Int. j. inf. tecnol. (April 2024) 16(4):2379-2394
https://doi.org/10.1007/s41870-023-01685-x

Check for
updates

ORIGINAL RESEARCH

A novel approach to optimizing transaction processing rate
and space requirement of blockchain via off-chain architecture

Saha Reno!
Marzia Khan Turna®

- Sadia Hossain Priya' - G. M. Abdullah Al-Kafi' - Sheikh Tasfia® -

Received: 19 July 2023 / Accepted: 4 December 2023 / Published online: 6 January 2024
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2024

Abstract In the realm of blockchain technology, public
ledgers such as Bitcoin face significant challenges in terms
of throughput enhancement and addressing the massive
space requirements. This paper presents a novel approach
to tackle these issues by employing a decentralized peer-to-
peer (P2P) file distribution and a newly introduced strategy
known as the Twin-Ledger architecture. By utilizing the
P2P-based file management and minimal storage needs of
the content reference, along with the proposed Twin-Ledger
framework described in this research, we efficiently solve the
scalability problems. Our system allows for the integration
of any consensus mechanism, but we specifically utilize the
Proof-of-Work consensus to preserve both scalability and
decentralization without compromising security. This inno-
vative approach paves the way for broader adoption of block-
chain technology across various industries, as it efficiently

P4 Saha Reno
reno.saha39 @gmail.com

Sadia Hossain Priya
sadiahossainpriyal 26 @ gmail.com

G. M. Abdullah Al-Kafi
kaficsebaiust02 @ gmail.com

Sheikh Tasfia
sheikhtasfia0602 @ gmail.com

Marzia Khan Turna
marziakhanturna@ gmail.com

Department of Computer Science and Engineering,
Bangladesh Army International University of Science
and Technology (BAIUST), Cumilla, Bangladesh

Department of Computer Science and Engineering, Northern
University Bangladesh (NUB), Dhaka, Bangladesh

Department of Computer Science and Engineering, Indiana
University Perdue University Indianapolis (IUPUI),
Indianapolis, IN, USA

tackles the throughput and storage challenges associated
with public blockchains. In our experimental results, we
demonstrate that our system can store nearly 22,000 trans-
actions in a 3.4 MB-sized block, achieving a TPS of 32 on
average, which can be significantly increased by extending
the original block size without imposing any storage burden.

Keywords
Twin-Ledger

Blockchain - Scalability - IPFS - Off-Chain -

1 Introduction

Blockchain is a decentralized, distributed digital ledger used
to record assets or transactions in an irrevocable manner. It
is designed for real-world applications where conventional
systems fail to provide quick security, as transactions are
cryptographically secured and robust security is supplied
by its powerful consensus protocol. Compared to existing
methods, blockchain promises higher efficiency, accuracy,
and safety for governmental, public, and social services.
Blockchain can be divided into three generations depend-
ing on its applicability and mode of use: Blockchain 1.0,
2.0, and 3.0 [19]. The first generation, including cryptocur-
rencies such as Bitcoin and Litecoin, is the most well-known
and widespread [14]. The second generation uses smart
contracts in various decentralized applications (DApps),
including crowdfunding, autonomous organizations, land
management, philanthropy, and more [17]. Third-generation
applications involve the interaction of blockchain with the
physical world, using the Internet of Things (IoT) for deploy-
ment in public sectors and industry [18].

To harness the potential of blockchain for second and third-
generation applications, throughput enhancement and address-
ing massive storage requirements are crucial. Scalability, in

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01685-x&domain=pdf
http://orcid.org/0000-0003-1897-9002

2380

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

the context of distributed networks like blockchain, refers to
the ability to handle a large number of transactions in a short
period [11]. To increase the throughput of any blockchain-
based system, more transactions must be stored in each block,
requiring an increase in block size [10]. However, this causes
storage bloating and slows down the processing rate over
time as it takes longer to broadcast a specific block on the
network for verification and storage [21]. Furthermore, the
blockchain’s total size grows to the point where a newly joined
node struggles to replicate the entire ledger into its system
[22]. For instance, the size of the Bitcoin blockchain, at the
end of 2021, was about 386 GB, and any user interested in
joining this network must download the entire ledger, which
took nearly 240 h on average [6].

In this paper, we propose an off-chain solution to enhance
throughput and address storage requirements in public
blockchains by utilizing the InterPlanetary File System
(IPFS), a distributed, peer-to-peer network-based data shar-
ing and storage service. The key contributions of our work
are as follows:

e All validated transactions are stored in IPFS (off-chain),
and a Content Identifier (CID) of only 46 Bytes is gen-
erated. Since this CID is much smaller in size than the
actual transactions, storing CIDs in the ledger (on-chain)
instead of the raw transactions results in a significantly
higher number of transactions per block.

e We introduce a new Twin-ledger strategy that maintains
two distinct ledgers, both off-chain and on-chain. The
Actual Block, which contains all raw transactions, is
stored off-chain, and its size varies according to the num-
ber of transactions stored within it. After uploading this
Actual Block to IPFS and receiving a CID, a new block
called final block is generated, with a size of approxi-
mately 290 KB. The final block, which is much smaller
than the Actual Block, only stores the 46-Byte CID of
the Actual Block. The network holds and distributes this
final block, eliminating the storage bloating issue.

e To ensure security without compromising throughput
and storage capabilities, we develop our system using a
public and permissionless blockchain. A large number of
nodes, including miners, contribute to the decentraliza-
tion and security features of our system. We employ a
combination of Proof-of-Work and Nakamoto Consen-
sus Rules to increase the network’s security against the
concerns to which private blockchains are prone, even
though our system supports any consensus technique.

2 Literature review

Various strategies have been employed by research-
ers to address the issues of scalability, security, and

@ Springer

decentralization in blockchain technology. These include
techniques such as sharding, parallel processing, off-chain
solutions, hardware-supported mechanisms, micro-payment
channels, and novel consensus approaches. As a result,
blockchain protocols can be classified into the aforemen-
tioned categories. While these methods strive to strike a
balance between throughput, storage bloat, security, and
decentralization, each approach comes with its constraints
in effectively addressing all these challenges simultaneously.
Table 1 delivers a comprehensive review of established
blockchain systems, emphasizing their contributions, out-
comes, and associated limitations.

