
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (March 2024) 16(3):1605–1615
https://doi.org/10.1007/s41870-023-01692-y

ORIGINAL RESEARCH

Explicable knowledge graph (X‑KG): generating knowledge
graphs for explainable artificial intelligence and querying them
by translating natural language queries to SPARQL

Numair Shaikh1  · Tavishee Chauhan1 · Jayesh Patil1 ·
Sheetal Sonawane1

Received: 6 October 2023 / Accepted: 9 December 2023 / Published online: 21 January 2024
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2024

Abstract  Knowledge graphs represent a potent instrument
for the classification and exhibition of data, as they encom-
pass a systematic approach for the containment and retrieval
of multifarious datasets. In finance, the utilization of knowl-
edge graphs for the organization of company-oriented data
constitutes an invaluable source of insights, thus enabling
informed decision-making. In a parallel, knowledge graph
systems centered on COVID-19 within the healthcare sphere
may assist medical professionals in the making of resolute
choices. These applications highlight knowledge graphs’
ability to revolutionize decision-making procedures by pro-
viding a comprehensive comprehension of the given subject.
To tackle this, we propose a solution that begets and imple-
ments knowledge graphs in two separate domains: finance
and healthcare. To ensure the creation of explicable AI sys-
tems and improve the accessibility of information within
these knowledge graphs, we introduce the conversion of nat-
ural language queries into SPARQL queries. By fine-tuning
our model, we illustrate the system’s superior performance.
Furthermore, we appraise the adequacy of the constructed

knowledge graphs and contrast them with widely employed
alternatives. Our work accentuates the adaptability of the
proposed solution, as it can operate seamlessly with diverse
datasets requiring minimal modifications.

Keywords  Explainable artificial intelligence · Natural
language processing · Knowledge graphs · Query
translation · Q& A systems

1  Introduction

Recent research has exhibited remarkable success in utiliz-
ing Knowledge Graphs across various domains, particularly
in the realm of Explainable Artificial Intelligence (X-AI),
in order to augment transparency in complex systems. This
carries significant implications for fields such as finance
and healthcare. The rapid expansion of data across numer-
ous disciplines necessitates effective strategies for extract-
ing useful information. Informed decision-making requires
access to and retrieval of pertinent data, especially in critical
domains like healthcare and finance.

A Knowledge Graph refers to a semantic network of
real-world entities (objects, instances, principles, or events)
that illustrate relationships among them. For instance, con-
sider entities such as “Banana”, “Yellow”, and “Fruit”. The
relationships between them establish that a “Banana” is
both a variety of “Fruit” and is characterized by the attrib-
ute “Yellow”. This simplified Knowledge Graph demon-
strates how entities are interconnected via relationships and
attributes, facilitating a clear visualization of their associa-
tions. Explainable Artificial Intelligence (X-AI) is a branch
of Artificial Intelligence (AI) that strives to render the
decision-making process of AI models more comprehen-
sible and interpretable for humans. Traditional AI models,

N. Shaikh, T. Chauhan, J. Patil and S. Sonawane have
contributed equally to this work.

 *	 Numair Shaikh
	 numairsh77@gmail.com

	 Tavishee Chauhan
	 chauhantavi@gmail.com

	 Jayesh Patil
	 patiljayeshsunil@gmail.com

	 Sheetal Sonawane
	 sssonawane@pict.edu

1	 Department of Computer Engineering, SCTR’s Pune
Institute of Computer Technology, Dhankawdi, Pune,
Maharashtra 411043, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01692-y&domain=pdf
http://orcid.org/0009-0005-7718-9926

1606	 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

particularly deep learning algorithms, often function as
“black boxes”, making it difficult to discern how a given
input leads to a particular output. This system endeavors to
provide insights into why a particular decision was made,
particularly in vital domains such as healthcare, finance,
and legal systems. Numerous existing efforts concentrate
on rendering AI systems interpretable for specialists pos-
sessing machine learning and related fields expertise. These
specialists are capable of altering the mathematical func-
tions within complex algorithms to enhance their transpar-
ency. While this approach is effective for experts, it may not
be suitable for non-experts who lack technical proficiency.
In the context of X-AI, Knowledge Graphs offer an alter-
native, easier-to-understand technique than mathematical
function manipulation. Rather than delving into the inter-
nals of algorithms, Knowledge Graphs provide a means of
representing the underlying concepts and relationships that
AI systems utilize to make decisions. By this approach,
we aim to bridge the gap between how AI systems func-
tion and how humans comprehend complex information.
However, the querying of these knowledge graphs typically
necessitates technical expertise, as it requires the utilization
of query languages such as SPARQL (SPARQL Protocol
and RDF Query Language). SPARQL is a query language
specifically crafted to query RDF (Resource Descrip-
tion Framework) data, which is the foundation of knowl-
edge graphs. RDF, an acronym for Resource Description
Framework, is defined by the World Wide Web Consortium
(W3C) recommendation as a method for representing infor-
mation as a set of triples. Each triple comprises a subject, a
predicate, and an object. The subject is a Uniform Resource
Identifier (URI) that identifies a resource, the predicate is a
URI that describes the relationship between the subject and
the object. The object can be a value that is a URI, a literal,
or another RDF triple. SPARQL provides a standardized
and expressive syntax for the retrieval of data by leveraging
the underlying graph structure. Nonetheless, it can prove
to be quite challenging for non-technical users who lack
proficiency in query languages. To tackle the challenge of
effectively writing SPARQL queries, we offer the conver-
sion of natural language queries into SPARQL queries,
thereby bridging the gap between non-technical users and
the wealth of knowledge graphs content by streamlining
the data retrieval process. This enables a broader variety
of stakeholders to benefit from the insights offered by the
COVID-19 hospitalization data and the Stock Market data,
allowing users to engage with knowledge graphs using nat-
ural language.

