best value

AHA 1.11E+02 1.05E+03 4.95E+00 3.17E+00 AHA 2.43E−01 1.77E+00 1.68E−07 8.88E−16
ChAHA1 2.31E+01 1.58E+02 5.24E+00 4.94E+00 ChAHA1 2.79E−01 1.93E+00 3.16E−09 8.88E−16
ChAHA2 2.23E+01 1.02E+02 5.48E+00 5.21E+00 ChAHA2 8.96E−02 5.15E−01 1.47E−10 8.88E−16
ChAHA3 1.59E+01 1.11E+02 4.35E+00 3.50E+00 ChAHA3 1.11E−01 5.86E−01 4.43E−09 8.88E−16
ChAHA4 2.18E+01 1.54E+02 5.64E+00 5.43E+00 ChAHA4 2.55E−01 1.65E+00 4.61E−11 8.88E−16
ChAHA5 6.13E+01 5.13E+02 5.57E+00 5.39E+00 ChAHA5 1.31E−01 6.53E−01 3.23E−10 8.88E−16
ChAHA6 2.39E+01 1.22E+02 5.61E+00 5.22E+00 ChAHA6 1.46E−01 1.02E+00 2.97E−10 8.88E−16
ChAHA7 6.02E+01 4.90E+02 5.23E+00 5.03E+00 ChAHA7 1.06E−01 7.15E−01 1.12E−09 8.88E−16
ChAHA8 1.09E+01 3.79E+01 5.10E+00 4.92E+00 ChAHA8 1.49E−01 8.51E−01 2.52E−10 8.88E−16
ChAHA9 6.80E+01 6.23E+02 4.91E+00 4.71E+00 ChAHA9 1.86E−01 9.81E−01 1.20E−09 8.88E−16
ChAHA10 4.36E+00 4.54E+00 3.23E+00 2.73E+00 ChAHA10 1.29E−02 4.24E−02 9.52E−12 8.88E−16

F05 (Griewank) Mean Std. Dev. Median Best value F06 (Penalty1) Mean Std. Dev. Median Best value

AHA 2.13E+00 1.66E+01 3.69E−10 0.00E+00 AHA 4.05E+04 4.05E+05 6.73E−01 2.46E−01
ChAHA1 5.31E−01 3.07E+00 0.00E+00 0.00E+00 ChAHA1 9.40E−01 3.87E−01 8.52E−01 7.61E−01
ChAHA2 5.33E−02 2.65E−01 0.00E+00 0.00E+00 ChAHA2 5.50E−01 6.14E−01 3.61E−01 3.20E−01
ChAHA3 9.64E−02 5.28E−01 1.11E−16 0.00E+00 ChAHA3 7.84E−01 1.65E+00 4.97E−01 4.14E−01
ChAHA4 2.41E−01 1.37E+00 1.90E−14 0.00E+00 ChAHA4 1.20E+00 6.62E+00 3.55E−01 2.95E−01
ChAHA5 1.32E−01 5.45E−01 0.00E+00 0.00E+00 ChAHA5 9.20E−01 1.59E+00 5.29E−01 4.40E−01
ChAHA6 2.56E−01 1.59E+00 0.00E+00 0.00E+00 ChAHA6 6.43E−01 5.17E−01 4.53E−01 4.38E−01
ChAHA7 8.55E−02 3.44E−01 0.00E+00 0.00E+00 ChAHA7 6.46E−01 6.91E−01 4.06E−01 3.21E−01
ChAHA8 6.01E−01 5.32E+00 4.77E−15 0.00E+00 ChAHA8 7.72E−01 2.19E+00 3.41E−01 2.94E−01
ChAHA9 3.75E−01 2.62E+00 0.00E+00 0.00E+00 ChAHA9 5.71E−01 4.63E−01 3.91E−01 2.61E−01
ChAHA10 2.98E−02 1.65E−01 0.00E+00 0.00E+00 ChAHA10 3.03E−01 2.94E−01 2.18E−01 1.63E−01
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5.2 � Statistical testing

