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Abstract Knowledge graphs represent a potent instrument 
for the classification and exhibition of data, as they encom-
pass a systematic approach for the containment and retrieval 
of multifarious datasets. In finance, the utilization of knowl-
edge graphs for the organization of company-oriented data 
constitutes an invaluable source of insights, thus enabling 
informed decision-making. In a parallel, knowledge graph 
systems centered on COVID-19 within the healthcare sphere 
may assist medical professionals in the making of resolute 
choices. These applications highlight knowledge graphs’ 
ability to revolutionize decision-making procedures by pro-
viding a comprehensive comprehension of the given subject. 
To tackle this, we propose a solution that begets and imple-
ments knowledge graphs in two separate domains: finance 
and healthcare. To ensure the creation of explicable AI sys-
tems and improve the accessibility of information within 
these knowledge graphs, we introduce the conversion of nat-
ural language queries into SPARQL queries. By fine-tuning 
our model, we illustrate the system’s superior performance. 
Furthermore, we appraise the adequacy of the constructed 

knowledge graphs and contrast them with widely employed 
alternatives. Our work accentuates the adaptability of the 
proposed solution, as it can operate seamlessly with diverse 
datasets requiring minimal modifications.

Keywords Explainable artificial intelligence · Natural 
language processing · Knowledge graphs · Query 
translation · Q& A systems

1 Introduction

Recent research has exhibited remarkable success in utiliz-
ing Knowledge Graphs across various domains, particularly 
in the realm of Explainable Artificial Intelligence (X-AI), 
in order to augment transparency in complex systems. This 
carries significant implications for fields such as finance 
and healthcare. The rapid expansion of data across numer-
ous disciplines necessitates effective strategies for extract-
ing useful information. Informed decision-making requires 
access to and retrieval of pertinent data, especially in critical 
domains like healthcare and finance.

A Knowledge Graph refers to a semantic network of 
real-world entities (objects, instances, principles, or events) 
that illustrate relationships among them. For instance, con-
sider entities such as “Banana”, “Yellow”, and “Fruit”. The 
relationships between them establish that a “Banana” is 
both a variety of “Fruit” and is characterized by the attrib-
ute “Yellow”. This simplified Knowledge Graph demon-
strates how entities are interconnected via relationships and 
attributes, facilitating a clear visualization of their associa-
tions. Explainable Artificial Intelligence (X-AI) is a branch 
of Artificial Intelligence (AI) that strives to render the 
decision-making process of AI models more comprehen-
sible and interpretable for humans. Traditional AI models, 
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particularly deep learning algorithms, often function as 
“black boxes”, making it difficult to discern how a given 
input leads to a particular output. This system endeavors to 
provide insights into why a particular decision was made, 
particularly in vital domains such as healthcare, finance, 
and legal systems. Numerous existing efforts concentrate 
on rendering AI systems interpretable for specialists pos-
sessing machine learning and related fields expertise. These 
specialists are capable of altering the mathematical func-
tions within complex algorithms to enhance their transpar-
ency. While this approach is effective for experts, it may not 
be suitable for non-experts who lack technical proficiency. 
In the context of X-AI, Knowledge Graphs offer an alter-
native, easier-to-understand technique than mathematical 
function manipulation. Rather than delving into the inter-
nals of algorithms, Knowledge Graphs provide a means of 
representing the underlying concepts and relationships that 
AI systems utilize to make decisions. By this approach, 
we aim to bridge the gap between how AI systems func-
tion and how humans comprehend complex information. 
However, the querying of these knowledge graphs typically 
necessitates technical expertise, as it requires the utilization 
of query languages such as SPARQL (SPARQL Protocol 
and RDF Query Language). SPARQL is a query language 
specifically crafted to query RDF (Resource Descrip-
tion Framework) data, which is the foundation of knowl-
edge graphs. RDF, an acronym for Resource Description 
Framework, is defined by the World Wide Web Consortium 
(W3C) recommendation as a method for representing infor-
mation as a set of triples. Each triple comprises a subject, a 
predicate, and an object. The subject is a Uniform Resource 
Identifier (URI) that identifies a resource, the predicate is a 
URI that describes the relationship between the subject and 
the object. The object can be a value that is a URI, a literal, 
or another RDF triple. SPARQL provides a standardized 
and expressive syntax for the retrieval of data by leveraging 
the underlying graph structure. Nonetheless, it can prove 
to be quite challenging for non-technical users who lack 
proficiency in query languages. To tackle the challenge of 
effectively writing SPARQL queries, we offer the conver-
sion of natural language queries into SPARQL queries, 
thereby bridging the gap between non-technical users and 
the wealth of knowledge graphs content by streamlining 
the data retrieval process. This enables a broader variety 
of stakeholders to benefit from the insights offered by the 
COVID-19 hospitalization data and the Stock Market data, 
allowing users to engage with knowledge graphs using nat-
ural language.