This study outlines a methodology for the construction
of Knowledge Graphs and the answering of Natural Lan-
guage questions for both the stock market and COVID-19
hospitalization data, thereby improving model transpar-
ency and justifications for both domains.

2 � Literature review

This literature survey delves into the diverse methodologies
employed in knowledge graph construction and the transla-
tion of natural language queries to SPARQL.

2.1 � Construction of knowledge graph

Gupte et al. [1] introduced an attention-RNN and trans-
former (BERT) model to convert textual queries into
SPARQL “INSERT” queries for knowledge graph crea-
tion. The model was trained and evaluated on the DBpedia
dataset, yielding compelling outcomes. Wang et al. [2] in
their research, presented, a framework for constructing
COVID-19 lature knowledge graphs (KGs) and gener-
ating drug repurposing reports is proposed. The knowl-
edge graph is built by extracting fine-grained multimedia
knowledge elements (entities and their visual chemical
structures, relations, and events) from scientific literature.
The paper also explores a Q &A method over the knowl-
edge graph that extracts entities and generates a subgraph
covering paths between them. Kejriwal [3], in their book,
comprehensively cover all aspects of constructing knowl-
edge graphs for specific domains. The book encompasses
the entire knowledge graph construction process, from
data collection and cleaning to evaluation and deployment.
The authors explain that knowledge graphs are a power-
ful tool for representing and reasoning about knowledge
in a domain, and the construction process can be divided
into four steps: data collection and cleaning, knowledge
extraction, knowledge integration, and knowledge evalu-
ation. The authors explore rule-based, machine learn-
ing, and hybrid methods of knowledge graph creation. Li
et al. [4] present a systematic approach for constructing
a medical knowledge graph (KG) from electronic medi-
cal records (EMR). The process involves multiple steps,
such as entity recognition, relation extraction, and graph
embedding, using a novel quadruplet structure. The results
show how the knowledge graph constructed significantly
improves understanding of disease, disease classification,
and decision-making. Ye et al. [5] review recent pro-
gress in generative knowledge graph construction (KGC).
The paper comprises two main paradigms for generative
knowledge graph construction: relation extraction and
knowledge graph completion. Relation extraction meth-
ods focus on extracting new relations from textual data,
while knowledge graph completion methods focus on fill-
ing in missing triples in a knowledge graph. Results from
their research show that relation extraction methods are
generally more effective than knowledge graph completion
methods, however, knowledge graph completion methods
tend to be more scalable.

1607Int. j. inf. tecnol. (March 2024) 16(3):1605–1615	

1 3

2.2 � Translation of NLQ to SPARQL

Dubey et al. [6] proposed a framework, AskNow, a method-
ology for translating natural language queries into SPARQL.
The process involves normalizing the queries into an inter-
mediary canonical syntactic form, known as Normalized
Query Structure (NQS), which facilitates the identification
of the expected output information and the user-provided
input information, and establishes their mutual semantic rela-
tionship. Yin et al. [7] suggested an approach that involves
tokenizing and encoding the input queries, and then training
a neural machine translation (NMT) model to map the tokens
from the natural language queries to the tokens from the
SPARQL queries. However, this approach only supports the
“SELECT” type of queries and not other types. Bhajikhaye [8]
proposed using a tree LSTM model with a dependency parse
tree in English to classify the different query templates in
the LcQuad dataset. Word Disambiguation and Named Entity
Recognition (NER) were used to identify query entities, and
map them to the template using the Falcon 2.01 library, with
a specific focus on Wikidata. Ferré [9] proposed SPARKLIS,
which uses faceted search, entity linking, schema matching,
and query optimization to generate SPARQL queries. How-
ever, it is limited by the dataset of NLQs on which it was
trained and may not handle queries specific to other knowl-
edge graphs. Ochieng [10] proposed PAROT, which uses
dependency parsing to extract triples from natural language
questions, and then uses these triples to generate SPARQL
queries. The framework was evaluated on a dataset of simple
and complex natural language questions, and was found to be
able to translate 80% of the questions into correct SPARQL
queries. Finally, in their work, Chen et al. [11] employed a

two-stage Maximum Entropy Markov Model (MEMM) model
for entity type identification and RDF type identification to
generate SPARQL queries on the QALD2 dataset.