Statistical tests should be performed to assess the effective-
ness of meta-heuristic algorithms [41]. In particular, it is 
insufficient to compare algorithms using mean and stand-
ard deviation data [42], rather a statistical test needs to be 
conducted to demonstrate that a proposed novel algorithm 
significantly outperforms existing algorithms. The 5% sig-
nificance threshold of the Wilcoxon’s rank-sum test [43], 
a nonparametric statistical test, is employed to determine 
whether the outcomes of the algorithms differ from each 
other statistically significantly. For the pair-wise compar-
ison of the best result obtained from all iterations with a 
5% significance threshold, Table 5 displays the p-values 
derived using the Wilcoxon’s rank-sum test carried out on 
the selected benchmark functions. This evaluation is car-
ried out to evaluate if the proposed ChAHA algorithms 
offer a noticeable improvement over the original ChAHA. 
As can be seen, majority of the results are less than 0.05, 
indicating the statistical significance of proposed ChAHA 
variants. Finally, from Tables 4 and 5, it can be inferred that 
embedding chaotic map attributes promotes clear avoidance 
of local optima and the rapid attainment of global optima. 
This is because using chaotic variables during the ChAHA 
optimisation process strikes a good balance between exploi-
tation and exploration. We decide that the tent chaotic map 
is probably the best appropriate map based on all the results 
that were generated.

5.3 � Graphical analysis

The performance of all algorithms was additionally sub-
jected to graphical analysis for more thorough evaluation. 
The convergence curves of several benchmark functions 
using the various versions of ChAHA algorithms are shown 
in Figs. 3, 4, 5, 6, 7 and 8, thereby making it easier to 

understand the algorithm’s rate of convergence. The graphs 
have been presented on 100 iterations in order to properly 
observe and analyse the convergence curves of ChAHA on 
various chaotic maps.

The values determined by all ten chaotic maps on the F01 
Sphere function are shown in Fig. 3. As this function con-
tains a singular global value (i.e., 0), it is simple to solve. As 
can be seen from the figure, ChAHA with tent chaotic map 
(i.e., ChAHA10) outperforms all other solutions and has the 
fastest rate of convergence to the overall solution.

The function values for the F02 Schwefel 2.22 function 
are shown in Fig. 4. Based on this figure, ChAHA with tent 
chaotic map (i.e., ChAHA10) beats all other nine methods 
in this unimodal benchmark function and has an even rate 
of convergence towards the global solution.

Table 5   Comparison of obtained p-values of the Wilcoxon rank-sum test using AHA and ten different versions of ChAHA over six selected 
benchmark functions

Pair-wise comparison F01 (Sphere) F02 (Schwefel 
2.22)

F03 (Step) F04 (Ackley) F05 (Griewank) F06 (Penalty 1)

AHA versus ChAHA1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AHA versus ChAHA2 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AHA versus ChAHA3 < 0.05 < 0.05 0.0538 < 0.05 < 0.05 < 0.05
AHA versus ChAHA4 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.565
AHA versus ChAHA5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AHA versus ChAHA6 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.624
AHA versus ChAHA7 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.508
AHA versus ChAHA8 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AHA versus ChAHA9 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AHA versus ChAHA10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Fig. 3   Performance analysis of proposed ChAHA on the F01 Sphere 
benchmark function
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The function values for the F03 Step function are 
shown in Fig. 5. As can be observed, even though all cha-
otic approaches have relatively similar convergence rates, 
ChAHA with tent chaotic map (i.e., ChAHA10) performs 
somewhat better in obtaining the optimal solution with gauss 
chaotic map (i.e., ChAHA3) performing the second best.

Figure 6 shows the values obtained for the ten chaotic 
techniques employing the F04 Ackley function, a multi-
modal benchmark function. As can be seen, ChAHA with 
tent chaotic map (i.e., ChAHA10) excels all other techniques 
in reaching the global optimum value.

Figure 7 presents the functions values for the F05 Grie-
wank function. It is instantly apparent that the ChAHA with 

tent map (i.e., ChAHA10) has got the fastest convergence 
rate since it is able to reach the optimum value in just about 
40 iteration numbers, a much smaller value compared to 
other chaotic approaches.

Figure 8 displays the function values for the F06 Pen-
alty 1 function. It is seen that ChAHA with tent map (i.e., 
ChAHA10) has the rapid rate of convergence towards the 

Fig. 4   Performance analysis of proposed ChAHA on the F02 Schwe-
fel 2.22 benchmark function

Fig. 5   Performance analysis of proposed ChAHA on the F03 Step 
benchmark function

Fig. 6   Performance analysis of proposed ChAHA on the F04 Ackley 
benchmark function

Fig. 7   Performance analysis of proposed ChAHA on the F05 Grie-
wank benchmark function
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global solution with sinusoidal chaotic map (i.e., ChAHA9) 
being the second best.