In summary, the present work diverges significantly
from the aforementioned literature by addressing two car-
dinal challenges in public blockchain systems: throughput
and storage. Unlike Payment Channel Networks, Micropay-
ment Channels and other traditional systems reviewed in this
section which largely concentrate on increasing transaction
speed but offer little in the way of reducing storage require-
ments, our proposed model enhances the throughput and
substantially reduces on-chain data storage needs through
the use of a lightweight 46-Byte Content Identifier (CID) at
the same time. It is also noticeable that most of the reviewed
works fail to deliver a robust security due to the enhance-
ment of scalability. As IPFS works in a similar approach
like blockchain and torrent, where the transactions remain
secured due to its decentralized nature, and the utilization
of proof-of-work does not hamper the throughput advance-
ment, our system also guarantees a strong defense against
adversarial attacks; which is not achievable in the existing
works discussed above. Furthermore, the architecture is con-
structed on a public, permissionless blockchain, thus provid-
ing a high degree of decentralization and security. Notably,
our system is designed to work with any consensus method,
making it flexible for future changes. Therefore, it is inevita-
ble that our approach offers a holistic solution to the limita-
tions commonly cited in existing blockchain technologies
and contributes a significant advancement to the field.

3 System overview

In this section, we briefly introduce our system before div-
ing into a detailed explanation for each of the sub-steps.
To make it easier to understand, we present the proposed
system’s overview with a focus on its impact on enhancing
throughput and minimizing space requirements.

3.1 Utilizing CID for enhancing throughput
In cryptocurrencies like Bitcoin, blocks composed of vali-

dated transactions are approximately 1 MB in size. The num-
ber of transactions that can be added to a block is limited by

2381

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

INOO0 UEBD SYIOJ PUE ‘UOTIEPI[eA
yjed 10J SOpou Jo Ioquunu JuedyIugIs © saImbar i
PaSSaIppe 10U SI J[qe[TIeARUN
SOW099q JAUTW SII UYM 23Uel 2dUoU dY192ds € Jo
Q)BJ 9} PUB ‘PajOAUUOISIP SAW0Iaq JO S[Te} JoSeueur
300[q 9y} J1 1ndd0 Aewr aInfrej jo jurod J[3uIs v

SUONENIIS PEO[IAAO JUI[pURY SE Yons ‘So3ud]
-[eyo passaippeun yiim 1doouo)-Jo-Jooid e surewal jj

u31Sop JI0MmIdU

[ennau A[qeaoid € 9A9IyOR 0) 2INJONISLIJUT SUDMIOM

-Jou SurA[Iopun 9y} UI paysI[qe)se aq ued ISnI) Moy
Jo uoneuedxa pafreiap e ap1aoid jou soop 1aded oy,

spIeys

931e[UT J[NSAI pue JATSUAAXS 9IB SWAISAS UTRYD
-00[q UT UonjeULIO} pIeys 10} suonnjos Junsrxy (11)

1509 UOHEITUNWWOD d1jeIpenb ay) 0)

onp ansst AJI[Iqe[eds Y} SSIPPE JOU SIOP JUO[E S[0d
-ojoid (1.49) ueI9[0], I[ney sunuezAg Surroxduy (1)

s[oo0joid asay) jo Kouoje| pue Jndy3nory)

2y 03 92UI[N0q Jofew B SOINPONUI YIIYM ‘UOTIOR

-suer) Jod uonEOIUNWIWOD JO JUNOWE JeduI] & a1mnbar
[11s s[020101d UIRYINd0[q paseq-3urpreys Sunsixg

‘SOLIBUIS JOBIIR 10 SUONIPUOD

JI0M)QU SNOLIBA Jopun doueurioprad syt Jo sisA[eue

aarsuayardwos € Furpraoid Jnoyim ‘re3paJruwi() jo

ndy3nory) pue Aqeress Yy uneIsUOWp 0) pal
- st ad£)0jo1d [ejuswrodxa) Jo uoneneAd YT,

SYIOMIQU B3I UT SAB[p JIomlou

puE SaIn[rej duruezAg Y1oq 0} dNp SIqUIdW 99}

-JIWWOD JO SMITA UI AOUI)SISUOUI PUB UONBIIO
AKINUIpI JO $oJeI S[qBLIBA 9)BI9[0} Jsnui [0d0301d Ay,

[090301d 300]

doy-nnw e ur 9[o1 yores £q parmnbar peayroao uorn

-BOIUNUWIIOD PUe W) SUIuunI oy} 2Jenead ol SNDJ
JUSIIND WOIJ SOLNAW JuedyIuis apraoid jou seo

uopeInp
S, [euueRyd Ay} J0J Jo A[yugepur padder oq Aew spung

Kyrxardwod
UOTIBOYLIOA pue sjuawaIinbar a3e10)s saonpar sy J,

%€ 01 dn JIopm Jo
Jooid Jo Ajfiqeress ay) ur juawasodwr ue smoys
puod3s 1ad suonoe
-suen})09 JO 95BIAAR UB SAAQIYOY 'SPAu 25eI0IS
Suronpai ‘pnoyo 9y} ul paiols syooda IOTITED YIIM
“$3[90[q Jo yooda 9[3UIS B 210)S SIPOU SNSUISUO))

puooas 1od
suonoesues) 000 Jo ndySnoxy) e Suradryoe ‘Nag

QoueI9]0) Jne} daoxdwr pue [opow
aInyre, aunuezAg ay) jo suondooap a3 9jeurwuI[g

SNSUISUOD INIUIWOI-RAUI PUB J0D
-ojo1d Furdrsso3 ‘Sururjadid yoo1q y3noxy) Aouaje|
uoneWIuUod Mo pue Indy3nory) Y3y soAYIe I

s1oyowered
og1oads ynm S4.L 000€T Jo mdySnory e seasmyoy

SosBAIOUL
osTe awmn yooda y3noy ‘smoi3 sopou Jo Iquinu
o se yooda 1ad $)00[q paseaIour UI $)[NSAI SIY,

syuawaIInbax

33e10)s puR 9ZIS UOTIORSURI) SAONPAI PUB PUNOI
UOTJEITUNWIWOD [BUONIPPE UE sarmbal THINY

105po[JIomIau U101 Y} 0}

Sunoouuod JNOYIIM SWeL) W) OYIoads e urygiim
SUONOBSURI) SNOIQWNU J[qBUS S[AUUBYD IS,