3 � Proposed methodology

In this section, we elaborate on the system’s ability to
effectively generate an eXplicable Knowledge Graph while
simultaneously extracting its constituent elements through
the usage of natural language queries (NLQ). The research
presented in this paper is divided into two distinct parts
(Fig. 1):

1.	 The development of a comprehensive eXplicable Knowl-
edge Graph (X-KG)

2.	 The conversion of natural language queries into
SPARQL queries.

3.1 � Overview of the datasets

The following section offers a brief overview of the data
employed for the purpose of constructing and training our
models.

3.1.1 � X‑KG generation dataset

The X-KG is created using a combination of two datasets,
namely

1.	 Stock Market data
2.	 COVID-19 Hospitalization data

Fig. 1   Architecture diagram of the proposed system

1  https://​falcon.​readt​hedocs.​io/​en/2.​0.0/​index.​html. 2  https://​github.​com/​Perev​alov/​qald_9_​plus.

https://falcon.readthedocs.io/en/2.0.0/index.html
https://github.com/Perevalov/qald_9_plus

1608	 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

Stock Market Data The Stock Market data utilized in this
study was sourced from a variety of online platforms such as
DBpedia3 and Crunchbase.4 It includes data on prominent IT
companies and banks, and is available in a range of formats
including RDF data, text and CSV files.

COVID-19 Hospitalization Data This data is sourced
from the Covid-19 hospitalization network, as documented
by [12]. The primary objective of the COVID-19 Hospi-
talization Surveillance Network (COVID-NET)5 is to con-
duct comprehensive surveillance of hospitalizations linked
to confirmed COVID-19 cases across various age groups,
encompassing both pediatric and adult populations.

3.1.2 � NLQ to SPARQL translation dataset

We have used the LcQuad6 dataset for the training and fine-
tuning of our models.

Algorithm 1   eXplicable-Knowledge Graph (X-KG)

Input: Classified model results
Output: Comprehensive knowledge graph

1: Start
2: Data Integration
3: Extract data from data source X, Y .
4: Integrate and map the knowledge to the given taxonomies (x1, x2, x3, .., xn) of X

data source and Y data source if required
5: if taxonomy in datasource : then X, Y
6: Pre-process the data
7: combine X, Y : (X ∈ Y)or(Y ∈ X)
8: Map relationships with ontologies (X ∪ Y)
9: Combine and map knowledge

10: Append the knowledge graph G
11: Post-processing the Sample S.
12: end if
13: End

3.2 � Generation of eXplicable Knowledge Graph
(X‑KG)

The knowledge graph comprises three essential components:
nodes, edges, and labels. It serves as a tool for end-users of
the system, as well as any individual, seeking to comprehend
the results obtained by the underlying system and connect
them with the possible reasons and justifications outlined
in the diagram. Furthermore, it enables the mapping and
elucidation of relationships with diverse ontologies. The
benefits of knowledge graph creation and implementation
are visualized in Fig. 2. The knowledge graph is developed
from multiple datasets from various sources, which need not
necessarily possess identical structures for X-KG implemen-
tation. The proposed knowledge graph is elaborated through
the use of algorithm 1. Subsequently, the requisite data is

Fig. 2   Sneak-peek into the eXplicable Knowledge Graph (X-KG)

3  https://​www.​dbped​ia.​org/.
4  https://​www.​crunc​hbase.​com/.
5  https://​www.​cdc.​gov/​coron​avirus/​2019-​ncov/​covid-​data/​covid-​net/​
purpo​se-​metho​ds.​html.
6  https://​github.​com/​AskNo​wQA/​LC-​QuAD.

https://www.dbpedia.org/
https://www.crunchbase.com/
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html
https://github.com/AskNowQA/LC-QuAD

1609Int. j. inf. tecnol. (March 2024) 16(3):1605–1615	

1 3

extracted from the desired source and mapped to the applica-
ble data source taxonomy. The details of constructing X-KG
are represented mathematically in Eq. 1.

In Eq. 1, f (k) is the summation of elements in the data
source X and Y  , such that elements of data source X belong
to elements of data source Y so that a relationship can be
built across with ontologies.

While, from Eq. 2, G represents the knowledge graph,
f (X(x1, x2, .., xn) + Y(y1, y2, .., yn)) creates a function for data
integration. k(X ∪ Y) represents the mapping of knowledge
function with original sources. The �(S) is for examining the
sample S and its post-processing, where we identify areas
requiring manual intervention.

3.3 � Translation of NLQ to SPARQL query

This section delves into the translation process of natural lan-
guage queries to SPARQL queries, thereby bridging the gap
between non-technical users and the vast knowledge graphs’
content. This streamlined data retrieval process enables a
broader range of stakeholders to gain insights offered by
the X-KG, allowing users to interact with knowledge graphs
through natural language. The flexibility of our approach is a
primary motivation behind this research, as it can be effort-
lessly implemented for different types of knowledge graphs
with minor adjustments to the training dataset. The benefits
of converting natural language queries into SPARQL queries
can be utilized in various domains outside the healthcare and
stock market (finance), which are the primary areas of focus
in this research, thanks to the versatility offered. Our system

(1)f (k) ∶

n∑

x,y=1

(X ∈ Y|Y ∈ X)

(2)
G = f (X(x1, x2, .., xn) + Y(y1, y2, .., yn))

+k(X ∪ Y) + �(S)

integrates domain-specific training data to comprehend the
distinct structure and language of various knowledge graphs,
enabling it to be efficient and applicable in a variety of set-
tings. Moreover, our solution’s potential impact is amplified
by its adaptability to the data retrieval needs of different
businesses and disciplines, thereby increasing knowledge
graphs’ accessibility and usability. This work concentrates
on simple (single-level) SPARQL queries.