Finally, it may be concluded from the results presented in 
Figs. 3, 4, 5, 6, 7 and 8 that ChAHA performs more effec-
tively than AHA. Additionally, ChAHA with tent map (i.e., 
ChAHA10) has delivered superior outcomes on all the six 
benchmark functions when compared to other nine chaotic 
maps. Hence, the authors have selected only ChAHA with tent 
chaotic map for further investigation on constrained FOPID 
controller optimization.

6 � DC motor with FOPID controller

6.1 � Mathematical model of DC motor

In this current work, a separately-excited DC motor has been 
chosen whose speed needs to be regulated with the use of a 
FOPID controller. Equivalent circuit of a DC motor (sepa-
rately-excited) has been represented in Fig. 9 while Fig. 10 

shows the block diagram of it. The dynamic characteristics 
of DC motor in the s-domain can be represented from Eqs. 
(14) to (19).

where Va denotes terminal voltage in volt, La denotes arma-
ture inductance in Henry while Ra denotes armature resist-
ance in Ohm, Ia denotes armature current in ampere, Eb 
denotes back electromotive force (emf) in volt, Kb denotes 
back emf constant in V s, ω denotes rotor angular velocity 
in rad/s, Tm denotes motor torque in N m, Kt denotes motor 
torque constant in N m/A, Tl denotes load torque in N m 
while, B denotes friction co-efficient in N m s/rad, and J 
denotes rotor moment of inertia in kg m2 [44].

Finally, Eq. (20) illustrates the open-loop transfer func-
tion under the ideal no-load situation (Tl = 0), and can also 
be used to describe the system plant.

6.2 � Mathematical model of FOPID controller

FOPID controller is an advanced variant of the classical PID 
controller that incorporates a fractional calculus element into 
its design. It is characterized by certain additional tuning 
parameters than traditional PID controller which allows 

(14)Va(s) =
(
Ra + Las

)
Ia(s) + Eb(s)

(15)Eb(s) = Kb�(s)

(16)Ia(s) =
Va(s) − Kb�(s)

(Ra + Las)

(17)Tm(s) = KtIa(s)

(18)Tm(s) = Kt

{
Va(s) − Kb�(s)

(Ra + Las)

}

(19)�(s) =
Tm(s) − Tl(s)

(B + Js)

(20)G(s)P =
�(s)

Va(s)
=

Kt(
Las + Ra

)
(Js + B) + KbKt

Fig. 8   Performance analysis of proposed ChAHA on the F06 Penalty 
1 benchmark function

Fig. 9   Equivalent electric circuit of a separately-excited DC motor

Fig. 10   Block diagram representation of DC motor
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more nuanced and fine-tuned control over the system, par-
ticularly in situations where there are complex dynamics or 
non-linearities. Figure 11 shows the basic architecture of 
FOPID controller in parallel form. However, the increased 
complexity of FOPID controller can make it more difficult 
to design and implement as the fractional order require more 
complex mathematical calculations [34]. Its transfer func-
tion is given in Eq. (21) consisting of the variables Kp, as 
proportional gain, Ki as integral gain, Kd as derivative gain, 
λ as fractional integral order term, and µ as fractional deriva-
tive order term.

(21)G(s)FOPID = Kp + Kis
−𝜆 + Kds

μ, (𝜆,𝜇 > 0)

The forward path open loop transfer function as given by 
Eq. (23) is obtained by the product of transfer functions of 
controller (FOPID) given by Eq. (21) and plant (DC motor) 
given by Eq. (22).

Therefore, the transfer function of FOPID controller-
based DC motor (closed loop) with unitary feedback 
(H(s) = 1) is determined by Eq. (24).