SUONOBSURI) MU UI UOT)

-10d 9)e)$ JUBAS[AI Q) SUIPN[OUT PUB YO0[q JUDAX

JSOW U} UT 33k} S, W)sAs ay) Sunerodioour £q
Aypiqeress ureyoyoo[q seaordur A11odoid-jo-jooiq

paads uonoesuen pue A)1[iqe[edss d9UBYUD 0}
Apuermouods suonerado Joenuod Jrews Jo ‘Sururu
‘SNSUQSUOD FUTINIIXD SOAJOAUT SuIssaooid [o[ered

SuoI13a1 uaamjeq uoneradood

pue Surssaooid uonoesuer juspuadapur Surjqeus

‘ordrourad Suryioj-uou e sydope yeyy jooojo1d ureyo
-yo0[q pauorssiuiad paseq-N(g ® S! uod[owey)

SI0MIAU YY) SSOIOE SHOO0[q SUIPIWSURI) UdYM

suonoesueRI) [BUISLIO URY) I9YIel saxopul Suisn pue

suonoesue) SunnqrusIp 10y pnoyo Ay} saSeIoA9]
[OIyM JIOMIOU UONNQLISIP PIseq-pnopd e st NAg

ArempIey X0S [Au] Aq

pap1aoid (FH1) JUSWUOIIAUE UONINIIXF PIISNI],

AU} UO SIT[AI WAISAS Y, “pIeys Yoed Jo ndysnory

Q) 9SBAIOUT 0} SNSUISUOD) JUBID[O], J[Ne, dun
-uezAg ay) doueyua sioyine oy} ‘roded siy) uy

syuedronred jo ¢/1 03 dn sj[nej aun

-uezAg puelsSylIm ued yorgm ‘ofni ooxon) Y3 Jur

-uoworduwr Aq sureyoyo0[q paseq-3urpIeys I9yjo
JO suoneIwI| Y} JO AWOs sIssaIppe ureyoprdey

yoeoidde preys

-enur ue 3ursn [o[[ered ur suonoesuen Jurssadord

£q 9ouewIo}1od 9oURYUD 0) SUOIIN[OS UTRYINO0[q
Ppaseq-aye}s-Jo-jooid om) soSeIoAd[Ia3poruw

Sururur 10§

Kyoedeos [euoneindwod oy} yiim A[Ieaur] o[eds o)

QeI uonoesuen oY) SUIMO[[e ‘saapIuwod Adnnu
0JUT SISUTW JO YIomJou oy suonmred oonserq

SYOBNY Q[OYWIOA IsureSe SNDJ

109101d 01 (THINVY) 00T doH-nnA snowAuouy
parreo [0o0jo1d oryder3o)dA1o mau e paonponuy

suore) I a3eI0)s

ssaippe pue IndySnoIy) 2ouRyUD 0] S[QUUEBYD) JUIW
-Kedo1dty 9sn (NDJ) SYTOMION [uuRy)) JUSWARJ

[2] T8 1o ouyg

[t] pnowyeq pue Liezey

[¢] T899

[6] o1A0URIIZNY]

[1] e 10 Sueq

[02] ‘T2 10 ueweZ

[8] T 12 se1303y-S1IoyOY]

[c1] T8 10 Ny

[€1] T2 10 moARRIN

[1] elf&1q pue uooq

suone I

SInsoy

KSO[OPOYISJA] puE UOTINGLIIUOD)

SYIOA\ JISY [, pUB SIOyIny

A[Iqereds ureyoyo0[q 2oueyud o) sayoeordde Sunsixo Jo smaIady [J[qeL

pringer

A's

2382

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

Table 1 (continued)

(5

The paper does not discuss the potential security vul-

Limitations

It allows more blockchain nodes to produce blocks

Results

Roll-DPoS enhances Delegated Proof-of-Stake for

Contribution and Methodology

Authors and Their Works

Fan and Chai [3]

Springer

nerabilities or attack vectors that could be exploited

and earn rewards compared to classical DPoS
in the Roll-DPoS consensus algorithm

IoT-based applications, addressing the challenges
of large-scale IoT device deployment and substan-

tial data volume

It ensures Microblock commitment irreversibility, It is vulnerable to DoS attacks and slowdowns, and

ByzCoin optimizes transaction commitment and

Kogias et al. [7]

its security doesn’t outperform Proof-of-Work. Byz-
Coin’s security breaks at 30% attacker control

preventing double-spending attacks

verification through communication trees and

collective signing

It reduces Ethereum’s computational overload, uses Performs poorly in Big Data Applications due to the

Teutsch and ReitwieBner [16] TrueBit manages a decentralized group of miners

decline in performance when handling large-scale

computations

the Verification Game for accuracy, simplifies and

scales mining

and applications through a smart contract

the fixed and finite amount of space per block. Regrettably,
merely increasing the block size is not a suitable solution
for enhancing the throughput of a blockchain system. The
proposed method allows for the inclusion of more transac-
tions per block without expanding the block size. Users first
complete a transaction and upload it to IPFS, which returns
a CID of around 46 Bytes in length. As depicted in Fig. 1,
users then send this CID to a nearby miner who retrieves the
actual transaction from IPFS using the CID. If the transac-
tion is successfully validated, the miner adds the CID to their
mempool and shares it with other miners. Invalid transac-
tions are discarded. An original block is created using the
CIDs of all validated transactions after a certain number of
transactions have been validated. The size of this original
block can be adjusted according to system requirements,
but in our approach, we maintain it at the same size as Bit-
coin’s block size, approximately 1 MB. By storing CIDs in
the original block instead of actual transactions, a massive
number of transactions can be included. Consequently, the
number of transactions per block and ultimately the through-
put is increased without enlarging the block size. Figure 1
illustrates the overall process of decreasing the transaction
size using IPFS and distribute it to the nearby miners.