The process of transforming Natural Language Input into
SPARQL Queries entails a significant contribution that can
be succinctly summarized in the following series of steps:

1.	 Identification of question/query type.
2.	 Extraction of Entities from input query.
3.	 Fuzzy matching of the Entities extracted.
4.	 Formation of triplets and SPARQL query generation.

A visual representation of the entire pipeline for NLQ to
SPARQL can be seen in Fig. 3.

3.3.1 � Identification of question/query type

The initial aspect of the system involves recognizing the
types of questions to ensure efficient query classification. In
this study, we have concentrated on three specific categories
of labeling for classification.

1.	 SELECT
2.	 COUNT
3.	 BOOLEAN (Yes/No)

The LcQuaD dataset comprises an extensive compilation of
questions and corresponding answers, with each question
being linked to a SPARQL query. The SPARQL queries in
the LcQuad dataset are divided into three categories, namely
SELECT, COUNT, and BOOLEAN. To classify the queries,
we generate labels based on the type of SPARQL query used
for a specific question. To modify the dataset, we introduce

Fig. 3   Architecture diagram for Translation of NLQ to SPARQL

1610	 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

a label column that is assigned type 2 if the SPARQL query
contains the term “BOOLEAN”. Similarly, if the SPARQL
query contains the term “COUNT”, we assign type 1 to the
label column. If neither term is present in the query, the label
column is marked as type 0. Prior to model training, the
subsequent pre-processing measures are implemented upon
the textual data to improve the caliber and effectiveness of
the ensuing analysis.

1.	 White Space Removal.
2.	 Converting text to Lowercase
3.	 Stemming and Lemmatization

By implementing these preprocessing measures, the textual
data is standardized, extraneous words are eliminated, and
words are converted to their fundamental or core forms.

To classify triplet entities, we utilize and compare vari-
ous models including RandomForestClassifier [13], Sup-
port Vector Machines (SVM) [14], and XGBoost [15]. In
addition, we have attempted to incorporate State-of-The-Art
(SoTA) deep learning models such as BERT [16] for classi-
fication purposes. For classical machine learning algorithms
like RandomForestClassifier, SVM, and XGBoost, a critical
step in preparing the data for training the models is vectori-
zation. Vectorization involves converting textual data into
numerical representations, which can be processed by these
algorithms. In our approach, we utilized the TF-IDF [17]
vectorizer for this task. We conducted an experimental study
utilizing the state-of-the-art (SoTA) model, DistilBERT [18],
which is a lightweight variant of the SoTA model, BERT,
in order to compare it with other models. Unlike traditional
approaches that involve the use of the TF-IDF vectorizer,

SoTA models such as DistilBERT employ advanced tech-
niques like tokenization and attention mechanisms to pro-
cess input text. The built-in tokenizer is utilized to produce
input IDs and attention masks, which effectively capture
the information and structure of the text, rendering external
vectorization methods unnecessary. This methodology har-
nesses the power of pre-trained language models to capture
semantic meaning and contextual relationships within the
text, thereby obviating the need for explicit vectorization
using TF-IDF. In Table 1, using the LcQuad dataset, we
compare the performance of various classification models
for predicting question types. From the information pre-
sented in Table 1, it can be deduced that the SoTA model,
DistilBERT, has demonstrated a noteworthy level of preci-
sion in achieving the classification objective at hand. As a
result, we have opted to utilize DistilBERT as our model for
the identification of question types.

3.3.2 � Extraction of entities from input query

In this step, a pipeline for Named Entity Recognition (NER)
is executed. To augment its efficacy and address our specific
requirements, we have trained this model using a personal-
ized dataset. Our customized dataset will comprise the antic-
ipated question types for a certain knowledge graph, in addi-
tion to all the subject, predicate, and object entities marked.
In the NER pipeline, three pivotal phases are involved:

1.	 Pre-Processing
2.	 Dependency Parsing
3.	 Entity Extraction

The NER pipeline is depicted in Fig. 4, which visualizes the
operations executed in every phase.

