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Abstract Brain tumors can have detrimental effects on 
brain function and pose a serious threat to life. Detecting 
and treating brain tumors early is vital for saving lives. 
However, identifying tumor-affected brain cells is a diffi-
cult and time-consuming process. Common imaging tech-
niques like Computer Tomography scans and Magnetic 
Resonance Images (MRIs), while helpful, can present chal-
lenges for radiologists in manual assessments. The field of 
image processing faces significant obstacles in achieving 
accurate and efficient brain tumor detection. This research 
work proposes an improved deep learning-based model for 
efficient brain tumors detection. Preprocessing, segmenta-
tion, feature extraction, feature selection, and classification 
are some of the processes that make up the proposed model. 
To improve the quality of brain images, preprocessing steps 
are employed using the compound filter made up of Gauss-
ian, mean, and median filters. In addition, morphological 
and threshold-based segmentation are used to separate the 
tumor from healthy brain tissue. By using the grey-level co-
occurrence matrix (GLCM)-based technique is employed 
to extract the texture and intensity patterns for identifying 
tumor areas. The optimal feature selection is performed by 
using the Whale Social Spider-based Optimization Algo-
rithm (WSSOA)-based metaheuristic. Finally, Deep Convo-
lutional Neural Network (DCNN) is used for accurate tumors 

detection. The proposed technique is evaluated using a pub-
licly well-known Figshare dataset. Performance is compared 
with seven latest state-of-art models using metrics such as 
accuracy, precision, recall, and F1-score. The results demon-
strate that the proposed technique achieves exceptional brain 
tumor classification accuracy of 99.29%. These promising 
findings highlight the potential of the proposed model to 
enhance accurate and efficient brain tumor detection, ulti-
mately leading to improve diagnosis and potentially saving 
more lives.

Keywords Brain tumor · DCNN · GLCM · MRI · 
Segmentation · WSSOA

1 Introduction

In today’s medical practices, the integration of Artifi-
cial Intelligence (AI), Information Technology (IT) and 
E-healthcare procedures to develop an intelligent system to 
support physicians in providing high-quality health services 
to patients. Brain tumors are a critical disturbance to the 
human brain caused by an abnormal increase of cells. This 
can significantly impair brain function and be life-threaten-
ing. Brain tumors are a common form of cancer in humans, 
and timely detection plays a crucial role in reducing mortal-
ity rates. Brain tumors have been identified using medical 
imaging techniques such as Computed Tomography (CT) 
scanning and Magnetic Resonance Imaging (MRI) [1]. Due 
to its capacity to produce improved contrast between MRI 
images of the brain and malignant tissues, MRI is one of 
these methods that is regularly employed for the detection 
of brain cancers [2]. A contemporary method for early brain 
tumor detection is image analysis using MRI scans. Finding 
brain tumors in cancer detection relies heavily on feature 

 * Anil Kumar Mandle 
 akmandle.phd2017.it@nitrr.ac.in

 Satya Prakash Sahu 
 spsahu.it@nitrr.ac.in

 Govind P. Gupta 
 gpgupta.it@nitrr.ac.in

1 Department of Information Technology, National Institute 
of Technology, Raipur, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-024-01782-5&domain=pdf
http://orcid.org/0000-0002-2298-3437


 Int. j. inf. tecnol.

1 3

extraction. The technique of extracting features from seg-
mented MRI images is called feature extraction, and pre-
processing is used to remove objects and noise from the 
image. The tumor region is subsequently divided into seg-
ments using non-uniformly distributed histogram and thresh-
old approaches. When segmenting, features are extracted 
using the GLCM. In this study, Practical Swarm Optimiza-
tion (PSO) approaches are compared with Whale Optimi-
zation Algorithm (WOA) and Social Spider Optimization 
(SSO) algorithms for selecting the best image features. The 
DCNN classifier is then used to divide all of the features 
into tumors and non-tumors. In our research, we have imple-
mented an end-to-end deep learning (DL) approach that uti-
lizes a hybrid model for the brain tumors classification of 
benign and malignant in MRI scans. Our technique involves 
a k-means algorithm for segmentation and the utilization of 
masks to enhance segmentation accuracy, moving beyond 
solely relying on a boundary-based model. Unfortunately, 
modern approaches have not effectively addressed this 
problem. In the past, cancer regions were manually identi-
fied for assessment and diagnosis before detection. Exist-
ing computer-aided detection (CAD) systems, employing 
automation algorithms, CNN-based algorithms, and their 
variants, have not significantly improved the detection of 
these brain cancers.

Research on the application of the medical imaging tech-
niques for brain tumor segmentation and diagnosis has been 
attempted several times in the past few years. In medicine, 
machine learning-based brain tumor segmentation and 
detection is essential for precise disease detection. Brain 
tumor segmentation is not much utilized in clinical practice, 
despite the acknowledged effectiveness of automated tumor 
segmentation. The aim of the work is to use digital image 
processing techniques to identify cancer regions from brain 
MRIs, and to calculate the location of the tumor using sym-
metry analysis and a totally automated system. Furthermore, 
there are many shortcomings and challenges observed by 
medical practitioners in the use of MRI scans for cancer 
patient surveillance, identification, and therapy such as une-
ven and complex MRI brain image samples. The purpose of 
this study is to develop an effective brain tumor recognition 
strategy using WSSOA-based metaheuristic technique and 
Deep Convolutional Neural Networks (CNNs)-based model. 
The major contribution of this research lies in the utilization 
of statistical and texture features for tumor detection. The 
proposed approach involves employing cellular-based rough 
set theory to obtain segments, enabling the identification of 
cancerous regions. In this study, various features such as 
mean, entropy, variance, energy, kurtosis, and tumor size 
features were extracted to aid in the determination of tumors. 
The Deep CNN is then employed to detection tumors using 
these extracted features. To optimize the model param-
eters effectively, Deep-CNN is exerted using the proposed 

WSSOA-based feature selection algorithm, which inher-
its the high global merging property from the SSO algo-
rithm. The WSSOA-based Deep CNN has shown promising 
results, achieving effective accuracy in brain tumor recog-
nition. By integrating the WOA and SSO algorithms, the 
proposed WSSOA algorithm enhances the training process 
of the Deep-CNN model, leading to improved performance. 
Additionally, no measures have been taken to address poten-
tial data limitations for training, which is another area of 
concern. The main contributions of the proposed model are 
given as follows:

• A novel optimal feature selection scheme is designed by 
using the Whale Social Spider-based Optimization Algo-
rithm (WSSOA)based meta-heuristic technique.