3.2 Twin-ledger mechanism to reduce space
requirement

Bitcoin’s 1 MB-sized blocks are distributed among all
network nodes. The total size of this ledger has exceeded
473 GB and continues to grow as around 156 blocks are
generated daily. Consequently, storage bloating becomes a
concern, as new users must replicate these 473 GB of data
in their systems. In our suggested system, however, users
are not required to store the 1 MB original blocks. Instead,
miners upload the original block to IPFS, which generates
a corresponding CID for the block. A new block, called the
final block, is created using only the CID of the original
block following the PoW consensus. The smaller size of
the final block allows for faster distribution among miners,
consuming less bandwidth. The term "Twin-ledger" refers to
the presence of two ledgers in our proposed system: one for
original blocks and one for final blocks. Miners can validate
transactions by accessing the original block ledger via the
Actual blockchain and IPFS. This approach achieves sig-
nificant throughput improvements without increasing the
block size. The overall working procedure of our system is
depicted using Fig. 2.

4 Methodology

In this section, we explain how our proposed blockchain uses
two different ledgers and IPFS to enhance overall scalability.

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

2383

Fig. 1 Obtaining CID-
Formatted Transactions from
Clients via IPFS at the Mining
Endpoint

IPFS NETWORK

CID

(zb2.....ba)

-

Fig. 2 Schematic Representa-
tion of the Suggested System’s
Process Flow

CID
(zb2.....ba)

Block = Block = Block A Block
#1 #2 #3 #X

We begin by detailing the transaction generation process,
its interaction with IPFS, and conclude with the creation of
two distinct block types. Each of these steps is elaborately
outlined in the subsequent subsections. Furthermore, we dis-
cuss the transaction verification protocols, followed by an
in-depth examination of the verification processes for both
the original block and the final block.

4.1 Transaction generation

Similar to most blockchain-based systems, transactions in
our system consist of two components: (i) Message and (ii)
Digital Signature. The message includes information about
the sender and recipient as well as the recipient’s public
key. Sender information encompasses the sender’s address

Block #N

Block Header

22000 CIDs of
Transactions

Block #X

Block Header

IPFS NETWORK

/

CID of the
Raw Block #N
Raw Block
Block W Block W Block Hash Block
m #1 #2 #3
A ’ \ =
Bl;.“:k @ Bl;:zck G BI;;k - e / Block Block Block Block

‘ G el o e e
P2P
Network / m

-
‘ — ‘ Block Block Block Block
#1 Al #2 el #3 Al #X

and block number, while recipient information comprises
the amount of the asset they are entitled to receive and their
address. The block number identifies the block that serves
as proof of the sender’s ownership of the asset they wish to
transfer to the recipient’s address. The block number is pro-
vided to avoid accessing the entire blockchain, thus implic-
itly improving the system’s throughput. The entire message
is encrypted with the sender’s public key, generating the
transaction’s digital signature, which is used to verify the
transaction’s legitimacy.

4.2 Uploading transactions to IPFS

After creating a transaction, the user uploads it to IPFS.
The Merkle Directed Acyclic Graph is utilized to divide

@ Springer

2384

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

the transaction into multiple 256 KB segments. These seg-
ments are then distributed to other network users via IPFS.
A distributed hash table maintains data retrieval information
such as the peer’s location holding a specific segment and
the routes to each peer (DHT). A SHA-256 hash of each
segment’s contents serves as a unique identifier for each
one. A Content Identifier (CID) is created by feeding all the
segments of a specific transaction into a SHA-256 hashing
algorithm. Anyone can retrieve transactions from IPFS using
this CID. The checksum verifies every part of a transaction,
allowing easy detection of any instance of transaction tam-
pering. Furthermore, IPFS prevents and discards the storage
of duplicate transaction copies. After receiving it, the user
provides the CID of the transaction to the miner for valida-
tion. If successful, the transaction is recorded in the ledger.

4.3 Transfer of transactions to nearby miners using
peer-to-peer network

A peer-to-peer network is essential for a blockchain-based
system because it does not rely on a central server, and each
node functions as both a client and server. Utilizing a P2P
network offers numerous advantages, such as improved per-
formance, faster file-sharing speed, cost-effectiveness, and
scalability since system resources are distributed among the
decentralized network’s peers, eliminating the need for a
single point of failure. To verify transactions, CIDs obtained
from IPFS must be sent to nearby miners. The transfer of
these CIDs occurs through a P2P network, ensuring the
aforementioned benefits.

4.4 Retrieving transactions from IPFS

After receiving CIDs from users through the P2P network,
miners fetch the actual transactions from IPFS. The min-
er’s IPFS node employs the Merkle DAG to locate all the
256 KB-sized segments that constitute the desired transac-
tion to be fetched for a single CID. The miner then consults
the DHT to identify the peer nodes that store those specific
segments. The miner obtains routing information to connect
to the IPFS nodes holding the desired segments. Finally,
IPFS assembles all the segments to reconstruct the original
transaction, which miners use for validation. Since tamper-
ing with transactions in IPFS entirely alters the correspond-
ing CID, it is guaranteed that tampering with transactional
data is infeasible.

4.5 Verification of transactions
To ensure the validity and integrity of transactions within
our system, each transaction undergoes four distinct verifica-

tion checks. A transaction is deemed invalid if it fails any of
these checks. The essential checks are as follows:

@ Springer

e Identity Verification Check: This check establishes the
sender’s authenticity by validating their identity using
the sender’s public key, transactional data, and digital
signature. All transactions are encrypted with the pri-
vate key, which generates a digital signature.

e Block Verification and Address Matching: During a
transaction, the sender is required to provide a block
number when transferring assets to an address. This
block number contains the transaction that serves as
proof of the sender’s ownership of the assets being
transferred. The sender acted as the recipient in the spe-
cific block’s transaction while claiming the assets. To
pass this check, the recipient address of the previously
validated transaction must match the sender’s address
in the transaction being verified. If the addresses match,
the transaction proceeds to the next verification step.

e Asset Quantity Verification: This check prevents the
sender from transferring more assets than they possess.
The Authentication Check supplies the block number,
which serves as proof of the sender’s ownership of
the assets. Using this number, the miner verifies if the
quantity of assets in that specific block is greater than,
equal to, or less than the amount the sender intends
to transfer. The transaction will pass this check if the
sender has enough assets to complete the transfer to the
intended address.