This study outlines a methodology for the construction 
of Knowledge Graphs and the answering of Natural Lan-
guage questions for both the stock market and COVID-19 
hospitalization data, thereby improving model transpar-
ency and justifications for both domains.

2  Literature review

This literature survey delves into the diverse methodologies 
employed in knowledge graph construction and the transla-
tion of natural language queries to SPARQL.

2.1  Construction of knowledge graph

Gupte et al. [1] introduced an attention-RNN and trans-
former (BERT) model to convert textual queries into 
SPARQL “INSERT” queries for knowledge graph crea-
tion. The model was trained and evaluated on the DBpedia 
dataset, yielding compelling outcomes. Wang et al. [2] in 
their research, presented, a framework for constructing 
COVID-19  lature knowledge graphs (KGs) and gener-
ating drug repurposing reports is proposed. The knowl-
edge graph is built by extracting fine-grained multimedia 
knowledge elements (entities and their visual chemical 
structures, relations, and events) from scientific literature. 
The paper also explores a Q &A method over the knowl-
edge graph that extracts entities and generates a subgraph 
covering paths between them. Kejriwal [3], in their book, 
comprehensively cover all aspects of constructing knowl-
edge graphs for specific domains. The book encompasses 
the entire knowledge graph construction process, from 
data collection and cleaning to evaluation and deployment. 
The authors explain that knowledge graphs are a power-
ful tool for representing and reasoning about knowledge 
in a domain, and the construction process can be divided 
into four steps: data collection and cleaning, knowledge 
extraction, knowledge integration, and knowledge evalu-
ation. The authors explore rule-based, machine learn-
ing, and hybrid methods of knowledge graph creation. Li 
et al. [4] present a systematic approach for constructing 
a medical knowledge graph (KG) from electronic medi-
cal records (EMR). The process involves multiple steps, 
such as entity recognition, relation extraction, and graph 
embedding, using a novel quadruplet structure. The results 
show how the knowledge graph constructed significantly 
improves understanding of disease, disease classification, 
and decision-making. Ye et  al. [5] review recent pro-
gress in generative knowledge graph construction (KGC). 
The paper comprises two main paradigms for generative 
knowledge graph construction: relation extraction and 
knowledge graph completion. Relation extraction meth-
ods focus on extracting new relations from textual data, 
while knowledge graph completion methods focus on fill-
ing in missing triples in a knowledge graph. Results from 
their research show that relation extraction methods are 
generally more effective than knowledge graph completion 
methods, however, knowledge graph completion methods 
tend to be more scalable.
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2.2  Translation of NLQ to SPARQL