• A hyperparameter-tuned Deep Convolutional Neural 
Network (DCNN) model is designed for accurate tumor 
detection tasks.

• Performance of the proposed model is evaluated and 
compared with seven latest state-of-art models in terms 
of accuracy, precision, recall, and F1-score using a well-
known benchmark dataset known as Figshare.

There are five sections in this research. Section 1, Intro-
duction, provides an overview of the suggested research 
project. Section 2, Related Work, defines previous research 
relevant to this suggested study. Section 3, Techniques and 
Materials, describes the suggested architecture for detect-
ing brain tumors, which incorporates WSSOA and DCNN. 
The findings produced by combining a DCNN classifier and 
WSSOA are presented in Sect. 4, Findings and Discussion, 
where their performance is assessed created on precision, 
F1-score, recall, and accuracy. In Sect. 5, Performance eval-
uation, the accuracy of the planned strategy is compared to 
previous work. Finally, the conclusion is drawn based on the 
findings of this research.

2  Related work

Medical professionals continue to struggle with classify-
ing brain tumors in MRI images, prompting researchers to 
explore novel diagnostic strategies. The growing popularity 
of deep learning (DL) procedures, including convolutional 
neural network (CNN) is leading to exciting improvements 
in the field of medical imaging.

Geetha et al. [3] have used a DBN for the classifier and 
GWO to identify tumors in MRI pictures with an accuracy 
of 94.11%. By comparing the results of their model with 
that of a participating technique and evaluating a number 
of variables, including accuracy, recall, precision, F1-score, 
negative predictive significance, they demonstrated the value 
of their work using the Matthew-correlation-coefficients 
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(MCCs), false discovery (FD), false negative (FN), and false 
positive (FP) rate. Similarly, Sindhu et al. [4] achieved an 
accuracy of 96.47% by creating an Adaboost together KNN-
SVM method using whale optimization algorithm to identify 
brain tumors. For image segmentation, they used a based-on 
saliency k-means clustering used segmentation technique. 
For feature extraction, they used GLCM with GLRM. For 
feature selection, they used PSO with WOA. Whale Harris 
Hawks optimization (WHHO) is a cutting-edge brain tumor 
detection method proposed by Ramamurthy et al. [5]. The 
technique retrieves important information from the seg-
mented image, such as cancer size, native optical coordi-
nation pattern, mean, variance, entropy, and kurtosis using 
rough set theory (RST) and cellular automata (CA) for image 
segmentation. Then, to detect cancers, a deep convolutional 
neural network is employed, provide impressive outcomes 
with a 0.816 of accuracy, 0.791 of specificity, and 0.974 of 
sensitivity Yin et al. [6] presented novel brain tumor catego-
rization technique constructed on an improved description of 
whale optimization algorithm. Faramarzi et al. [7] employed 
Equilibrium optimizer: A novel optimization algorithm for 
brain tumor detection. Mishra et al. [8] utilized DCNN clas-
sifiers and Whale-Optimization-Algorithm (WOA), achieved 
98% accuracy. The accuracy gained by WOA, Particle-
Swarm-Optimization, and Genetic-Algorithm is compared 
in this paper. Irmak et al. [9] developed a CNN-based system 
that has a high accuracy rate of 98.7% for identifying brain 
tumors. Several recent CNN models were used to compare 
the system, including Inception v3, AlexNet, VGG-16, 
ResNet-50, and GoogleNet. A real-time medicinal diagnosis 
system created on knowledge concentration methods would 
need a larger model, though. Additionally, a single classifier 
outperforms an ensemble configuration with average results 
in some circumstances. Zhang et al. [10] presented preclini-
cal identification of magnetic resonance Imaging (MRI) 
brain images employed Discrete Wavelets Packet Trans-
form (DWPT) feature extraction and the calcifications using 
Generalized Eigen-value Proximal-based Support Vector 

Machine (GEPSSVM) achieved accuracy 99.61%. Abdalla 
et al. [11] Proposed Spatial Grey level Dependency (SGLD) 
Matrix feature extraction and the calcifications using Artifi-
cial Neural Network (ANN) achieved accuracy 99%. Gudigar 
et al. [12] introduced Wavelets Transform (WT), Curvelets 
Transform (CT), and Shearlets Transform (ST) for feature 
extraction and selection for PSO and the classification used 
SVM attained accuracy 97.38%. Islam et al. [13] presented 
Superpixeles with Principal-Component-Analysis (PCA) 
used for the feature extraction with feature selection and 
calcifications using Generalized Eigenvalue Promimate 
Support Vector Machine (GEPSSVM) achieved accuracy 
95%. Das et al. [14] introduced early tumor identification in 
brain MRI images through deep convolutional neural net-
work (DCNN) model employed feature extraction and clas-
sification by Deep-CNN achieved accuracy 98%. Rai et al. 
[15] presented Recognition of brain irregularity through 
an innovative Lu-Net with DCNN architecture from MRI 
images and achieved accuracy 98%. Kang et al. [16] intro-
duced MRI-based brain tumor classification using together 
of deep features and machine learning classifiers attained 
accuracy 96.13%. Sawant et al. [17] presented Brain tumor 
detection from MRI, using a machine learning approach 
achieved accuracy 98.60%.

Table  1 provides a quick review of relevant studies 
employing machine learning (ML) and Deep learning (DL) 
techniques to identify brain tumors. In conclusion, the 
typical CNNs models for brain tumor identification largely 
employ the ML and DL techniques outlined above. On the 
additional influence, the pre-trained model created by the 
transfer learnings (TLs) approach requires less computing 
time, is more accurate, and does not require the maintenance 
of a huge training dataset.

As can be experimental from related work, designing 
and implementing an efficient technique for identifying 
brain cancer from MRI images is a challenging task. While 
traditional methods such as neural network and deep learn-
ing have provided satisfactory results, using met-heuristics 

Table 1  Brief summary of related works ML and DL techniques based brain tumor identification

Authors Dataset Feature extraction and selection method Classification method Accuracy

Zhang et al. [10] T2-weighted 255 MRI images DWPT, SE, and TE GEPSVM 99.61%
Abdalla et al.[11] 239 MRI Images SGLD Matrix ANN 99%
Gudigar et al. [12] T2-weighted 255 MRIs WT, CT, and ST PCO, and SVM 97.38%
Islam et al. [13] 253 MRI scans Superpixeles and PCA Tk-means Clustering 95%
Das et al. [14] 253 MRIs Deep-CNN Deep-CNN 98%
Rai et al. [15] 253 MRI Images Combinations of the Le-Net and U-Net 

that is LU-Net
Fully connected layer and sig-

moid activation functions
98%

Kang et al. [16] 3000 MRIs ResNeXt-101 Ensemble of multiple classifiers 96.13%
Sawant et al. [17] 1800 MRI Images CNN CNN 98.60%
Proposed Technique 253 MRI Images WSSOA DCNN 99.29%
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can improve the training stage of these networks. In this 
paper, we propose a combined version of DCNN with 
WSSOA to improve the speed and accuracy of brain tumor 
identification.