e Detecting and Preventing Double Spending Attack:
This check ensures that no user exploits an asset more
than once. Our system maintains a database contain-
ing only the addresses of individuals with a specific
amount of assets. Before transferring assets to another
user, the sender’s address must be listed in the data-
base as the recipient, since the assets were previously
verified as belonging to the recipient. Suppose the
sender’s address is found in the database and passes
all other verification checks. In this case, the transac-
tion is considered genuine, and the sender’s address
is removed from the database. Simultaneously, the
recipient address of the newly verified transaction is
added to the database. The database is updated each
time a transaction is confirmed. It is worth noting that
a sender may use multiple receiving addresses they own
when transferring assets in a single transaction, as a
single receiving address may not have sufficient assets
to transfer. If a user uses several receiving addresses,
one of which is not present in the database, all legiti-
mate receiving addresses used in the transaction being
checked will be removed from the database as a pen-
alty. This check ensures that an address that has been
used to send a specific quantity of assets cannot be
reused for subsequent transactions. This approach pre-
vents double-spending in our system, as illustrated in
Fig. 3.

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

2385

Algorithm 1 Identity Verification Check + Verifying Blocks + Amount Checking

LN B2

N NN DN e e e e e e e e e e
PRI LRUNMNES

DR N
A AN

W W W
e

@ W W W W
AP AN AN

N N
Wz

44:

&~
91

o
ook

2
2

[

W
SN

counter < 0
messageHash < sha3_256Hash(ipfsRawTransactionMessage)
validation «— verify(ipfsRawTransactionPublicKey, messageHash,
ipfsRawTransactionSignature, generator_secp256k1)
if (validation = true) then
counter <— counter + 1
end if
totalSenderAmount < 0
for each senderAddr in ipfsRawTransactionSenderAddressList do

blockNumber «— senderAddr[—1]
senderAddress «— senderAddr|[0]
ultimateBlock < os.path.join(ultimateBlockDirectory,(blockNumber+
“.json”))
rawBlockContent < subprocess.check output(f-ipfs cat
ultimateBlockContent[*“CID"]”, shell=true, text=true)
for each transaction in rawBlockContent[“Transactions”] do
transactionReceiverList < transaction[“Receiver Address"]
for each receiverAddr in transactionReceiverList do
if (receiverAddr = senderAddress) then
counter «<— counter + 1

rawTransactionContent <— subprocess.check output(f“ipfs cat receiverAddr[“CID"]",

shell=true, text=true)
rawTransactionReceiverList <
rawTransactionContent[“Message"][“Receiver Address"]
for each recipientAddr in rawTransactionReceiverList do
for each recipientAddress m in recipientAddr.keys() do
if (recipientAddress = senderAddress) then
totalSenderAmount «—
totalSenderAmount + recipientAddr[recipientAddress]
end if
end for
end for
end if
end for
end for
receiverAddressTotalAmount < 0
for each recipientAddr in ipfsRawTransactionReceiverAddressList do
for key, val in recipientAddr.items() do
receiverAddressTotalAmount < receiverAddressTotalAmount + value
end for
end for
if (totalSenderAmount > receiverAddressTotalAmount) then
counter «— counter + 1
end if
end for

@ Springer

2386

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

Algorithm 2 Checking and Defending Double-Spending Attack

1: validatedSenderList < []

2: for each senderAddr in ipfsRawTransactionSenderAddresses do

3: senderAddress «— senderAddr[0]

4: dbConnection «— sqlite3.connect(databasePath)

5: cursor < dbConnection.cursor()

6: cursor.execute(“SELECT * from table_17)

7: retrievedRows <« cursor.fetchall()

8: recipientList < []

9: for each retrievedRow in retrievedRows do

10: for each tupleltem in retrievedRow do

11: recipientList.append(tupleltem)

12: end for

13: end for

14: if (retrievedRow IN recipientList) then

15: validatedSenderList.append(retrievedRow)

16: recipientList.remove(retrievedRow)

17: cursor.executemany("DELETE from table I where recipient address = ?",
retrievedRow)

18: dbConnection.commit()

19: end if
20: end for

21: if (validatedSenderList = ipfsRawTransactionSenderAddresses) then

22: counter «— counter + 1

23: for each recipientAddr in ipfsRawTransactionRecipientAddresses do

24: for key, value of recipientAddr do

25: recipientAddress «— key

26: cursor.cxecutcmany("INSERT into table 1 VALUES (?)", recipientAddress)
27: end for

28: end for
29: end if
30: if (counter = 4) then

31: mempoolFilePath < os.path.join (mempoolDirectory,
serialNumberOfRawTransactionFromlIpfs)

32: with open(mempoolFilePath, “w”) as outputFile:

33: outputFile.write(receivedTransactionFromP2P)

34: endif

When a transaction passes all the checks mentioned
above, its CID is added to the mempool, which stores con-
firmed but unconfirmed and pending transactions. Algo-
rithm 1 presents the pseudocodes for verification and valida-
tion of identity, blocks, and asset amount, while Algorithm 2
shows the pseudocode for identifying and defending double-
spending attack.

4.6 Creation of original blocks

After validating and confirming the transactions from the
mempool, miners assemble a block containing the CIDs
of all the approved and confirmed raw transactions. This
block is referred to as an original block, and the ledger
containing original blocks is called IPFS blockchain. The

@ Springer

IPFS blockchain is stored on IPFS instead of the miner’s
computer. Our approach utilizes Proof-of-Work (PoW) con-
sensus for generating original blocks since this consensus
mechanism provides strong security and decentralization.
The process of original block creation is illustrated in Fig. 4.
Due to PoW’s limitations, including high energy consump-
tion, slow processing, and high costs, our system can accom-
modate any consensus mechanism. As a result, our proposed
system allows for the adoption of any consensus technique
depending on the application’s needs and requirements.

4.7 Creation of final blocks

The miner responsible for generating the original block is
the sole authorized party to execute the following procedure.