(22)GP(s) =
0.015

0.00108s2 + 0.0061s + 0.00163

(23)GF(s) =
0.015Kds

(�+�) + 0.015Kps
� + 0.015Ki

0.00108s(2+�) + 0.0061s(1+�) + 0.00163s�

(24)GCL(s)FOPID =
0.015Kds

(�+�) + 0.015Kps
� + 0.015Ki

0.00108s(2+�) + 0.0061s(1+�) + 0.015Kds
(�+�) +

(
0.00163 + 0.015Kp

)
s� + 0.015Ki

Fig. 11   Basic architecture of FOPID controller

Fig. 12   DC motor speed 
control system using a FOPID 
controller (closed loop)

Table 6   Specifications of chosen DC motor [44]

Motor parameter Value Unit

Armature resistance (Ra) 0.4 Ω
Armature inductance (La) 2.7 H
Rotor moment of inertia (J) 0.0004 kg m2

Viscous friction coefficient (B) 0.0022 N m s/rad
Torque constant (Kt) 0.015 N m/A
Back emf constant (Kb) 0.05 V s

6.3 � Design of  a  closed loop DC motor system using 
a FOPID controller

Figure 12 demonstrates a closed loop DC motor system 
employing a FOPID controller. Here, ω, the measured motor 
speed, is being compared with ωref, the reference speed, to 
calculate the error E, which is then fed as input to the FOPID 
controller, being represented by its transfer function given 
by Eq. (21). The controller output U is then fed as input to 
the DC motor, also represented by its transfer function given 
by Eq. (20). Table 6 outlines the specifications of the chosen 
DC motor for this study.

Putting the corresponding DC motor parameters values 
from Table 6 in Eq. (20), the transfer function of the DC 
motor (open loop) is given by Eq. (22).

7 � Mathematical problem formulation

7.1 � Objective function and constraints

The choice of objective or fitness function is crucial 
because it defines the goal of the optimization process. To 
perform a fair comparison with [37–39], identical fitness 
function, Integral of Time multiplied by Absolute Error 
(ITAE), is considered in this study and is mathematically 
represented by Eq. (25).

where e(t) stands for time dependent error signal and t 
denotes the computation time (second).

(25)ITAE =
t

∫
0

t ⋅ |e(t)| ⋅ dt
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7.2 � Implementation of proposed ChAHA‑FOPID 
controller in speed control of DC motor

After designing the proposed ChAHA-FOPID controller, 
it is implemented for the speed control of DC motor drive 
system in MATLAB/Simulink (version R2020a) platform 
through programming codes and its transient response 
performances are compared with other existing control-
lers along with robustness analysis by means of a personal 
computer equipped with a 2.5 GHz based Intel ® i5 pro-
cessor with a RAM of 8.00 GB. The necessary parameters 

with their associated values of proposed ChAHA are listed 
in Table 7.

For obtaining the optimal controlling parameter values of 
FOPID controller in the process of minimization of ITAE fit-
ness function, the convergence curves of AHA and ChAHA 
are shown in Fig. 13. The best ITAE fitness values estimated 
by the proposed ChAHA-FOPID controller is found to be 
0.2589 at 40th iteration while for AHA-FOPID controller is 
found to be 0.3008 at 65th iteration.

Following a successful optimization procedure that lasted 
till maximum number of iterations is reached, the optimal 
parameters of ChAHA-FOPID and AHA-FOPID controllers 
so obtained are listed in Table 8. Substituting these opti-
mal controller values in Eq. (24), the transfer functions of 
ChAHA-FOPID and AHA-FOPID controllers (closed loop) 
are obtained as given in Eqs. (26) and (27) respectively.

(26)GCL(s)ChAHA-FOPID =
0.1149s1.2578 + 0.2971s0.334 + 0.298

0.00108s2.334 + 0.0061s1.334 + 0.1149s1.2578 + 0.2987s0.334 + 0.298

Table 7   Parameter values used for ChAHA

Parameter Value

Dimension size (m) 5
Population size (N) 50
Maximum iteration number (T) 100
Tent chaotic map paremeter (x0) 0.27
Lower bound for [Kp; Ki; Kd; λ; µ] [0.001; 0.001; 0.001; 0; 0]
Upper bound for [Kp; Ki; Kd; λ; µ] [20; 20; 20; 2; 2]

Fig. 13   Convergence curves of ITAE objective function for ChAHA-
FOPID and AHA-FOPID controllers

Table 8   FOPID controller optimum values with different algorithms

Controller genre Gain parameters

Kp Ki Kd λ µ

ChAHA-FOPID 
(proposed)

19.8051 19.8679 7.6572 0.334 0.9238

AHA-FOPID (pro-
posed)

19.8934 14.6533 6.6343 0.43 0.9145

GWO-FOPID [37] 18.328 4.9418 3.2612 0.9998 0.9845
ASO-FOPID [38] 19.3282 7.9728 4.7805 0.9755 0.9428
MRFO-FOPID [39] 19.0527 6.3585 5.3293 0.9466 0.9222