3  Proposed methods and discussions

This section presents a detailed working model of the pro-
posed methodology.

3.1  Brain tumor dataset

This study has used a publicly available brain MR images 
dataset known as Figshare [18, 19] for evaluation and analy-
sis of the proposed model. This dataset contains two classes: 
’Yes’ for tumor images and ’No’ for healthy tissue images, 
total 155 and 98 images, respectively. These MRI scans 
include T1, T2, and Fluid-Attenuated Inversion Recovery 
(FLAIR) images [20], each with dimensions of (128, 128) 
in the axial view. To train our CNN network, we utilized 
177 dataset images, reserving 38 for testing and an addi-
tional 38 for validation, randomly selected from the pool of 
253 images. All images used for validation and testing were 
chosen randomly from the dataset. It’s worth observing that 

all the images we used in our study are accessible on the 
dataset’s official website.

3.2  Proposed brain tumor classification architecture

Early classification of brain tumors is pivotal in reducing 
patient mortality rates. The system architecture is built upon 
deep learning (DL) techniques, specifically employing a 
Deep Convolutional Neural Network (DCNN) with Whale 
Social Spider-based Optimization Algorithm (WSSOA) for 
brain tumor classification. The diagnostic process comprises 
four key steps: preprocessing, segmentation, feature extrac-
tion and selection, and the optimization of a deep learning-
based CNN approach for classifying benign and malignant 
brain tumors. The proposed architecture is depicted in Fig. 1.

3.2.1  Preprocessing

The MR image processing is a time-consuming proce-
dure. Before processing the image, it is crucial to remove 
any MR abnormalities/noises. Once unnecessary noise has 
been eliminated, MRI data can be further processed [20] 
to enhance the detection and identification accuracy. Pre-
processing involves filtering and grayscale translation. After 
converting to grayscale, additional noise is reduced using 
filtering techniques. To remove the Gaussian noises from 

Fig. 1  The proposed brain tumor detection model
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grayscale images, a composite filter is employed which con-
sists of Gaussian, mean, and median filters.

3.2.2  Grayscale conversion

The standard preprocessing method for MRI involves gray-
scale conversion [21]. RGB MRI provides additional data 
that is unnecessary for image processing. Grayscale MRI 
can be used to eliminate this extraneous data instead of using 
RGB MRI [22]. In RGB MRI, the image is represented in 
three channels, each with 8 bits: B (blue), G (green), and R 
(red), resulting in varying proposal levels for each B, G, and 
R section. This leads to data redundancy in color images, 
necessitating significant storage and processing capacity. An 
example of the transformation of an RGB MRI image into a 
grayscale image is illustrated in Fig. 2a.

3.2.3  Filtering

Filtering techniques are employed to reduce additional noise 
after converting to grayscale. This proposed technique uses a 
composite filter to remove Gaussian, salt, pepper, and frag-
ment noises from grayscale images. The included filters are 
the Gaussian filter, mean filter, and median filter. A com-
posite filter has the advantage of preserving the edges and 
boundaries of MRI images, as demonstrated in Fig. 2b.

3.3  Segmentation

As there are various images generated through scanning, 
and it takes an extended amount of time for clinicians to 
manually segment these images, MR image segmentation 
becomes crucial [22]. Image segmentation involves divid-
ing MR images into distinct, non-overlapping sections, 
making the image more relevant and evaluable by group-
ing pixels effectively. Segmentation is employed to classify 
borders or substances in an illustration, and the resultant 
structured slices cover the entire image. Segmentation proce-
dures rely on two key properties of image content: intensity, 

correspondence, and gaps. Numerous segmentation meth-
ods are accessible, including threshold and histogram-based 
techniques, as well as region-based, edge-based, and clus-
tering techniques. The most commonly used method for 
processing MR images is threshold and histogram-based 
segmentation. This paper investigates brain cancer and 
evaluates tumor areas in MRI images using threshold-based 
segmentation with morphological techniques. Figure 3 pro-
vides a detailed example of the segmentation process.

3.4  Feature extraction

By removing features, a large dataset can be appropriately 
defined with less resources. When an excessive number of 
variables are used to explore extensive data, challenges may 
arise, requiring more memory and processing time, espe-
cially in studies with numerous variables. To address these 
issues and accurately summarize the data, the process of the 
feature extracted are employed, involving the grouping of 
variables into clusters. In this proposed study, both statistical 
and texture-based characteristics are obtained using Grey-
Level Co-occurrence Matrix (GLCM) [23]. Similar to the 
number of grey levels (GLs) in the image, the columns and 
rows number in the GLCM remains constant. The suggested 
method utilizing GLCM extracts the following characteris-
tics, as depicted in Table 2.

3.4.1  Mean (M)

The computed image is given as: The calculated image is 
created by multiplying the average of all the image’s pixel 
values by the total no. of pixels.

A lower number implies that the image appears to have 
had a substantial amount of noise eliminated, where n and 
m are sizes of images.

(1)M =
(

1

m × n

) m−1∑

x=0

n−1∑

y=0

f (x, y)

Fig. 2  a Grayscale conversion 
image and b filtering image
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3.4.2  Standard deviation (SD)

The probability distribution of a detected population, 
which can be used to determine inhomogeneity through 
the calculation of standard deviation, is defined for the 
second phase of essential moment computation. A higher 

value indicates a more saturated image with strong con-
trast at the image edges.