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394 2387
Sending 5 Coins from 0xd8823 to
Own Account: 0xff41c
m ‘ Sending 5 Coins from 0x22e5a @ m
Address 1: 0x22e5a: 5 Coins)::(Address (New): 0xa7b31: 0 Coins
Address 2: 0xd8823: 10 Coins ‘ -
. : : @ 5 Coi : After
Address 3 (New): 0xff41c: 0 Coins Sending 5 Coins from 0xdi8823 ' emmin

0,
After s,,;o’eo*e
. 2
Address 3 (New): 0xff41c: 5 Coins /'14.9/70* 5355
e

Address (New): 0xa7b31: 10 Coins

Database

Address

Balance

0x22e5a

5

0xd8823

10

Database

Address

Balance

0xff41c

5

0xa7b31

10

Fig. 3 Employing Distributed Database Solutions to Defend Double Spending Attack

First, the miner uploads the original block to IPFS, which
generates a unique.

CID for it. Then, using PoW, the miner creates a block
containing only the CID of the original block, known as a
final block. This final block is distributed to nearby miners
through a P2P network, and all miners store it locally, main-
taining a new ledger called the Actual blockchain. Figure 5
visually depicts the entire process.

4.8 Validation of the final blocks

Upon receiving the final block, each miner determines
whether to incorporate it into their local Actual blockchain
based on the Reverse Block Verification test results. This

Fig. 4 Creation of Original
blocks Utilizing Transaction
CIDs

Transactions

verification consists of four checks: Index Check, Current
Final Block Check, Previous Block Hash Check, and Veri-
fied Transaction Check. First, the miner verifies that the
current block index is greater than the previous one. Then,
the hash of the block is examined to ensure it has a speci-
fied number of leading zeros. Next, the block hash is calcu-
lated to verify if it matches the previously computed hash
included in the block header. The previous block’s hash is
also checked to confirm if it matches the value of the ‘Pre-
vious Hash’ attribute in the current block’s header. If the
final block passes the first three tests, the miner retrieves
the corresponding original block from IPFS using the CID
stored within the final block. The original block undergoes
the same tests as the final block, along with an additional

Raw Block-N

Block Header
Verification

- of
Transactions

(N-1)" Block Hash
CIDs of Txns

N" Block Hash

User's End i

Miner's End

@ Springer

2388

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

Raw Block-N

Block Header
(N-1)" Block Hash
CIDs of Txns

N"Block Hash

1 Megabyte for 22000 Transactions

Hash Block-X

Block Header

(X-1)""Block Hash

Raw Block-N's CID

X" Block Hash

290 Bytes for 1 Raw Block CID

Miner's End

Fig. S Deriving Final Block by Leveraging the Original Block’s CID

test called Verified Transaction Check, which ensures that
all CIDs of transactions within this original block are present
in the verifier’s mempool. These tests are performed sequen-
tially, and Algorithm 3 presents the reverse block verifica-
tion pseudocode for the final block.

If the block fails any of the verification tests, it is dis-
carded and not added to the ledger. If it passes, the CIDs of
the transactions are removed from the miner’s mempool, and
the verified final block is incorporated into the miner’s local
Actual blockchain.

5 Result analysis

Our proposed system enhances scalability concerning stor-
age requirements and throughput issues while preserving
the fundamental features of blockchain technology, such as
decentralization and security. First, we provide a theoretical
analysis of our system’s performance. Next, a practical eval-
uation is discussed and examined. Finally, we compare the
theoretical and practical analyses, as well as other relevant
blockchain frameworks. The dataset utilized in this study
was exclusively formulated by our research team, which
includes random and dummy transactional data. This data-
set is automatically generated using a Python script, which
takes a number denoting the amount of transactions as input.

@ Springer

6 Theoretical analysis
6.1 Evaluating storage efficiency

Our system consists of two separate types of ledgers: IPFS
blockchain and Actual blockchain. The IPFS blockchain
holds multiple verified transaction CIDs in original blocks,
which are stored on IPFS rather than the miner’s device.
Conversely, the final blocks contain only a single CID of
a specific original block, with an approximate size of 46
bytes. Including metadata, the size per final block amounts
to around 290 bytes. Since the Actual blockchain and final
blocks are considerably smaller compared to the IPFS block-
chain, miners only need to store a copy of the Actual block-
chain instead of the original block ledger. As a result, our
system has a significantly reduced storage requirement.

A Bitcoin blockchain block averages around 1 MB in size.
As of 1st January, 2023, the bitcoin blockchain height is
769,903 blocks. Thus, the total size of the Bitcoin ledger is
approximately 770 GB. In contrast, our system’s block size
is 290 bytes and remains constant. When compared to the
Bitcoin blockchain, our.

system only requires 0.231 GB for the same block height.
Therefore, our system necessitates almost 3332 times less stor-
age than the Bitcoin blockchain. The detailed data of theoreti-
cal comparison of storage between Bitcoin and our blockchain
is presented in Table 2.

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

2389

Table 2 Comparing the Total
Size of Ledger between Bitcoin
and the Proposed System

Table 3 Comparing
transactions per block between
bitcoin and the proposed system

Bitcoin’s Block Height (Total Count of Blocks)
Bitcoin’s Total Count of Transactions Till Now
Bitcoin

Size Per Block

Overall Required Storage
Our Experimental Blockchain

Size Per Block

Overall Required Storage

769,903 Blocks
792,482,423 Txns

1 MB (average)
770 Gigabytes

290 Bytes (Approximately)
0.231 Gigabytes

Our System’s Multiplicative Factor 3332 Times Less
Bitcoin Blockchain

Size Required for Header 80 Bytes

Storage Required for Each Block (Approximately) 1 MB

Size of Each Transaction (Approximately) 249 Bytes

Count of Transactions in Each Block
Our Experimental Blockchain
Size Required for Header
Storage Required for Each Original Block (Approximately)
Size of Each CID (Transaction)
Count of Transactions in Each Original Block

998 Transactions

80 Bytes

1 MB

46 Bytes
22,000 Transac-

Our System’s Multiplicative Factor

tions (Approxi-
mately)
23 Times More

6.1.1 Evaluating throughput enhancement

The CIDs of verified transactions are located in original
blocks. Each CID has a constant size of 46 bytes, independ-
ent of the transaction size. Consequently, CID is significantly
smaller than the actual transaction size. As a result, we can
include more CIDs than raw transactions in a 1 MB block,
which is the standard block size for the Bitcoin blockchain.
The current height of the Bitcoin blockchain is 769,903

Proposed Blockchains throughput =

accommodate around 22,000 transactions per block, based on
the Eq. (2), with each CID being 46 bytes in size, the block
size being the same as Bitcoin’s (1 MB on average), and the
block header being 80 bytes in size. Table 3 demonstrates that
our system’s blocks can hold 23 times more transactions than
the Bitcoin network. This multiplication factor can be further
increased if the block size is expanded. Since the final block
size remains constant despite increasing the Original block
size, increasing the block size does not result in storage bloat-
ing in our system, unlike Bitcoin.