Dubey et al. [6] proposed a framework, AskNow, a method-
ology for translating natural language queries into SPARQL. 
The process involves normalizing the queries into an inter-
mediary canonical syntactic form, known as Normalized 
Query Structure (NQS), which facilitates the identification 
of the expected output information and the user-provided 
input information, and establishes their mutual semantic rela-
tionship. Yin et al. [7] suggested an approach that involves 
tokenizing and encoding the input queries, and then training 
a neural machine translation (NMT) model to map the tokens 
from the natural language queries to the tokens from the 
SPARQL queries. However, this approach only supports the 
“SELECT” type of queries and not other types. Bhajikhaye [8] 
proposed using a tree LSTM model with a dependency parse 
tree in English to classify the different query templates in 
the LcQuad dataset. Word Disambiguation and Named Entity 
Recognition (NER) were used to identify query entities, and 
map them to the template using the Falcon 2.01 library, with 
a specific focus on Wikidata. Ferré [9] proposed SPARKLIS, 
which uses faceted search, entity linking, schema matching, 
and query optimization to generate SPARQL queries. How-
ever, it is limited by the dataset of NLQs on which it was 
trained and may not handle queries specific to other knowl-
edge graphs. Ochieng [10] proposed PAROT, which uses 
dependency parsing to extract triples from natural language 
questions, and then uses these triples to generate SPARQL 
queries. The framework was evaluated on a dataset of simple 
and complex natural language questions, and was found to be 
able to translate 80% of the questions into correct SPARQL 
queries. Finally, in their work, Chen et al. [11] employed a 

two-stage Maximum Entropy Markov Model (MEMM) model 
for entity type identification and RDF type identification to 
generate SPARQL queries on the QALD2 dataset.

3  Proposed methodology

In this section, we elaborate on the system’s ability to 
effectively generate an eXplicable Knowledge Graph while 
simultaneously extracting its constituent elements through 
the usage of natural language queries (NLQ). The research 
presented in this paper is divided into two distinct parts 
(Fig. 1): 

1. The development of a comprehensive eXplicable Knowl-
edge Graph (X-KG)

2. The conversion of natural language queries into 
SPARQL queries.

3.1  Overview of the datasets

The following section offers a brief overview of the data 
employed for the purpose of constructing and training our 
models.

3.1.1  X‑KG generation dataset

The X-KG is created using a combination of two datasets, 
namely 

1. Stock Market data
2. COVID-19 Hospitalization data

Fig. 1  Architecture diagram of the proposed system

1 https:// falcon. readt hedocs. io/ en/2. 0.0/ index. html. 2 https:// github. com/ Perev alov/ qald_9_ plus.

https://falcon.readthedocs.io/en/2.0.0/index.html
https://github.com/Perevalov/qald_9_plus
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Stock Market Data The Stock Market data utilized in this 
study was sourced from a variety of online platforms such as 
DBpedia3 and Crunchbase.4 It includes data on prominent IT 
companies and banks, and is available in a range of formats 
including RDF data, text and CSV files.

COVID‑19 Hospitalization Data This data is sourced 
from the Covid-19 hospitalization network, as documented 
by [12]. The primary objective of the COVID-19 Hospi-
talization Surveillance Network (COVID-NET)5 is to con-
duct comprehensive surveillance of hospitalizations linked 
to confirmed COVID-19 cases across various age groups, 
encompassing both pediatric and adult populations.

3.1.2  NLQ to SPARQL translation dataset

We have used the LcQuad6 dataset for the training and fine-
tuning of our models.

Algorithm 1  eXplicable-Knowledge Graph (X-KG)

Input: Classified model results
Output: Comprehensive knowledge graph

1: Start
2: Data Integration
3: Extract data from data source X, Y .
4: Integrate and map the knowledge to the given taxonomies (x1, x2, x3, .., xn) of X

data source and Y data source if required
5: if taxonomy in datasource : then X, Y
6: Pre-process the data
7: combine X, Y : (X ∈ Y )or(Y ∈ X)
8: Map relationships with ontologies (X ∪ Y )
9: Combine and map knowledge

10: Append the knowledge graph G
11: Post-processing the Sample S.
12: end if
13: End

3.2  Generation of eXplicable Knowledge Graph 
(X‑KG)

The knowledge graph comprises three essential components: 
nodes, edges, and labels. It serves as a tool for end-users of 
the system, as well as any individual, seeking to comprehend 
the results obtained by the underlying system and connect 
them with the possible reasons and justifications outlined 
in the diagram. Furthermore, it enables the mapping and 
elucidation of relationships with diverse ontologies. The 
benefits of knowledge graph creation and implementation 
are visualized in Fig. 2. The knowledge graph is developed 
from multiple datasets from various sources, which need not 
necessarily possess identical structures for X-KG implemen-
tation. The proposed knowledge graph is elaborated through 
the use of algorithm 1. Subsequently, the requisite data is 