Fig. 3  a Original image for input, b morphological operations c threshold for input binary transformation, and d segmented image are diseased 
region indications dark-white
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3.4.3  Entropy (E)

Entropy is a measurement of a texture image’s uncertainty 
and is calculated and expressed as:

3.4.4  Skewness ( �
�(�))

Skewness serves as a measure for missing in that place. The 
random variable X has the following definition:

3.4.5  Kurtosis (�
���(�))

Kurtosis is a parameter used to describe the shape of prob-
ability distributions for random variables. It is represented as 
Kurt(X) for a random variables X, and is defined as:

(2)SD(�) =

√√√√
(

1

m × n

) m−1∑

x=0

n−1∑

y=0

(f (x, y) −M)2

(3)E = −

m−1∑

x=0

n−1∑

y=0

f (x, y)log2f (x, y)

(4)Sk(X) =
�

1

m × n

�∑(f (x, y) −M)3 ∣

SD3

3.4.6  Energy (En)

Energy is a measured sum of how many times a pair of pixels 
are repeated, serving as an indicator of how closely two images 
are related. When defined in terms of Haralick’s GLCM func-
tion, energy is also referred to as a pointed moment and can 
be explained as follows:

3.4.7  Contrast (Con)

It is defined as the intensity of the pixel and that of its neigh-
bours across an evaluated image.

(5)Kurt(X) =
�

1

m × n

�∑(f (x, y) −M)4 ∣

SD4

(6)En =

√√√√
m−1∑

x=0

n−1∑

y=0

f 2(x, y)

(7)Ccon =

m−1∑

x=0

n−1∑

y=0

(x − y)2f (x, y).

Table 2  Extracted features of sample MRI images

Images M SD E S
k(X) K

urt(X) En C
con

IDM DM C
orr

C
ness

Img:1  ± 0.0028  ± 0.0957  ± 3.6283  ± 1.9273  ± 0.0945  ± 0.7378  ± 0.2155  ± 1.6272  ± 0.0966  ± 0.0950  ± 0.7378
Img:2  ± 0.0031  ± 0.0946  ± 2.1734  ± 0.9351  ± 0.0954  ± 0.7621  ± 1.2088  ± 0.8353  ± 0.0974  ± 0.1990  ± 0.7621
Img:3  ± 0.0033  ± 0.0784  ± 3.5239  ± 1.9267  ± 0.0767  ± 0.7402  ± 0.2516  ± 1.8266  ± 0.0793  ± 0.0734  ± 0.7402
Img:4  ± 0.0024  ± 0.0958  ± 3.4552  ± 0.9304  ± 0.0956  ± 0.7472  ± 0.2216  ± 0.7309  ± 0.0935  ± 0.1345  ± 0.7472
Img:5  ± 0.0042  ± 0.0971  ± 3.0326  ± 0.9297  ± 0.0975  ± 0.7519  ± 1.2647  ± 0.7298  ± 0.0993  ± 0.1347  ± 0.7519
Img:6  ± 0.0020  ± 0.0859  ± 2.5181  ± 2.9365  ± 0.0876  ± 0.7690  ± 0.2249  ± 2.8367  ± 0.0894  ± 0.0991  ± 0.7690
Img:7  ± 0.0034  ± 0.0964  ± 3.6783  ± 0.9307  ± 0.0965  ± 0.7522  ± 0.2271  ± 0.8306  ± 0.0997  ± 0.0908  ± 0.7522
Img:8  ± 0.0038  ± 0.0774  ± 3.6680  ± 0.9294  ± 0.0783  ± 0.7446  ± 1.2230  ± 0.9295  ± 0.0798  ± 0.0964  ± 0.7446
Img:9  ± 0.0023  ± 0.0858  ± 2.6259  ± 1.9328  ± 0.0867  ± 0.7530  ± 0.2105  ± 1.8327  ± 0.0897  ± 0.0969  ± 0.7530
Img:10  ± 0.0022  ± 0.0778  ± 3.2365  ± 0.9120  ± 0.0775  ± 0.7480  ± 0.2171  ± 0.8350  ± 0.0795  ± 0.1441  ± 0.7480
Img:11  ± 0.0028  ± 0.0867  ± 3.6283  ± 1.9273  ± 0.0866  ± 0.7268  ± 0.2155  ± 1.7279  ± 0.0894  ± 0.0950  ± 0.7278
Img:12  ± 0.0034  ± 0.0986  ± 2.1254  ± 0.9351  ± 0.0974  ± 0.7621  ± 1.2088  ± 0.7359  ± 0.0996  ± 0.1990  ± 0.7621
Img:13  ± 0.0037  ± 0.0864  ± 3.5239  ± 1.9267  ± 0.0886  ± 0.7402  ± 0.2516  ± 1.8269  ± 0.0898  ± 0.0734  ± 0.7402
Img:14  ± 0.0029  ± 0.0978  ± 3.4552  ± 0.9304  ± 0.0987  ± 0.7472  ± 0.2216  ± 0.8306  ± 0.0996  ± 0.1345  ± 0.7472
Img:15  ± 0.0043  ± 0.0781  ± 3.0326  ± 0.9297  ± 0.0773  ± 0.7519  ± 1.2647  ± 0.8299  ± 0.0794  ± 0.1347  ± 0.7519
Img:16  ± 0.0028  ± 0.0879  ± 2.5181  ± 2.9365  ± 0.0885  ± 0.7690  ± 0.2249  ± 2.7368  ± 0.0899  ± 0.0991  ± 0.7690
Img:17  ± 0.0031  ± 0.0974  ± 3.6783  ± 0.9307  ± 0.0975  ± 0.7522  ± 0.2271  ± 0.8306  ± 0.0995  ± 0.0908  ± 0.7522
Img:18  ± 0.0038  ± 0.0764  ± 3.6681  ± 0.9294  ± 0.0786  ± 0.7446  ± 1.2230  ± 0.7299  ± 0.0796  ± 0.0964  ± 0.7446
Img:19  ± 0.0024  ± 0.0778  ± 2.6279  ± 1.9328  ± 0.0777  ± 0.7530  ± 0.2105  ± 1.8327  ± 0.0796  ± 0.0969  ± 0.7530
Img:20  ± 0.0029  ± 0.0988  ± 3.2366  ± 0.9320  ± 0.0965  ± 0.7480  ± 0.2171  ± 0.8329  ± 0.0994  ± 0.1441  ± 0.7480
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3.4.8  Homogeneity (���)

The opposite of this is when an image’s moment is taken 
into consideration along with its limited homogeneity. 
IDM can have either a single value or multiple values to 
determine whether an image exhibits texture or not.

3.4.9  Directional moment (DM)

It is stated as a dimension of the picture’s textural irregu-
larities using the position of the image as a metric in rela-
tions of position.

3.4.10  Correlation ( �
orr

)

The correlation function, which is denoted as: describes 
the spatial dependencies between pixels.