Pre-Processing In this step, the pipeline performs various
preprocessing steps to obtain a clean textual query, such as

1.	 Tokenization
2.	 Lemmatization
3.	 Stop Word Removal

Table 1   Comparison of supervised classification models for question
type classification

Model name Accuracy Precision Recall

Decision Tree 92.0 84.75 84.90
SVC 91.8 87.80 83.76
XGBoost 92.40 86.26 85.32
DistilBERT (SoTA) 99.76 99.68 99.60

Fig. 4   Named entity recognition pipeline

1611Int. j. inf. tecnol. (March 2024) 16(3):1605–1615	

1 3

Dependency Parsing Dependency Parsing constitutes a
crucial step in the context of Named Entity Recognition
(NER) as it facilitates the identification of the contextual
significance of a word. Specifically, if a word is dependent
on a verb, it is more likely to be a noun. This step entails
the acquisition of knowledge pertaining to diverse linguis-
tic features and patterns, thereby enabling the production
of accurate predictions concerning the syntactic relation-
ships among the constituent words in a sentence. To perform
Dependency Parsing, we employ spaCy7’s neural network
transition-based parser. This approach to dependency pars-
ing involves the prediction of a sequence of parsing actions
that collectively construct a dependency tree for a given sen-
tence. These actions may entail the shifting of the next word
onto the stack, the creation of a dependency between words,
or the reduction of words from the stack. Subsequently, the
model acquires the ability to predict the most appropriate
action at each parsing step based on the current state of the
stack, buffer, and previously generated dependencies. This
stage provides valuable information regarding the grammati-
cal structure of a sentence and the syntactic relationships
between the constituent words. This contextual knowledge
proves useful in determining the boundaries of named enti-
ties during the NER step.

Entity Extraction This step is further divided into two
steps:

1.	 Conversion of Input into Word Vectors.
2.	 Sequence Labelling using Conditional Random Fields

(CRF) Model

In the initial stage, the input text undergoes a conversion
process to produce the corresponding Word Embedding.
These embeddings are compact and reduced-dimensional
representations of words that effectively capture both seman-
tic and syntactic similarities among them. To achieve this
conversion, pre-trained models such as Word2Vec are uti-
lized. The output of this first step, which is a dense vector,
is subsequently employed as input to the CRF Model. The

CRF model, as described in the work of [19], is utilized for
the purpose of labeling words/sequences. Specifically, this
model is highly effective in the task of Named Entity Recog-
nition (NER), which entails the identification and classifica-
tion of named entities. By integrating Dense Vectors into the
CRF model, the model is able to learn and harness semantic
information about words, thus enhancing its ability to accu-
rately identify entities based on their contextual meaning.

3.3.3 � Fuzzy entity matching

Upon extraction of the Entities from the Input text, our
approach employs the utilization of fuzzy matching to cor-
respond the Extracted Entities with the data housed within
our Knowledge Graph (X-KG) database. Fuzzy matching is
a technique that facilitates the comparison of strings for the
purpose of determining their similarity, even in the pres-
ence of minor deviations or variations within the text. This
process is further partitioned into three sub-steps, namely:

1.	 Pre-Processing of Text
2.	 Determining the Longest Common Subsequence
3.	 Generating the Similarity Score

The Fuzzy Entity Mapping process, together with the opera-
tions conducted, is illustrated in Fig. 5.

Pre-Processing Prior to comparison, we perform vari-
ous preliminary preprocessing activities on the input. These
activities encompass converting the strings to lowercase,
removing leading/trailing white spaces, and eliminating
duplicate spaces.

Longest Common SubSequence The utilization of the
longest common subsequence algorithm, which leverages
dynamic programming, enables the discovery of the long-
est common substring (LCS) between the input sequences.

Generating Similarity Score Similarity score is generated
by using the longest common subsequence obtained.

It can be mathematically represented as

Fig. 5   Fuzzy entity mapping of extracted entities with X-KG data

7  https://​spacy.​io/.

https://spacy.io/

1612	 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

Where s1 and s2 are the strings for which the similarity score
is to be calculated. LCS(s1, s2) is the function to calculate
the longest common subsequence for two strings s1 and s2.

To identify the most appropriate RDF entity from the
knowledge graph, a meticulous process of type iteration is
undertaken. This is essential as there exists three distinct
types of entities, namely Subject, Predicate, and Object.
Each of these types of entities is meticulously stored in three
segregated lists. The iteration process involves a thorough
assessment of these lists while simultaneously computing
the similarity score. This computation can be mathemati-
cally represented as follows. Let, R is the set of RDF entities
belonging to a particular type. E be the entity of the same
type, extracted from the natural language query. S be the
similarity score calculated for each entity Ri in R with E .
The candidate entity C for the query can be determined by
selecting the entity with the highest similarity score amongst
the set R.

Where, argmaxRi∈R
 returns the entity Ri ∈ R that maximizes

the function, S(Ri,E) which is the similarity score between
the entity Ri from the knowledge graph and the extracted
entity E from the query. This similarity score is calculated
by using Eq. 3.

When there exist several entities within the knowledge
graph that share the identical entity type as E and also
possess the highest degree of similarity, designated as the
maximum score (max), all such entities possessing equiva-
lent maximum scores are taken into account during query
generation. Consequently, numerous queries that relate to
the same user query are produced. This process is reiterated
until all the extracted entities have been linked with the data
obtained from the underlying Knowledge Graph Database.