Fig. 2  Sneak-peek into the eXplicable Knowledge Graph (X-KG)

3 https:// www. dbped ia. org/.
4 https:// www. crunc hbase. com/.
5 https:// www. cdc. gov/ coron avirus/ 2019- ncov/ covid- data/ covid- net/ 
purpo se- metho ds. html.
6 https:// github. com/ AskNo wQA/ LC- QuAD.

https://www.dbpedia.org/
https://www.crunchbase.com/
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html
https://github.com/AskNowQA/LC-QuAD


1609Int. j. inf. tecnol. (March 2024) 16(3):1605–1615 

1 3

extracted from the desired source and mapped to the applica-
ble data source taxonomy. The details of constructing X-KG 
are represented mathematically in Eq. 1.

In Eq. 1, f (k) is the summation of elements in the data 
source X and Y  , such that elements of data source X belong 
to elements of data source Y  so that a relationship can be 
built across with ontologies.

While, from Eq.  2, G represents the knowledge graph, 
f (X(x1, x2, .., xn) + Y(y1, y2, .., yn)) creates a function for data 
integration. k(X ∪ Y) represents the mapping of knowledge 
function with original sources. The �(S) is for examining the 
sample S and its post-processing, where we identify areas 
requiring manual intervention.

3.3  Translation of NLQ to SPARQL query

This section delves into the translation process of natural lan-
guage queries to SPARQL queries, thereby bridging the gap 
between non-technical users and the vast knowledge graphs’ 
content. This streamlined data retrieval process enables a 
broader range of stakeholders to gain insights offered by 
the X-KG, allowing users to interact with knowledge graphs 
through natural language. The flexibility of our approach is a 
primary motivation behind this research, as it can be effort-
lessly implemented for different types of knowledge graphs 
with minor adjustments to the training dataset. The benefits 
of converting natural language queries into SPARQL queries 
can be utilized in various domains outside the healthcare and 
stock market (finance), which are the primary areas of focus 
in this research, thanks to the versatility offered. Our system 

(1)f (k) ∶

n∑

x,y=1

(X ∈ Y|Y ∈ X)

(2)
G = f (X(x1, x2, .., xn) + Y(y1, y2, .., yn))

+k(X ∪ Y) + �(S)

integrates domain-specific training data to comprehend the 
distinct structure and language of various knowledge graphs, 
enabling it to be efficient and applicable in a variety of set-
tings. Moreover, our solution’s potential impact is amplified 
by its adaptability to the data retrieval needs of different 
businesses and disciplines, thereby increasing knowledge 
graphs’ accessibility and usability. This work concentrates 
on simple (single-level) SPARQL queries.

The process of transforming Natural Language Input into 
SPARQL Queries entails a significant contribution that can 
be succinctly summarized in the following series of steps: 

1. Identification of question/query type.
2. Extraction of Entities from input query.
3. Fuzzy matching of the Entities extracted.
4. Formation of triplets and SPARQL query generation.

A visual representation of the entire pipeline for NLQ to 
SPARQL can be seen in Fig. 3.

3.3.1  Identification of question/query type

The initial aspect of the system involves recognizing the 
types of questions to ensure efficient query classification. In 
this study, we have concentrated on three specific categories 
of labeling for classification. 

1. SELECT
2. COUNT
3. BOOLEAN (Yes/No)

The LcQuaD dataset comprises an extensive compilation of 
questions and corresponding answers, with each question 
being linked to a SPARQL query. The SPARQL queries in 
the LcQuad dataset are divided into three categories, namely 
SELECT, COUNT, and BOOLEAN. To classify the queries, 
we generate labels based on the type of SPARQL query used 
for a specific question. To modify the dataset, we introduce 

Fig. 3  Architecture diagram for Translation of NLQ to SPARQL



1610 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

a label column that is assigned type 2 if the SPARQL query 
contains the term “BOOLEAN”. Similarly, if the SPARQL 
query contains the term “COUNT”, we assign type 1 to the 
label column. If neither term is present in the query, the label 
column is marked as type 0. Prior to model training, the 
subsequent pre-processing measures are implemented upon 
the textual data to improve the caliber and effectiveness of 
the ensuing analysis. 