Table 9   Comparison of transient reaction analysis for various con-
trollers

Bold values indicate the best obtained result

Controller genre Transient reaction standards

tr (s) ts (s) Mp (%)

ChAHA-FOPID (proposed) 0.0263 0.0413 0.0000
AHA-FOPID (proposed) 0.0302 0.0464 0.5996
GWO-FOPID [37] 0.0488 0.0814 0.3145
ASO-FOPID [38] 0.0376 0.0616 0.0000
MRFO-FOPID [39] 0.0355 0.0562 0.1546

(27)GCL(s)AHA-FOPID =
0.0995s1.3445 + 0.2984s0.43 + 0.2198

0.00108s2.43 + 0.0061s1.43 + 0.0995s1.3445 + 0.3s0.43 + 0.2198
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8 � Comparative analysis

Table  8 lists the FOPID controller optimum values 
obtained by both proposed and pre-existing algorithms.

Making use of certain renowned optimal standards, 
such as maximum overshoot (Mp), settling time (ts) and 
rise time (tr), regarding the step response across the time 
domain norms, Table 9 shows an attempt of performing 
fair comparative analysis among the proposed and exist-
ing state-of-the-art controllers like ChAHA-FOPID (pro-
posed), AHA-FOPID (proposed), GWO-FOPID [37], 
ASO-FOPID [38], and MRFO-FOPID [39] in regulating 
the speed of an identical DC motor with the same ITAE 
objective function. Also, a comparison of unit step speed 
responses with various controller types is displayed in 
Fig. 14. From the simulation results, it is quite evident that 
the proposed ChAHA-FOPID controller exhibits better 
and improved time response over other existing controllers 
including AHA-FOPID controller. Hence, the ChAHA-
FOPID controller proves its superiority over all other 
existing controllers with the fastest rise time of 0.0263 s 
highlighting the ChAHA’s higher dynamic reaction in 
yielding a rapid boost to the target output. In addition, 
the ChAHA-FOPID controller also possesses the shortest 
settling time of 0.0413 s, signifying the ChAHA’s capabil-
ity to rapidly stabilize the system’s output and efficiently 

Fig. 14   Comparison of DC motor unit step speed reactions with mul-
tiple controllers

Table 10   Different operating cases of DC motor

Motor parameters Case I Case II Case III Case IV

Ra (in Ω) 0.2 0.2 0.6 0.6
Kt (in Nm/A) 0.0225 0.0075 0.0225 0.0075

Table 11   Comparative analysis of transient response among different 
controller types for Case I

Bold values indicate the best obtained result

Controller genre Transient reaction criteria

tr (s) ts (s) Mp (%)

ChAHA-FOPID (proposed) 0.0183 0.0283 0.8438
AHA-FOPID (proposed) 0.0189 0.0292 0.9054
GWO-FOPID [37] 0.0206 0.0319 0.8845
ASO-FOPID [38] 0.0196 0.0727 4.7876
MRFO-FOPID [39] 0.023 0.0364 0.6177

Table 12   Comparative analysis of transient response among different 
controller types for Case II

Bold values indicate the best obtained result

Controller genre Transient reaction criteria

tr (s) ts (s) Mp (%)

ChAHA-FOPID (proposed) 0.0466 0.0736 0.0000
AHA-FOPID (proposed) 0.0477 0.075 0.2172
GWO-FOPID [37] 0.0504 0.0795 0.4587
ASO-FOPID [38] 0.0531 0.1701 4.2366
MRFO-FOPID [39] 0.0514 0.0843 0.5024

Table 13   Comparative analysis of transient response among different 
controller types for Case III

Bold values indicate the best obtained result

Controller genre Transient reaction criteria

tr (s) ts (s) Mp (%)

ChAHA-FOPID (proposed) 0.0204 0.0319 0.3172
AHA-FOPID (proposed) 0.0233 0.036 0.4896
GWO-FOPID [37] 0.0279 0.046 0.2596
ASO-FOPID [38] 0.0208 0.0831 7.3971
MRFO-FOPID [39] 0.0286 0.0471 0.2798

Table 14   Comparative analysis of transient response among different 
controller types for Case IV

Bold values indicate the best obtained result

Controller genre Transient reaction criteria

tr (s) ts (s) Mp (%)

ChAHA-FOPID (proposed) 0.0507 0.0777 0.0000
AHA-FOPID (proposed) 0.0598 0.0932 0.1016
GWO-FOPID [37] 0.066 0.1053 0.2402
ASO-FOPID [38] 0.0531 0.1695 4.1961
MRFO-FOPID [39] 0.0696 0.1108 0.2897
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minimize transient oscillations. The aforementioned con-
troller also shows zero overshoot which demonstrates an 
enhanced and accurate control to the step input without 
overshooting.