3.3.4 � SPARQL triplet generation

Upon the extraction of entities from the sentence, mapping
them to their respective components of the SPARQL query

(3)S(s1, s2) =
LCS(s1, s2)

len(s1) + len(s2)

(4)C = argmax
Ri∈R

S(Ri,E)

triplet can be accomplished. In the event that any of these
components are absent, the utilization of placeholders (such
as “?subject” or “?object”), within the SPARQL query is
permissible, thereby enabling more versatile querying pat-
terns. To illustrate, consider the query “Who is the CEO
of Microsoft”. The entities extracted from this query are
“CEO” and “Microsoft”, where “CEO” is categorized as
PROPERTY and “Microsoft” as SUBJECT. Subsequently,
both extracted entities are mapped to their corresponding
RDF entities within the knowledge graph, thereby generat-
ing the triplet {<ns:microsoft <np:chief_executive_officer>
?object}, where “?object” is the missing entity. By merg-
ing the extracted entities with appropriate SPARQL syntax
(e.g., using angle brackets to indicate RDF resources), a
valid SPARQL triplet is generated to showcase the desired
semantic relationship between the entities. During this stage,
the question type that was extracted is utilized to construct
the initial part of the query, which includes (SELECT *,
SELECT COUNT(?a) as ?count, ASK). Moreover, the
extracted entities are employed to produce the SPARQL
query triplets (subject, object, predicate), which represent
semantic relationships between the entities. It is plau-
sible that one or more of these triplets may be absent, in
which case the missing attribute is then returned within the
SELECT or the COUNT query. While the formed triplet is
provided inside the WHERE block.

Table 2   Comparison of
the structural quality metric
evaluations for the knowledge
graphs generated by X-KG and
other popular knowledge graphs

Metric X-KG (Stock
Market)

X-KG (COVID-19
Hospitalization)

Raftel Wikidata Google KG

Instantiated class ratio 0.928 1 0.941 0.004 0.099
Instantiated class ratio 0.934 0.228 1 1 0.660
Class Instantiation 1 0.577 0.941 0.716 0.660
Inverse Multiple Inheritance 1 0.400 0.975 0.962 0.952
Subclass Property Instantiation 0 0.115 0.0857 0.0133 0

Table 3   Dataset statistics for translation of NLQ to SPARQL for the
Stock Market and the COVID-19 hospitalization custom datasets

Parameter X-KG Stock X-KG
(COVID-
19)

Number of records in dataset 136 30
The average number of words in a query 8.07 10.4
Number of SELECT type queries 99 24
Number of COUNT type queries 12 0
Number of BOOLEAN type queries 25 6

1613Int. j. inf. tecnol. (March 2024) 16(3):1605–1615	

1 3

4 � Results and analysis

In this section, we present an analysis of the development
of knowledge graphs and the transformation of natural lan-
guage queries to SPARQL.

4.1 � Analysis of X‑KG

In order to evaluate the effectiveness of the knowledge graph
generation model, a thorough analysis has been carried out
on a set of structural quality metrics that are relevant to the
generated X-KG knowledge graphs. The evaluation of the
knowledge graph’s structural quality is defined in the metrics
outlined by [20], namely,

1.	 Instantiated Class Ratio
2.	 Instantiated Property Ratio
3.	 Class Instantiation
4.	 Inverse Multiple Inheritance
5.	 Subclass Property Instantiation

Instantiated Class Ratio8 refers to the ratio of classes with
instances among classes defined in the ontology. It is an
indicator of how well the class of ontology is being used.

Instantiated Property Ratio8 refers to the ratio of prop-
erties actually used in RDF triplet among the properties
defined in the ontology. It is an indicator of how well the
properties of the ontology are actually being used.

Class Instantiation8 is a metric that assesses how much in
detail classes are defined in the ontology and how much they
are instantiated. For each class included in the knowledge
graph, the class instantiation is calculated and summed to
be used as an indicator representing the knowledge graph.

Inverse Multiple Inheritance8 evaluates the simplic-
ity of the knowledge graph. If multiple inheritance occurs
frequently, in which a single class has numerous super-
classes, it might make it challenging to use the knowledge
graph because of the complexity of the class relationship.
Inverse multiple inheritance was devised to measure how
little multiple inheritance appears. The average number of
superclasses per class is computed to obtain the average
multiple inheritance and take the reciprocal of it. Therefore,
the higher the Inverse Multiple Inheritance, the simpler the
knowledge graph is.

Subclass Property Instantiation8 quantifies how much the
properties are used in the RDF triples when the properties
of the subclass that are not in the superclass are defined in
the ontology.

4.2 � Analysis of NLQ to SPARQL translation

4.2.1 � Dataset statistics

To evaluate the performance of the model, a specialized
dataset was prepared.9 This dataset consists of a Natural

Table 4   Results for the translation of NLQ to SPARQL on the cus-
tom Dataset for the Stock Market

Type Correctly gener-
ated

Total queries Accuracy

SELECT 91 99 91.91%
COUNT 12 12 100%
BOOLEAN 22 25 88%

Table 5   Results for the translation of NLQ to SPARQL on the cus-
tom Dataset for COVID-19 hospitalization data

Type Correctly gener-
ated

Total queries Accuracy

SELECT 22 24 91.91%
COUNT – – –
BOOLEAN 6 6 88%

Fig. 6   ROC curve for NLQ to SPARQL model

8  definitions taken from [20]
9  Datasets will be published subsequent to manuscript acceptance.