Per Block Size — Size of Block Header)
Size of Each CID &)

blocks, containing around 792,482,423 transactions. Hence,
each block has an average of 998 transactions. According to
Eq. (1), the Bitcoin blockchain’s throughput is approximately
two transactions per second.

Transaction Amount in Each block

Th hput =
roughpu Block Time (in seconds))

This transaction rate per second is significantly lower than
centralized and popular financial services such as VISA,
PayPal, and others. In contrast, our proposed blockchain can

7 Practical analysis
7.1 Assessing storage efficiency

In practice, an original block size of 3.4 MB is needed for
22,000 transactions. The block header and hash require
87 and 64 bytes of storage, respectively. Each recipient’s
address takes up 46 bytes, and each CID needs 64 bytes.
The indexing terms for the header, block hash, CIDs,
recipient addresses, and all 22,000 transactions occupy
approximately 1,012,000 Bytes of original block space.

@ Springer

2390

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

Table 4 Practical details of original block

Meta-data Required storage

Header 87 Bytes (Approx.)

Hash 64 Bytes

Total CIDs 1,012,000 Bytes (22,000 Txns X 46 Bytes)
Address of the Receiver 1,408,000 Byes (22,000 Txns X 64 Bytes)

Indices to Indicate
Aforementioned Terms

991,867 Bytes (Approx.)

Required Size for
Each Original Block

3.4 Megabytes

Table 5 Practical Details of Final Block

Meta-Data Required Storage
Header 86 Bytes (Approx.)
Hash 64 Bytes

1 CID of Original Block 46 Bytes

Indices to Indicate
Aforementioned Terms

92 Bytes (Approx.)

Required Size for
Each Final Block

288 Bytes

These practical details of original block are summarized
in Table 4.

For final blocks, the header, block hash, and original
block CID each need 86, 64, and 46 bytes. The index-
ing terms for these fields occupy about 92 bytes. Conse-
quently, each final block requires 288 bytes of storage.
Table 5 includes the practical details of final block.

Comparing our proposed system to the Bitcoin block-
chain in terms of blockchain height, as shown in Fig. 6,
our system requires only 222 MB for a height of 785,113
blocks, since the final block requires just 288 bytes of
storage. In contrast, the Bitcoin blockchain requires
approximately 472.59 GB or 2,129 times more storage
than our system.

Figure 7 compares several alternative blockchain pro-
tocols to our proposed system in terms of transaction size
and transaction count per block. Lpeer has the largest
transaction size, at about 4,594 bytes, allowing a 1 MB
Lpeer block to hold around 221 transactions. In contrast,
our system has the smallest transaction size requirement,
at only 288 Bytes, enabling a 1 MB block to store around
22,000 transactions.

Comparison Between Bitcoin Our Architecture and Bitcoin in Terms of
Size Require for Blockchain Height

=O=Required Size of Our Blockchain

0.25

o

o
i

o
N

0.095319494

0.060710858
0.05 -~ -
0.028303295 0.045278585

0.883666 ~ 4.673
0.007332~ 0.061804

OUR BLOCKCHAIN'S SIZE REQUIREMENT (IN GIGABYTES)

2010

2012

0.110694318

Fig. 6 Comparing blockchain heights: bitcoin versus the presented system

@ Springer

0

54.671

=O=Required Size of Bitcoin

0.217839533

0.202786197

0.187873795
0.172814233
0.157468275 319.958
0.142042511
126218283 256.683

198.514

97.294

BITCOIN'S SIZE REQUIREMENT (IN GIGABYTES)

2018 2020 2022

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394 2391
Fig. 7 Assessing transaction
sizes and quantity within a Comparison of Block Capacities Among Various
1 MB block .
Blockchains
mmm Size of 1 Transaction (Bytes) ====Number of Transactions in 1MB Block
& 5000
w
E 4500 %
= 4000 5
& 3500 f g
2 3000 <
© 2500 ¢ g
b /
< 2000 -
2 =
3 1500 2
% 1000 g
$ 500 e I S
g SN = T . =
Rap; lp By Y R/ B, Om,. . pB,c Bit. . Oy,
Oidchagy e <l i /vs,%”a/ o Nainpg Medg, T Oy "Blockey,
WO,—/\, IS[r/'bU[e n

7.1.1 Assessing scalability

Figure 8 displays a line chart illustrating our system’s trans-
actions per second (TPS) rate when each miner operates an
IPFS node on their devices. The creation of a local gateway
at the miner’s end eliminates latency in connecting to a pub-
lic gateway, accelerating the transaction fetching process.
However, if a miner’s gateway is not directly linked to the
nodes storing transaction chunks, the miner may face delays
and need to wait to retrieve transactions, reducing our sys-
tem’s TPS rate. Additionally, IPFS mining nodes can lose
connectivity, causing content routing to become challenging
as it takes time to identify nodes serving transaction chunks
using the DHT, leading to a decline in the TPS rate.