1. White Space Removal.
2. Converting text to Lowercase
3. Stemming and Lemmatization

By implementing these preprocessing measures, the textual 
data is standardized, extraneous words are eliminated, and 
words are converted to their fundamental or core forms.

To classify triplet entities, we utilize and compare vari-
ous models including RandomForestClassifier [13], Sup-
port Vector Machines (SVM) [14], and XGBoost [15]. In 
addition, we have attempted to incorporate State-of-The-Art 
(SoTA) deep learning models such as BERT [16] for classi-
fication purposes. For classical machine learning algorithms 
like RandomForestClassifier, SVM, and XGBoost, a critical 
step in preparing the data for training the models is vectori-
zation. Vectorization involves converting textual data into 
numerical representations, which can be processed by these 
algorithms. In our approach, we utilized the TF-IDF [17] 
vectorizer for this task. We conducted an experimental study 
utilizing the state-of-the-art (SoTA) model, DistilBERT [18], 
which is a lightweight variant of the SoTA model, BERT, 
in order to compare it with other models. Unlike traditional 
approaches that involve the use of the TF-IDF vectorizer, 

SoTA models such as DistilBERT employ advanced tech-
niques like tokenization and attention mechanisms to pro-
cess input text. The built-in tokenizer is utilized to produce 
input IDs and attention masks, which effectively capture 
the information and structure of the text, rendering external 
vectorization methods unnecessary. This methodology har-
nesses the power of pre-trained language models to capture 
semantic meaning and contextual relationships within the 
text, thereby obviating the need for explicit vectorization 
using TF-IDF. In Table 1, using the LcQuad dataset, we 
compare the performance of various classification models 
for predicting question types. From the information pre-
sented in Table 1, it can be deduced that the SoTA model, 
DistilBERT, has demonstrated a noteworthy level of preci-
sion in achieving the classification objective at hand. As a 
result, we have opted to utilize DistilBERT as our model for 
the identification of question types.

3.3.2  Extraction of entities from input query

In this step, a pipeline for Named Entity Recognition (NER) 
is executed. To augment its efficacy and address our specific 
requirements, we have trained this model using a personal-
ized dataset. Our customized dataset will comprise the antic-
ipated question types for a certain knowledge graph, in addi-
tion to all the subject, predicate, and object entities marked. 
In the NER pipeline, three pivotal phases are involved: 

1. Pre-Processing
2. Dependency Parsing
3. Entity Extraction

The NER pipeline is depicted in Fig. 4, which visualizes the 
operations executed in every phase.

Pre‑Processing In this step, the pipeline performs various 
preprocessing steps to obtain a clean textual query, such as 

1. Tokenization
2. Lemmatization
3. Stop Word Removal

Table 1  Comparison of supervised classification models for question 
type classification

Model name Accuracy Precision Recall

Decision Tree 92.0 84.75 84.90
SVC 91.8 87.80 83.76
XGBoost 92.40 86.26 85.32
DistilBERT (SoTA) 99.76 99.68 99.60

Fig. 4  Named entity recognition pipeline
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Dependency Parsing Dependency Parsing constitutes a 
crucial step in the context of Named Entity Recognition 
(NER) as it facilitates the identification of the contextual 
significance of a word. Specifically, if a word is dependent 
on a verb, it is more likely to be a noun. This step entails 
the acquisition of knowledge pertaining to diverse linguis-
tic features and patterns, thereby enabling the production 
of accurate predictions concerning the syntactic relation-
ships among the constituent words in a sentence. To perform 
Dependency Parsing, we employ spaCy7’s neural network 
transition-based parser. This approach to dependency pars-
ing involves the prediction of a sequence of parsing actions 
that collectively construct a dependency tree for a given sen-
tence. These actions may entail the shifting of the next word 
onto the stack, the creation of a dependency between words, 
or the reduction of words from the stack. Subsequently, the 
model acquires the ability to predict the most appropriate 
action at each parsing step based on the current state of the 
stack, buffer, and previously generated dependencies. This 
stage provides valuable information regarding the grammati-
cal structure of a sentence and the syntactic relationships 
between the constituent words. This contextual knowledge 
proves useful in determining the boundaries of named enti-
ties during the NER step.