3.4.11  Coarseness ( �
ness

)

A roughness measure used in image textural analysis is 
known as coarseness. The coarseness score window size 
increases as the texture becomes coarser, while fine tex-
tures receive lower coarseness ratings. It can be described 
as follows:

As indicated in Table 2, various GLCM textural prop-
erties are determined for each image, including means, 
standard deviations, entropies, energies, homogeneity, 
contrast, and correlation among the set of images.

3.5  Feature selection using meta‑heuristic optimization 
algorithm

In this paper, we propose the use optimization algo-
rithms for feature selection in deep learning-based CNN 
algorithms to identify brain tumors in MR images. The 

(8)IDM =

m−1∑

x=0

n−1∑

y=0

1

1 + (x − y)2
f (x, y)

(9)DM =

m−1∑

x=0

n−1∑

y=0

f (x, y)|x − y|

(10)Corr =

∑m−1

x=0

∑n−1

y=0
(x, y)f (x, y) −MxMy

�x�y

(11)Cness =
1

2m+n

m−1∑

x=0

n−1∑

y=0

f (x, y)

algorithm used is WSSOA (Whale Social Spider-based 
Optimization Algorithm). The optimization phase aims to 
select the determined applicable features from the input 
data, enhancing the classifier’s performance in accurately 
detecting brain tumors. These selected features are then 
fed into the deep learning-based CNN procedures for 
further processing [24]. We evaluate the proposed pro-
cedure’s performance in expressions of precision, recall, 
and F1-score, and accuracy comparing it with other mod-
ern optimization algorithms. Our results illustrate that the 
planned procedure outperforms the comparison algorithms 
in accuracy, precision, and recall, demonstrating its effec-
tiveness in selecting the most relevant features for the 
CNN algorithm in identifying brain tumors. The specifics 
of the planned optimization technique are shown below:

3.5.1  Whale social spider-based optimization-algorithm 
(WSSOA)

The Whale Optimization Algorithm (WOA) plans the moni-
toring actions of humpback whales to maximize problem-
solving efficiency. Humpback whales exhibit a consistent 
feeding strategy [20], where they use their food to create 
bubbles. This algorithm comprises the following actions: 
searching for prey, engulfing prey, and humpback whales 
employing bubble nets for foraging. The data flow diagram 
of the Whale Social Spider-based Optimization Algorithm 
(WSSOA) is depiction can be observed in Fig. 4.

The WOA, initially planned by Mirjalili and Lewis, 
was inspired by the bubble-net hunting (BnH) technique of 
humpback whales (HWs). Humpback whales prefer to hunt 
small fish near the water’s surface, and they create charac-
teristic bubbles in a circular pattern while swimming close 
to their prey. WSSOA comprises two primary phases: the 
initial phase involves exploitation, where the algorithm 
encircles a target and uses a spiral bubble-net attacking tech-
nique, while the second phase involves exploration, where 
it seeks for prey. Below, we provide a mathematical model 
of the Whale Social Spider-based Optimization Algorithm 
(WSSOA) [7]. Table 3 shows the details of WSSOA.

3.5.2  Encircling prey

The humpback whale first locates its prey and then encircles 
it. The optimal solution is one that closely approximates 
the authentic solution. Once the best candidate solution is 
identified, selections or agents use Eqs. (12) and (13) to 
adjust their positions toward the broker or the best search 
alternative.

(12)D =
|||C.X ∗

(
tcur

)
− X

(
tcur

)|||
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Fig. 4  Data flow diagram of WOSSA

Table 3  Proposed whale social 
spider-based optimization 
algorithm (WSSOA)
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where tcur is the current loop, A, Do, and X * are coefficient 
vectors, X indicates the positioning vector of a solution, and 
|| is the total value. X * is the position vector of the best solu-
tion. The following computations are made for the vectors 
A and C:

where r is an arbitrary digit between [0, 1], and linearly 
dropped from 2 to 0 during the course of the iteration.

Bubble-net attack technique
Whales use this strategy to attack their prey. It consists 

of the two techniques:

(i) Shrinking Encircling’s Mechanism (SEM)

This approach involves the whale decreasing the value 
of Eq. (14) and also reducing the value of A from its initial 
’a.’ Additionally, A is iteratively decreased in each itera-
tion. To initialize A, a random value is selected from the 
interval [− 1, 1]. The new position of an internet research 
cause can be anywhere between the agent’s initial location 
and the current best cause’s position.

(13)X
(
tcur + 1

)
= X ∗

(
tcur

)
− A ⋅ D

(14)A = 2a ⋅ r − a

(15)C = 2 ⋅ r

 (ii) Spirals Updation Position (SUP)

In this approach, a curved procedure is formed among 
the locations of the whale with prey to imitate the spiral 
pattern of humpback whales. The spiral formula is defined 
as follows:

where prey, b is constant and direction D specifies the shape, 
l is random in the range [1, 1] and is a factor-by-factor 
exponentiation.

The position of whales must be updated in order to mimic 
both approaches at once, and it is similarly possible that 
they will choose either the spiral or the shrinking and encir-
cling course. The following is a mathematical model of these 
mechanisms:

3.5.3  Search for prey

Humpback whales employ the bubble-net method for hunt-
ing, as it is uncertain where exactly their prey is located. In 
the development phase, the search agent can move from a 

(16)D � = |X ∗
(
tcur

)
− X

(
tcur

)
|

(17)X
(
tcur + 1

)
= D ⋅ ebl ⋅ cos(2�l) + X ∗

(
tcur

)

(18)Y
(
tcur + 1

)
= {

|X∗(tcur)−X(tcur)|ifrand<0.5
D×ebl×cos(2𝜋l)+X∗(tcur)ifrand≥0.5

Fig. 5  Process of optimal feature selection
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reference point within the range of A in the area [1, 1], and 
the search demonstrative will be adjusted to select from the 
search cause instead of the previously identified search bro-
ker. Both actions determine the next steps.

where Xrand is a randomly chosen direction of position. 
Based on the information above, hunt agents refine their 
location. Because of the placement update process for 
Whales employing Eq. (20), WSSOA is capable of high-
level studying comprehension. Equations  (17) and (13) 
demonstrate that the iterative WSSOA method can support 
high regional optimum circumvention and merging speed as 
shown in Fig. 5 process of optimal feature selection.