1614	 Int. j. inf. tecnol. (March 2024) 16(3):1605–1615

1 3

Language Query (NLQ) and its corresponding SPARQL
query, pertaining to both the stock market knowledge graph
(X-KG) and the COVID-19 hospitalization knowledge
graph (X-KG). The custom dataset statistics are described
in Table 3.

4.2.2 � Results of NLQ to SPARQL translation

Tables 4 and 5 serve to evaluate our model in address-
ing three distinct and elementary query types: SELECT,
COUNT, and BOOLEAN. The results obtained demonstrate
a significant level of accuracy across these categorizations.
These discoveries, in aggregate, serve to highlight the
robustness of our model’s aptitude in comprehending and
converting NLQ to SPARQL. From the results above, we
have noted that the NLQ to SPARQL conversion system
sometimes fails to extract all entities from an input query,
resulting in incorrect SPARQL query formation, which
explains the accuracy in Tables 4 and 5. Also, in certain
cases, the question identification misclassifies a SELECT-
type query to a COUNT-type query. For example, consider
the query “How many employees work at Microsoft”, Even
though this sounds like a COUNT-type query it is not. The
correct query of SELECT-type, where “number of employ-
ees” is a property of the entity “Microsoft”.

From Fig. 6, we can infer that the AUC score for all the
types of queries is >= 0.95, indicating a strong ability of
our model to discriminate between the different query types.

5 � Conclusion

In this research, a comprehensive workflow was presented
for the creation of eXplicable Knowledge Graphs (X-KG)
designed for explainable AI, alongside a system that facili-
tates natural language input translation to SPARQL queries,
thereby enabling simplified search and retrieval. Throughout
this research, we conducted experiments and evaluated the
performance and effectiveness of the system. To evaluate the
effectiveness of X-KG generation, we employed a few struc-
tural quality metrics and compared the generated X-KGs
with other popular knowledge graphs. The results, as shown
in Table 2, indicate that the X-KGs performed remarkably
well across most metrics, albeit falling short in some areas
such as Subclass Property Instantiation, which was mainly
due to the utilization of lesser volumes of data. Furthermore,
the NLQ to SPARQL translation was intended to facilitate
the retrieval of data by non-technical users via simple one-
level queries. We evaluated its performance using a custom-
ized dataset curated for the X-KGs generated and found that
it exhibits reasonable accuracy in generating single-level
queries.

The future prospects of this study involve the integra-
tion of Natural Language translation for more complex
SPARQL queries, resulting in an improved Q &A system
for the X-KG.

Acknowledgements  All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

The authors have no financial or proprietary interests in any mate-
rial discussed in this article.

Author Contributions  All authors have contributed equally in this
work.

Funding  The authors acknowledge that no external funding was
received for this research.

Availability of supporting data  On acceptance of this manuscript,
datasets used, and source code will be made available.

Declarations 

Conflict of interest  The authors have no competing interests to de-
clare that are relevant to the content of this article.

Ethical approval  Not applicable

References

	 1.	 Gupte A, Sapre S, Sonawane S (2021) Knowledge graph genera-
tion from text using neural machine translation techniques. In:
2021 International Conference on Communication information
and Computing Technology (ICCICT), pp 1–8, https://​doi.​org/​
10.​1109/​ICCIC​T50803.​2021.​95101​64

	 2.	 Wang Q, Li M, Wang X, et al (2021) COVID-19 literature knowl-
edge graph construction and drug repurposing report generation.
In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies: Demonstrations. Association for Compu-
tational Linguistics, Online, pp 66–77, https://​doi.​org/​10.​18653/​
v1/​2021.​naacl-​demos.8

	 3.	 Kejriwal M (2019) Domain-specific knowledge graph construc-
tion. Springer. https://​doi.​org/​10.​1007/​978-3-​030-​12375-8

	 4.	 Li L, Wang P, Yan J et al (2020) Real-world data medical knowl-
edge graph: construction and applications. Artificial Intelligence
in Medicine 103:101817 https://​doi.​org/​10.​1016/j.​artmed.​2020.​
101817, www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0933​36571​
93095​46

	 5.	 Ye H, Zhang N, Chen H, et al (2022) Generative knowledge graph
construction: A review. In: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates,
pp 1–17, https://​doi.​org/​10.​18653/​v1/​2022.​emnlp-​main.1

	 6.	 Dubey M, Dasgupta S, Sharma A, et al (2016) Asknow: A frame-
work for natural language query formalization in sparql. In:
The Semantic Web. Latest Advances and New Domains: 13th

https://doi.org/10.1109/ICCICT50803.2021.9510164
https://doi.org/10.1109/ICCICT50803.2021.9510164
https://doi.org/10.18653/v1/2021.naacl-demos.8
https://doi.org/10.18653/v1/2021.naacl-demos.8
https://doi.org/10.1007/978-3-030-12375-8
https://doi.org/10.1016/j.artmed.2020.101817
https://doi.org/10.1016/j.artmed.2020.101817
http://www.sciencedirect.com/science/article/pii/S0933365719309546
http://www.sciencedirect.com/science/article/pii/S0933365719309546
https://doi.org/10.18653/v1/2022.emnlp-main.1