Entity Extraction This step is further divided into two 
steps: 

1. Conversion of Input into Word Vectors.
2. Sequence Labelling using Conditional Random Fields 

(CRF) Model

In the initial stage, the input text undergoes a conversion 
process to produce the corresponding Word Embedding. 
These embeddings are compact and reduced-dimensional 
representations of words that effectively capture both seman-
tic and syntactic similarities among them. To achieve this 
conversion, pre-trained models such as Word2Vec are uti-
lized. The output of this first step, which is a dense vector, 
is subsequently employed as input to the CRF Model. The 

CRF model, as described in the work of [19], is utilized for 
the purpose of labeling words/sequences. Specifically, this 
model is highly effective in the task of Named Entity Recog-
nition (NER), which entails the identification and classifica-
tion of named entities. By integrating Dense Vectors into the 
CRF model, the model is able to learn and harness semantic 
information about words, thus enhancing its ability to accu-
rately identify entities based on their contextual meaning.

3.3.3  Fuzzy entity matching

Upon extraction of the Entities from the Input text, our 
approach employs the utilization of fuzzy matching to cor-
respond the Extracted Entities with the data housed within 
our Knowledge Graph (X-KG) database. Fuzzy matching is 
a technique that facilitates the comparison of strings for the 
purpose of determining their similarity, even in the pres-
ence of minor deviations or variations within the text. This 
process is further partitioned into three sub-steps, namely: 

1. Pre-Processing of Text
2. Determining the Longest Common Subsequence
3. Generating the Similarity Score

The Fuzzy Entity Mapping process, together with the opera-
tions conducted, is illustrated in Fig. 5.

Pre‑Processing Prior to comparison, we perform vari-
ous preliminary preprocessing activities on the input. These 
activities encompass converting the strings to lowercase, 
removing leading/trailing white spaces, and eliminating 
duplicate spaces.

Longest Common SubSequence The utilization of the 
longest common subsequence algorithm, which leverages 
dynamic programming, enables the discovery of the long-
est common substring (LCS) between the input sequences.

Generating Similarity Score Similarity score is generated 
by using the longest common subsequence obtained.

It can be mathematically represented as

Fig. 5  Fuzzy entity mapping of extracted entities with X-KG data

7 https:// spacy. io/.

https://spacy.io/
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Where s1 and s2 are the strings for which the similarity score 
is to be calculated. LCS(s1, s2) is the function to calculate 
the longest common subsequence for two strings s1 and s2.

To identify the most appropriate RDF entity from the 
knowledge graph, a meticulous process of type iteration is 
undertaken. This is essential as there exists three distinct 
types of entities, namely Subject, Predicate, and Object. 
Each of these types of entities is meticulously stored in three 
segregated lists. The iteration process involves a thorough 
assessment of these lists while simultaneously computing 
the similarity score. This computation can be mathemati-
cally represented as follows. Let, R is the set of RDF entities 
belonging to a particular type. E be the entity of the same 
type, extracted from the natural language query. S be the 
similarity score calculated for each entity Ri in R with E . 
The candidate entity C for the query can be determined by 
selecting the entity with the highest similarity score amongst 
the set R.

Where, argmaxRi∈R
 returns the entity Ri ∈ R that maximizes 

the function, S(Ri,E) which is the similarity score between 
the entity Ri from the knowledge graph and the extracted 
entity E from the query. This similarity score is calculated 
by using Eq. 3.

When there exist several entities within the knowledge 
graph that share the identical entity type as E and also 
possess the highest degree of similarity, designated as the 
maximum score (max), all such entities possessing equiva-
lent maximum scores are taken into account during query 
generation. Consequently, numerous queries that relate to 
the same user query are produced. This process is reiterated 
until all the extracted entities have been linked with the data 
obtained from the underlying Knowledge Graph Database.