As a result, the search agents (whales) can move along 
each dimension by swapping between 0 and 1. The pri-
mary distinction among the original and binary versions of 
WSSOA lies in the position update technique. In WSSOA, 
location updates are indicated by toggling between 0 and 1. 
Additionally, a probability, calculated based on the helix-
shaped association of whales, influences the value of the cur-
rent bit. To attain this, an applicable transfer-function must 
be used to convert the association values in the shape of a 
helix into probabilities for updating positions. The transfer 
function ensures that the whales are mobile within a binary 
space. Based on these concepts, a suitable prospect function 
can be expressed as follows:

where Cstep denotes the phase dimension that a sigmoi-
dal function may calculate. Dist measures the separation 
between a humpback whale and its prey.

The original whale optimization algorithm is suggested 
to undergo three significant alterations.The shrinking and 
encircling of the prey phase is altered first. According to the 
equation below, the whale’s position changes.

where Cstep is determined using the formula in Eqs. (21) 
and (22) A and dist calculated. The second adjustment is 
made to whales’ bubble-net behaviour and uses the follow-
ing computation:

where A and "Dist" are calculated, respectively, using 
Eqs. (14) and (17).

(19)D = ||C ∗ Xrand − X||

(20)X
(
tcur + 1

)
= Xrand−A ∗ D

(21)Cstep =
1

1 + e−10(A∗Dist−0.5)

(22)Y
(
tcur + 1

)
= {

complement(Y(tcur)),ifrand<Cstep

Y(tcur)otherwise

(23)Cstep� =
1

1 + e−10(A×Dist�−0.5)

According to Eq.  (26), the location of the humpback 
whales’ helix-shaped movement is updated. The method 
for updating a modification in position is then carried out as 
follows:

The third updating is complete in the pointed of prey. The 
calculated formula of Cstep′′ is specified below:

where A and Dist′′ are calculated using Eqs. (13) and (18), 
individually. Hence, the location of whale is simplified giv-
ing to Eq. (26).

According to Eq. (27) this data is quantified as vibrations 
that depend on the weight and variation of the spiders:

where dij stands for the Euclidean distance between spiders 
i and j. Similar to Wj, Eq. (28) representation of the spider’s 
fitness value determines the spider’s weight.

In Eq. (29) definition of a minimization issue, spider xi’s 
fitness function is given as

Each spider (xi) takes into account three vibrations 
(V ibci, V ibbi, and V ibf t) from another spider. V ibbi: 
vibration after best male (m) or female (f) spider within the 
swarm, V ibci: vibration from nearby male (m) or female 
(f) spider with advanced fitness, and V ibf t: vibration after 
female spider. The associated spiders are divided into the 
two gender types: In the whole spider population, female 
spiders make up between 65 and 90% of the species. Equa-
tions (30) and (31) respectively show a male and female 
spider.

where N is the overall number of spiders, Nm the number of 
male spiders, and Nf the number of female spiders. The ran-
dom function called rand produces random numbers between 
0 and 1. Female spider positions have been adjusted as Eqs. 
(32) and (33).

(24)Y
(
tcur + 1

)
= {

complement(Y(tcur)),ifrand<Cstep�

Y(tcur)otherwise

(25)Cstep�� =
1

1 + e−10(A×Dist
��−0.5)

(26)Y
(
tcur + 1

)
= {

complement(Y(tcur)),ifrand<Cstep��

Y(tcur)otherwise

(27)vibij = Wj × exp−dij

(28)Wi = Worst − (xi)∕Worst − Best

(29)f(xi).Best = min
i=1

...N f (xi), Worst = max
i=1

...Nf (xi)

(30)Nf = f loor[(0.9 − rand ∗ 0.25) ∗ N]

(31)Nm = N − Nf
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where P F is referred to as the threshold parameter and rand 
are random integers. The neighboring spiders of Xi that 

(32)
Xi =Xi − �V ibci Xc − Xi − �V ibbi Xb

− Xi + �(rand − 0.5) with probabilityPF

(33)
Xi =Xi − �V ibci Xc − Xi − �V ibbiXb

− Xi + �(rand − 0.5) with probability(1 − P)

allocate more weight with maximum separate of the entire 
population are Xc and Xb.

As indicated in Table 4, bold values denoted  for best by 
feature selection applying WSSOA are determined, includ-
ing means, standard deviations, entropies,, contrast, and 
correlation for each image out of images.

Table 4  Selected features of 
sample MRI images

Minimal values are denoted in bold and selected by feature extraction

Images M SD S
k(X) K

urt(X) DM C
orr

Img:1  ± 0.0028  ± 0.0957  ± 1.9273  ± 0.0945  ± 0.0966  ± 0.0950
Img:2  ± 0.0031  ± 0.0946  ± 0.9351  ± 0.0954  ± 0.0974  ± 0.1990
Img:3  ± 0.0033  ± 0.0784  ± 1.9267  ± 0.0767  ± 0.0793  ± 0.0734
Img:4  ± 0.0024  ± 0.0958  ± 0.9304  ± 0.0956  ± 0.0935  ± 0.1345
Img:5  ± 0.0042  ± 0.0971  ± 0.9297  ± 0.0975  ± 0.0993  ± 0.1347
Img:6  ± 0.0020  ± 0.0859  ± 2.9365  ± 0.0876  ± 0.0894  ± 0.0991
Img:7  ± 0.0034  ± 0.0964  ± 0.9307  ± 0.0965  ± 0.0997  ± 0.0908
Img:8  ± 0.0038  ± 0.0774  ± 0.9294  ± 0.0783  ± 0.0798  ± 0.0964
Img:9  ± 0.0023  ± 0.0858  ± 1.9328  ± 0.0867  ± 0.0897  ± 0.0969
Img:10  ± 0.0022  ± 0.0778  ± 0.9120  ± 0.0775  ± 0.0795  ± 0.1441
Img:11  ± 0.0028  ± 0.0867  ± 1.9273  ± 0.0866  ± 0.0894  ± 0.0950
Img:12  ± 0.0034  ± 0.0986  ± 0.9351  ± 0.0974  ± 0.0996  ± 0.1990
Img:13  ± 0.0037  ± 0.0864  ± 1.9267  ± 0.0886  ± 0.0898  ± 0.0734
Img:14  ± 0.0029  ± 0.0978  ± 0.9304  ± 0.0987  ± 0.0996  ± 0.1345
Img:15  ± 0.0043  ± 0.0781  ± 0.9297  ± 0.0773  ± 0.0794  ± 0.1347
Img:16  ± 0.0028  ± 0.0879  ± 2.9365  ± 0.0885  ± 0.0899  ± 0.0991
Img:17  ± 0.0031  ± 0.0974  ± 0.9307  ± 0.0975  ± 0.0995  ± 0.0908
Img:18  ± 0.0038  ± 0.0764  ± 0.9294  ± 0.0786  ± 0.0796  ± 0.0964
Img:19  ± 0.0024  ± 0.0778  ± 1.9328  ± 0.0777  ± 0.0796  ± 0.0969
Img:20  ± 0.0029  ± 0.0988  ± 0.9320  ± 0.0965  ± 0.0994  ± 0.1441