1615Int. j. inf. tecnol. (March 2024) 16(3):1605–1615	

1 3

International Conference, ESWC 2016, Heraklion, Crete, Greece,
May 29–June 2, 2016, Proceedings 13, Springer, pp 300–316

	 7.	 Yin X, Gromann D, Rudolph S (2021) Neural machine translat-
ing from natural language to sparql. Futur Gener Comput Syst
117:510–519

	 8.	 Bhajikhaye SS (2021) Translating natural language queries to
sparql. Master’s thesis, San Jose State University, https://​doi.​org/​
10.​31979/​etd.​54xm-​q833, https://​schol​arwor​ks.​sjsu.​edu/​etd_​proje​
cts/​989

	 9.	 Ferré S (2017) Sparklis: An expressive query builder for sparql
endpoints with guidance in natural language. Semantic Web
8(3):405–418. https://​doi.​org/​10.​3233/​SW-​150208

	10.	 Ochieng P (2020) Parot: Translating natural language to sparql.
Expert Systems with Applications: X 5:100024 https://​doi.​org/​10.​
1016/j.​eswax.​2020.​100024, www.​scien​cedir​ect.​com/​scien​ce/​artic​
le/​pii/​S2590​18852​03000​32

	11.	 Chen YH, Lu EJL, Ou TA (2021) Intelligent sparql query gen-
eration for natural language processing systems. IEEE Access
9:158638–158650 https://​doi.​org/​10.​1109/​ACCESS.​2021.​31306​
67, https://​ieeex​plore.​ieee.​org/​docum​ent/​96271​28

	12.	 Delahoy MJ, Ujamaa D, Whitaker M et al (2021) Hospitalizations
associated with covid-19 among children and adolescents-covid-
net, 14 states, march 1, 2020-august 14, 2021. Morb Mortal Wkly
Rep 70(36):1255

	13.	 Breiman L (2001) Random forests. Mach Learn 45(1):5–32.
https://​doi.​org/​10.​1023/A:​10109​33404​324

	14.	 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297. https://​doi.​org/​10.​1007/​BF009​94018

	15.	 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting
system. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. Associa-
tion for Computing Machinery, New York, NY, USA, KDD ’16,
p 785-794, https://​doi.​org/​10.​1145/​29396​72.​29397​85

	16.	 Devlin J, Chang MW, Lee K, et al (2019) BERT: Pre-training of
deep bidirectional transformers for language understanding. In:
Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Associa-
tion for Computational Linguistics, Minneapolis, Minnesota, pp
4171–4186, https://​doi.​org/​10.​18653/​v1/​N19-​1423

	17.	 Ramos JE (2003) Using tf-idf to determine word relevance in
document queries. https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​
14638​345

	18.	 Sanh V, Debut L, Chaumond J, et al (2019) Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR
abs/1910.01108. arXiv:​1910.​01108

	19.	 Lafferty JD, McCallum A, Pereira FCN (2001) Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In: Proceedings of the Eighteenth International
Conference on Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, ICML ’01, p 282–289

	20.	 Seo S, Cheon H, Kim H, et al (2022) Structural quality metrics to
evaluate knowledge graphs. version 2, arXiv:​2211.​10011

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.31979/etd.54xm-q833
https://doi.org/10.31979/etd.54xm-q833
https://scholarworks.sjsu.edu/etd_projects/989
https://scholarworks.sjsu.edu/etd_projects/989
https://doi.org/10.3233/SW-150208
https://doi.org/10.1016/j.eswax.2020.100024
https://doi.org/10.1016/j.eswax.2020.100024
http://www.sciencedirect.com/science/article/pii/S2590188520300032
http://www.sciencedirect.com/science/article/pii/S2590188520300032
https://doi.org/10.1109/ACCESS.2021.3130667
https://doi.org/10.1109/ACCESS.2021.3130667
https://ieeexplore.ieee.org/document/9627128
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:14638345
https://api.semanticscholar.org/CorpusID:14638345
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2211.10011

	Explicable knowledge graph (X-KG): generating knowledge graphs for explainable artificial intelligence and querying them by translating natural language queries to SPARQL
	Abstract
	1 Introduction
	2 Literature review
	2.1 Construction of knowledge graph
	2.2 Translation of NLQ to SPARQL

	3 Proposed methodology
	3.1 Overview of the datasets
	3.1.1 X-KG generation dataset
	3.1.2 NLQ to SPARQL translation dataset

	3.2 Generation of eXplicable Knowledge Graph (X-KG)
	3.3 Translation of NLQ to SPARQL query
	3.3.1 Identification of questionquery type
	3.3.2 Extraction of entities from input query
	3.3.3 Fuzzy entity matching
	3.3.4 SPARQL triplet generation

	4 Results and analysis
	4.1 Analysis of X-KG
	4.2 Analysis of NLQ to SPARQL translation
	4.2.1 Dataset statistics
	4.2.2 Results of NLQ to SPARQL translation

	5 Conclusion
	Acknowledgements
	References