3.3.4  SPARQL triplet generation

Upon the extraction of entities from the sentence, mapping 
them to their respective components of the SPARQL query 

(3)S(s1, s2) =
LCS(s1, s2)

len(s1) + len(s2)

(4)C = argmax
Ri∈R

S(Ri,E)

triplet can be accomplished. In the event that any of these 
components are absent, the utilization of placeholders (such 
as “?subject” or “?object”), within the SPARQL query is 
permissible, thereby enabling more versatile querying pat-
terns. To illustrate, consider the query “Who is the CEO 
of Microsoft”. The entities extracted from this query are 
“CEO” and “Microsoft”, where “CEO” is categorized as 
PROPERTY and “Microsoft” as SUBJECT. Subsequently, 
both extracted entities are mapped to their corresponding 
RDF entities within the knowledge graph, thereby generat-
ing the triplet {<ns:microsoft <np:chief_executive_officer> 
?object}, where “?object” is the missing entity. By merg-
ing the extracted entities with appropriate SPARQL syntax 
(e.g., using angle brackets to indicate RDF resources), a 
valid SPARQL triplet is generated to showcase the desired 
semantic relationship between the entities. During this stage, 
the question type that was extracted is utilized to construct 
the initial part of the query, which includes (SELECT *, 
SELECT COUNT(?a) as ?count, ASK). Moreover, the 
extracted entities are employed to produce the SPARQL 
query triplets (subject, object, predicate), which represent 
semantic relationships between the entities. It is plau-
sible that one or more of these triplets may be absent, in 
which case the missing attribute is then returned within the 
SELECT or the COUNT query. While the formed triplet is 
provided inside the WHERE block.

Table 2  Comparison of 
the structural quality metric 
evaluations for the knowledge 
graphs generated by X-KG and 
other popular knowledge graphs

Metric X-KG (Stock 
Market)

X-KG (COVID-19 
Hospitalization)

Raftel Wikidata Google KG

Instantiated class ratio 0.928 1 0.941 0.004 0.099
Instantiated class ratio 0.934 0.228 1 1 0.660
Class Instantiation 1 0.577 0.941 0.716 0.660
Inverse Multiple Inheritance 1 0.400 0.975 0.962 0.952
Subclass Property Instantiation 0 0.115 0.0857 0.0133 0

Table 3  Dataset statistics for translation of NLQ to SPARQL for the 
Stock Market and the COVID-19 hospitalization custom datasets

Parameter X-KG Stock X-KG 
(COVID-
19)

Number of records in dataset 136 30
The average number of words in a query 8.07 10.4
Number of SELECT type queries 99 24
Number of COUNT type queries 12 0
Number of BOOLEAN type queries 25 6



1613Int. j. inf. tecnol. (March 2024) 16(3):1605–1615 

1 3

4  Results and analysis

In this section, we present an analysis of the development 
of knowledge graphs and the transformation of natural lan-
guage queries to SPARQL.

4.1  Analysis of X‑KG

In order to evaluate the effectiveness of the knowledge graph 
generation model, a thorough analysis has been carried out 
on a set of structural quality metrics that are relevant to the 
generated X-KG knowledge graphs. The evaluation of the 
knowledge graph’s structural quality is defined in the metrics 
outlined by [20], namely, 

1. Instantiated Class Ratio
2. Instantiated Property Ratio
3. Class Instantiation
4. Inverse Multiple Inheritance
5. Subclass Property Instantiation

Instantiated Class Ratio8 refers to the ratio of classes with 
instances among classes defined in the ontology. It is an 
indicator of how well the class of ontology is being used.

Instantiated Property Ratio8 refers to the ratio of prop-
erties actually used in RDF triplet among the properties 
defined in the ontology. It is an indicator of how well the 
properties of the ontology are actually being used.

Class Instantiation8 is a metric that assesses how much in 
detail classes are defined in the ontology and how much they 
are instantiated. For each class included in the knowledge 
graph, the class instantiation is calculated and summed to 
be used as an indicator representing the knowledge graph.