Fig.6  Model of the deep convolution neural network (DCNN)
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3.6  Deep convolution neural network (DCNN)

This section presents the structural configuration of the 
Deep Convolutional Neural Network (DCNN), as depicted 
in Fig. 6. The Deep CNN consists of three fundamental 
types of layers: Convolutional (Conv) layers, Pooling 
(POOL) layers, and Fully Connected (FC) layers. Each 
layer has a distinct role in the network’s operations. The 
primary role of the Convolutional layers is to extract intri-
cate features from segmented images [25]. These layers 
create feature maps by convolving learned weights with 
input data. Subsequently, the feature plans undergo down 
sampling and are directed to the Pooling layers, constitut-
ing the second layer in the DCNN architecture. Finally, 
the FC layers handle the classification process, signifi-
cantly enhancing classification accuracy by incorporating 
an increased number of Convolutional (Conv) layers. The 
Convolutional layers are pivotal in generating feature rep-
resentations and facilitating pattern extraction from seg-
mented objects. These layers’ neurons are linked together 
by trainable weights, which combine with input data to 
create feature maps. The complicated functional mappings 
between the input data and the response variables are then 
reduced using non-linear activation functions on these fea-
ture maps. Convolutional layers may successfully learn 
to recognize complex features and spatial hierarchies in 
the input data through training and weight optimization. 
Employing these newly acquired features, interesting fea-
ture maps are created that successfully draw attention to 
important patterns [26]. Classification accuracy is greatly 
improved by using a large number of convolutional lay-
ers in the DCNN architecture. This improvement is attrib-
uted to the network’s heightened capability to capture and 
comprehend intricate data features, resulting in improved 
discrimination between different classes during the clas-
sification process.

Convolutional Neural Networks (CNNs) are a type of 
neural network architecture used for image processing and 
analysis tasks. CNNs typically consist of several layers, each 
serving a specific purpose in processing the input image. 
The following are the main types of layers commonly used 
in CNNs:

• Convolutional Layer (CL): The CL serves as the founda-
tion for CNNs. It uses a collection of teachable filters to 
extract features like edges, corners, and textures from the 
input picture. Convolutional math is used by the filters 
as they go over the picture to produce a feature map that 
shows where the extracted features in the input image 
were located.

• Activation Layer (AL): The AL adds nonlinearity to the 
model by applying activation functions to the output of 
the CL. Rectified Linear Units (ReLUs), sigmoid activa-

tion, and Hyperbolic Tangent (tanh) are frequently used 
activation functions.

• Pooling Layer (PL): The PL is used to downsample the 
feature maps, bringing down their spatial dimensions and 
improving the model’s resistance to slight input fluctua-
tions. Max-pooling layers and Avg-pooling layers are 
representative of pooling layer.

• Batch Normalization Layer (BNL): By normalize the out-
put of the layer before it, the BNL increases the stability 
and effectiveness of the training process. It enhances the 
generalization of the model and helps to reduce internal 
covariate changes.

• Dropout Layer (DL): The DL is employed to prevent 
overfitting by randomly dropping selected nodes in the 
previous layer during training. This encourages the 
model to learn more robust features and reduces reliance 
on any single node.

• Fully Connected Layer (FCL): The FCL takes the flat-
tened output from the preceding layers and transforms it 
into a vector of class scores. This vector represents the 
probabilities that the input image belongs to each of the 
possible classes.

These layers can be stacked in various ways to create 
different CNNs architectures, such as VGG, ResNet, and 
Inception. The specific configuration of the layers and the 
number of filters in every layer can be tuned to optimize the 
performance of the model for a given task.

4  Experiment results and discussion

This section provides details about the experimental setup 
and model hyperparameters. We implemented our proposed 
framework using Python and TensorFlow, conducting the 

Fig. 7  Confusion matrix for training and testing deep neural network 
(DNN)
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training and testing of our model on an Intel Xeon server 
with 16 GB of RAM. TensorFlow offers a range of machine 
learning libraries for training and testing deep neural net-
works (DNN), as illustrated in Fig. 7 confusion matrix. We 
imported the Keras library and its components to facilitate 
effective training, conversion, and network construction for 
image data. Our proposed method demonstrated superior 
performance compared to existing methodologies. To test 
and evaluate our proposed system, we utilized 253 MR 
images as input to distinguish among healthy and brain-
infected images. The dataset included features related to 
whales and wolves, which were applied in both the training 
and testing phases. To conduct the evaluation, 80% data used 
for training, whereas the remaining 20% reserved for testing.

Precision: Precision is a dimension of the percentage 
of cancers that the model properly diagnosed out of all the 
tumors it classified. It is described in mathematical as:

Recall: The ability to correctly determine that an indi-
vidual does not have a tumor is the recall measurement.

The level of detail is offered by:

(34)Precision =
TP

TP + FP

Accuracy: The successful classification serves as a gauge 
of accuracy.

Accuracy is provided by:

F1 Score: The F1 score achieves a balance among the 
two metrics by obtaining the mean of precision and recall.

In evaluating the presentation of the planned system, we 
employ the following metrics: accuracy, precision, recall, 
and F1-score, which are calculated using Eqs. (34), (35), 
(36), and (37), respectively. These metrics are based on the 
following definitions: TP (True Positive) refers to cases 
where both the actual and expected values are true; FP (False 
Positive) refers to cases where the expected assessment is 
true, but the actual value is false; TN (True Negative) refers 
to cases where both the actual and predicted values are false; 
and FN (False Negative) refers to cases where the actual 
value is true, but the predicted value is false [27].