9 � Robustness analysis

When a system maintains its stable state in the context of 
anomalous events, it is considered robust. The proposed sys-
tem’s robustness is examined by monitoring how the system 

responds to variations in a few motor parameters, such as 
electrical phase resistance (Ra) of ± 50% and torque constant 
(Kt) of ± 50%. Following these modifications, a thorough 
comparative analysis was conducted, resulting in the four 
potential operating scenarios that are displayed in Table 10.

Tables 11, 12, 13 and 14 present a comparison among 
simulation results of transient response of speed control with 
reference to time domain for the selected DC motor using 
the proposed ChAHA-FOPID and AHA-FOPID controllers 
as well as existing GWO-FOPID [37], ASO-FOPID [38] 
and MRFO-FOPID [39] controllers for all the four cases as 
mentioned in Table 10, while Figs. 15, 16, 17 and 18 show 
the comparative step response profiles of the DC motor for 

Fig. 15   Output unit step speed reactions of DC motor using different 
controller types for Case I

Fig. 16   Output unit step speed reactions of DC motor using different 
controller types for Case II

Fig. 17   Output unit step speed reactions of DC motor using different 
controller types for Case III

Fig. 18   Output unit step speed reactions of DC motor using different 
controller types for Case IV
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each of the respective cases of robust analysis. It can be how-
ever referred from these tables and figures that the proposed 
ChAHA-FOPID controller produces the least settling and rise 
times accompanied by zero overshoot except in Cases I and III 
where it exhibits negligible overshoot values as compared to 
other controllers. Finally, it can be concluded that the proposed 
ChAHA-FOPID controller delivers a robust performance than 
the existing controllers under variations in DC motor speed 
control system parameters.

10 � Conclusion and future scope

In this present work, a novel improved meta-heuristic Cha-
otic Artificial Hummingbird Algorithm (ChAHA) is being 
proposed by hybridizing chaos theory with Artificial Hum-
mingbird Algorithm (AHA). The key parameter (r2) of AHA 
has been controlled through ten distinct chaotic maps. A 
combination of six different kinds of unimodal and multi-
modal selective benchmark functions have been utilized to 
evaluate and confirm ChAHA’s performance. The outcomes 
of the simulation indicate that the original AHA’s perfor-
mance can be greatly improved by the proposed ChAHA, 
both in terms of exploration and exploitation. Amongst the 
considered chaotic maps, tent map substantially enhances 
AHA’s performance. The primary factor influencing ChA-
HA’s higher performance is due to chaotic maps creating 
chaos in the search space which in turn facilitates in find-
ing the optimized solution more rapidly, thereby improving 
the algorithm’s convergence rate. To validate the proposed 
approach, ChAHA with tent map is employed for efficient 
tuning of FOPID controller in DC motor speed control. 
Designing of the FOPID controller has been performed 
by utilizing the basic AHA and its hybrid chaotic version 
through reduction of ITAE objective function. These rec-
ommended controllers’ performances are contrasted with 
certain existing cutting-edge controllers including the GWO-
FOPID, ASO-FOPID and MRFO-FOPID controllers. It has 
been confirmed from the comparative analysis results that 
the proposed ChAHA-FOPID controller exhibits the best 
transient response profile with least amount of settling and 
rise times in addition to zero overshoot than the other exist-
ing controller types. Furthermore, robustness assessment 
of ChAHA-FOPID controller has been investigated as well 
with certain variations in the DC motor parameters and it 
has been found from the simulated results that the proposed 
ChAHA-FOPID controller is found to be the most effective 
in suppressing any abnormal shifts that may arise within the 
system outcome owing to certain uncertainties.

It would be fascinating to use the ChAHA in subsequent 
future work to address practical engineering issues includ-
ing enhancing optimization, solving complex problems, 

and improving system efficiency across diverse engineering 
applications, fostering innovation and sustainable solutions. 
Furthermore, comparison of ChAHA with other existing 
state-of-the-art optimization techniques can be performed 
in various engineering domains.
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