Inverse Multiple Inheritance8 evaluates the simplic-
ity of the knowledge graph. If multiple inheritance occurs 
frequently, in which a single class has numerous super-
classes, it might make it challenging to use the knowledge 
graph because of the complexity of the class relationship. 
Inverse multiple inheritance was devised to measure how 
little multiple inheritance appears. The average number of 
superclasses per class is computed to obtain the average 
multiple inheritance and take the reciprocal of it. Therefore, 
the higher the Inverse Multiple Inheritance, the simpler the 
knowledge graph is.

Subclass Property Instantiation8 quantifies how much the 
properties are used in the RDF triples when the properties 
of the subclass that are not in the superclass are defined in 
the ontology.

4.2  Analysis of NLQ to SPARQL translation

4.2.1  Dataset statistics

To evaluate the performance of the model, a specialized 
dataset was prepared.9 This dataset consists of a Natural 

Table 4  Results for the translation of NLQ to SPARQL on the cus-
tom Dataset for the Stock Market

Type Correctly gener-
ated

Total queries Accuracy

SELECT 91 99 91.91%
COUNT 12 12 100%
BOOLEAN 22 25 88%

Table 5  Results for the translation of NLQ to SPARQL on the cus-
tom Dataset for COVID-19 hospitalization data

Type Correctly gener-
ated

Total queries Accuracy

SELECT 22 24 91.91%
COUNT – – –
BOOLEAN 6 6 88%

Fig. 6  ROC curve for NLQ to SPARQL model

8 definitions taken from [20]
9 Datasets will be published subsequent to manuscript acceptance.
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Language Query (NLQ) and its corresponding SPARQL 
query, pertaining to both the stock market knowledge graph 
(X-KG) and the COVID-19 hospitalization knowledge 
graph (X-KG). The custom dataset statistics are described 
in Table 3.

4.2.2  Results of NLQ to SPARQL translation

Tables 4 and 5 serve to evaluate our model in address-
ing three distinct and elementary query types: SELECT, 
COUNT, and BOOLEAN. The results obtained demonstrate 
a significant level of accuracy across these categorizations. 
These discoveries, in aggregate, serve to highlight the 
robustness of our model’s aptitude in comprehending and 
converting NLQ to SPARQL. From the results above, we 
have noted that the NLQ to SPARQL conversion system 
sometimes fails to extract all entities from an input query, 
resulting in incorrect SPARQL query formation, which 
explains the accuracy in Tables 4 and 5. Also, in certain 
cases, the question identification misclassifies a SELECT-
type query to a COUNT-type query. For example, consider 
the query “How many employees work at Microsoft”, Even 
though this sounds like a COUNT-type query it is not. The 
correct query of SELECT-type, where “number of employ-
ees” is a property of the entity “Microsoft”.

From Fig. 6, we can infer that the AUC score for all the 
types of queries is >= 0.95, indicating a strong ability of 
our model to discriminate between the different query types.

5  Conclusion

In this research, a comprehensive workflow was presented 
for the creation of eXplicable Knowledge Graphs (X-KG) 
designed for explainable AI, alongside a system that facili-
tates natural language input translation to SPARQL queries, 
thereby enabling simplified search and retrieval. Throughout 
this research, we conducted experiments and evaluated the 
performance and effectiveness of the system. To evaluate the 
effectiveness of X-KG generation, we employed a few struc-
tural quality metrics and compared the generated X-KGs 
with other popular knowledge graphs. The results, as shown 
in Table 2, indicate that the X-KGs performed remarkably 
well across most metrics, albeit falling short in some areas 
such as Subclass Property Instantiation, which was mainly 
due to the utilization of lesser volumes of data. Furthermore, 
the NLQ to SPARQL translation was intended to facilitate 
the retrieval of data by non-technical users via simple one-
level queries. We evaluated its performance using a custom-
ized dataset curated for the X-KGs generated and found that 
it exhibits reasonable accuracy in generating single-level 
queries.

The future prospects of this study involve the integra-
tion of Natural Language translation for more complex 
SPARQL queries, resulting in an improved Q &A system 
for the X-KG.
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