(35)Recall =
TP

TP + FN

(36)Accuracy =
TP + TN

TP + TN + FP + FN

(37)F1score = 2 ×
Precision × Recall

Precision + Recall

Table 5  Presentation of the 
planned technique with state-of-
the-art approaches comparisons

Authors Techniques Accuracy Precision Recall F1-score

Geetha et al. [3] GWO,DBN 94.11 93.11 94.11 94.11
Sindhu et al. [4] WOA,AE 98.37 96.37 98.32 96.39
Mishra et al. [8] WOA,DCNN 98.54 95.78 95.78 95.65
Yin et al. [6] WOA,MLP 96.58 95.54 96.58 96.54
Kumar et al. [28] BWO, EL 96.43 96.47 96.45 95.47
Gong et al. [29] WOA,RBF 88.43 87.84 87.67 87.67
Ramtekkar et al. [30] WOA,CNN 98.94 96.89 97.54 95.34
Proposed method WSSOA,DCNN 99.29 97.65 96.56 96.78

Fig. 8  a Validation accuracy and b validation loss
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Table 5 displays the outcomes of our analysis, which 
clearly indicate that the Whale Optimization Algorithm 
(WOA) technique outperforms other optimization tech-
niques. Specifically, the accuracy achieved using WOA is 
the maximum compared to the additional algorithms. Addi-
tionally, the WOA approach outperforms other algorithms 
when evaluating the precision, recall, and F1-score metrics. 
These results decisively demonstrate that, when compared 
to other algorithms, the combination of WOA and the CNN 
algorithm yields the best results.

Using Python’s CNN library, we implemented feature 
optimization and brain tumor detection. Additionally, our 
approach counts the number of images with and without 
tumors. Out of the 253 images in the dataset we collected 
for analysis, 30 were used for testing, whereas the remaining 
70 were used for training. With the WOA and SSO + DCNN 
algorithm, we achieved an accuracy of 99.29%, the highest 
compared to other algorithms we tested. A confusion matrix 
reveals that 98 pictures were correctly recognized as normal, 
while 155 were found to be infected with tumors. Diagnos-
ing brain tumors typically requires the use of various imag-
ing modalities. To assess the performance of our approach, 
we conducted a proportional study of accuracy, precision, 
and F1-score, as shown in Fig. 8. These results confirm that 
the WOA and SSO with DCNN algorithms outperform other 
techniques in expressions of accuracy, precision, recall, and 
F1-score. 

4.1  Compared the proposed approach 
with state‑of‑the‑art approaches

Table 5 provides a comparison of the performance of 
several optimization techniques used in brain tumor iden-
tification, including our proposed system. Geetha et al. 
[3] achieved 94.11% accuracy using DBN classifiers and 
GWO. Their approach involved preprocessing steps such 
as contrast improvement and skull stripping, followed 
by segmentation using the FCM procedure. For feature 
extraction and selection, they employed GLCM with 
GRLM before classifying the images using their model. 
Radha et al. [4] introduced a hybrid KNN-SVM method 
that utilized WOA and achieved an accuracy of 98.3%. 
Their preprocessing steps included HE/ACWM, and they 
used K-Means clustering for segmentation. Their system 
comprised pre-processing, segmentation, feature extrac-
tion and selection, and classification, incorporating First 
Order and Second Order classification and GLRM and 
GLCM statistical features for feature extraction. Mishra 
et al. [8] achieved 98% accuracy using a DCNN classi-
fier with WOA. Their method included WOA for feature 
optimization, DL-CNN for classification, histogram con-
figuration, and a median filter (MF) for pre-processing. 
Image segmentation was performed using Otsu threshold-
ing with morphological techniques, and WOA was used for 
feature selection. Abdel-Gawad et al. [6] achieved 96.5% 

Fig. 9  The graphical performance comparisons a accuracy, b precision, c recall, and d F1-score
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accuracy using multilayer perceptron (MLP) neural net-
works (NNs) classifiers with WOA. Their method involved 
WAO for feature selection, MICO for pre-processing, 
and CNN for segmentation, and multi-layer perceptron 
(MLP) neural networks for categorization. Yina et  al. 
[28] used Ensemble-Learning Classifier (ELC) and WAO 
techniques attained 96.4% accuracy. Their preprocessing 
steps included HDWT (Haar Discrete Wavelet Transfor-
mations) with Histogram-Oriented Gradient (HOG). They 
used WAO for the selection of key features and Ensemble 
Learning (EL) Classifier for tumor categorization. Gong 
et al. [29] achieved 88.4% accuracy using Radial Basis 
Function (RBF) and WAO.

The WAO feature selection algorithm, segmentation 
threshold, Otsu methods, median filter preprocessing, 
RBF network tumor detection, and feature selection are 
all used by Ramtekkar et al. [30]. However, Šefčík et al. 
[31] utilized slices are extracted from the volume as 2D 
images. They achieved an accuracy of 86%, a specific-
ity of 70% and sensitivity 92. The enhancement process 
transformed original crisp images into interval-valued 
intuitionistic fuzzy images, while feature extraction was 
achieved through kernel principal component analysis by 
Lavanya et al. [32].  In comparison to the aforementioned 
approaches, this proposed system’s accuracy for identify-
ing brain tumors in MR images using the CNNs classifier 
and WAO was 98.9%. Our proposed method incorporates 
Gaussian filter, mean filter, and median filters, threshold 
with histogram algorithms for segmentation, WAO for a 
best feature optimization, and DCNNs for tumor diagno-
sis during the preprocessing of an image and achieving 
99.29%. Figure 9 illustrates the comparative graphical 
performance comparisons accuracy, f1-score, precision, 
and recall compared to proposed technique with state-of-
the-art procedures.

5  Conclusion and future direction

This research work has proposed an accurate and novel 
brain tumors detection framework using the WSSOA-based 
meta-heuristic technique and hyperparameter-tuned Deep-
CNN model. The proposed model involves several stages 
such as pre-processing, segmentation, feature extraction, 
feature optimization and brain tumor detection and classi-
fication. In the preprocessing stage, a composite filter that 
combines Gaussian, Mean, and Median filters are used to 
enhance the MRI images. Using threshold and histogram 
approaches, MRI image segmentation is carried out, and 
GLCM is used to extract image texture characteristics. 
WSSOA-based metaheuristic technique is designed for fea-
ture optimization. For accurate brain tumor detection and 

identification, a hyperparameter tuned Deep CNN model 
is used. Performance of the proposed model is evaluated 
using a benchmark Figshare dataset and compared with 
seven state-of-art models in terms of accuracy, precision, 
F1-score, and recall. The proposed model has achieved 
an accuracy of 99.29%. In Future work, proposed model 
is planned to enhance using federated learning model and 
explanation AI-based techniques.
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