To tackle this problem, we developed a script that
manually connects content-providing nodes with miners.
This approach enables transactions to be retrieved almost
instantly after requesting the IPFS. For instance, the TPS
is 43 for 29,949 transactions when using the default con-
nection; however, with a manual peer connection, the TPS
increases to 48. The original block size has a minor impact
on TPS, as larger original blocks take longer to distribute
among miners than smaller ones. Consequently, for large
blocks, the TPS rate is slightly lower than expected. The
chart indicates that the TPS is 61 when the original block
size containing 40,577 transactions is 6.35 MB. The antici-
pated rate is 67, but distributing a 6.35 MB original block
takes marginally longer than a lightweight block, causing
the rate to decrease.

et"VOr/(

BLOCKCHAIN PROTOCOLS

Miners can use open IPFS gateways to access transac-
tions without setting up IPFS on their end or installing an
IPFS client. Several readily available public gateways can
be used to download files from IPFS using a web browser.
To evaluate our system’s TPS rate, we tested three differ-
ent public gateways: ipfs.io, joropo.net, and infura-ipfs.io.
Joropo.net and infura-ipfs.io have the lowest and highest
response times, respectively, while ipfs.io has a moder-
ate response time compared to the other two gateways.
As a result, using joropo.net provides a higher TPS rate
than using infura-ipfs.io and ipfs.io. For example, we can
achieve a TPS rate of 39 with joropo.net for a 3.91 MB
block containing 25,164 transactions, while achieving 35
and 31 TPS rates with ipfs.io and infura-ipfs.io, respec-
tively. Comparing Fig. 8a and b reveals that using a local
gateway instead of a public one results in faster transaction
processing.

Figure 9’s bar graph demonstrates the necessary block
size for our system to surpass the TPS of various other
blockchain systems. By merely increasing the block size, our
system can outperform other blockchains’ TPS rates, assum-
ing a block interval time of 10 min. Our system can attain a
TPS of 32 for the standard block size of 1 MB, higher than
both Bitcoin and Bitcoin-NG. To exceed the TPS of Paypal
and VISA, which are 542 and 2057, respectively, the block
size needs to be increased to 14 MB and 57 MB. Among the
blockchains presented in the figure, Rapidchain has the high-
est TPS, processing nearly 7,002 transactions per second. If
the block size is set to 187 MB, our blockchain can achieve
7029 transactions per second, surpassing Rapidchain.

@ Springer

2392 Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

Fig. 8 Transaction Process-

ing Speed: a Local Gateway, b T\); pe Of Gatewavs Local
Public Access Points

140 —
= 160 5
$ 140 . 1202
' = 3 Tﬂ
£ 120 100 5
£ 100 80 =
& 80 e 2
5 S
S 60 s
g 40 8
S 2 20 £
.4
20 DK

N el Nl el el Nl Nl el Nl) N el

KX
o ﬁﬁ,p“’ g O;;s\ o %l@ § 6"@ #@ @ ?~°’i’.\>¢ o
"‘v

FEFEFESTEEFF S

Transaction Amount, Raw Block Size

mwm Rate of TPS (Manual Peer Connection) ==O=Rate of TPS (Default Peer Connection)

(a)

Type of Gateways: Public

250 120
T 200 : : 198, .
2 2
5 a0 ?
= 150 2
"‘é &0 'o'
L 100 =
2 a0 @
W v
@ =
@ 50 0 &
=
=

0 0
PE G ,\&‘” F B 5P
'\ RN @‘

@"%&ﬁ%@@@@“ 4,@%@@“@“"

Transaction Amount, Raw Block Size

= TPS Rate of joroppo.net =O=TPS Rate of ipfs.io =@=TPS Rate of infura-ipfs.io

8 Conclusion necessitates minimal storage, as each block only requires

288 bytes, regardless of the transaction count. These fea-
The proposed system attains an average throughput rate of tures enhance the system’s scalability, while the high level of
32 transactions per second for 21,000 transactions within a decentralization and the inclusion of numerous participants
3.4 MB block, and this rate can be substantially improved by ~ are facilitated by its low storage dependency, public acces-
enlarging the original block size. Additionally, our approach sibility, affordable mining nodes, and off-chain governance.

@ Springer

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394 2393

Required Size of Raw Block for Exceeding the TPS Rate of Other Blockchains

Our Blockchain
Rapidchain

= 7029
=3 7000

125 (187
MB |MB

Our Blockchain ==
PBFT

= 4749
— 4500

110
B

Our Blockchain
Omniledger

4179
4000

(=]

MB

Our Blockchain

©
Sharding in Permissioned Blockchain % 2000

b Our Blockchain
BloXroute

MB

MB

5 Our Blockchain

Visa

26

MB

Our Blockchain
ByzCoin

16
MB

Our Blockchain
Chameleon

14

1mB|l1mB|3MB[5MB|6MB| MB

Our Blockchain
Paypal

Our Blockchain
TrustChain

Proposed Sytem's Block Size

Our Blockchain
Product Chain

Our Blockchain
FastBFT

Our Blockchain
Bitcoin NG

Our Blockchain 32
Bitcoin 3

1000
5000 goog

. 7000 8000
Transactions Per Second

Fig. 9 Outperforming Competing Blockchain Systems in Terms of TPS

The system’s characteristics, designed to overcome the limi-
tations of well-known public blockchains like Bitcoin, incen-
tivize more users to join the network, making it easier to
resist Sybil and 51% attacks. An innovative countermeasure
to build defense against double-spending is also introduced.
Throughput can be further increased by implementing
sharding or payment channels on top of our protocol, repre-
senting a promising area for future research. Moreover, any
scalable consensus mechanism beyond Proof-of-Work can
be integrated into our system to enhance scalability, albeit
potentially at the cost of security and decentralization.

Declarations

Conflict of interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper. There was no
sponsorship or funding agency involved in this study. The views and
opinions expressed in this article are those of the authors and do not
necessarily reflect the official policy or position of any affiliated agen-
cies of the authors. This research was conducted independently and did
not involve any scenarios that could give rise to a conflict of interest.

@ Springer

2394

Int. j. inf. tecnol. (April 2024) 16(4):2379-2394

References

11.

12.

Dang H, Dinh TTA, Loghin D, Chang EC, Lin Q, Ooi BC (2019)
Towards scaling blockchain systems via sharding. Proceedings of
the 2019 International Conference on Management of Data, pp.
123-140. https://doi.org/10.1145/3299869.3319886

Ehmke C, Wessling F, Friedrich CM (2018) Proof-of-property:
a lightweight and scalable blockchain protocol. Proceedings of
the 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain, pp. 48-51. https://doi.org/10.1145/
3194113.3194119

Fan X, Chai Q (2018) Roll-dpos: a randomized delegated proof
of stake scheme for scalable blockchain-based internet of things
systems. Proceedings of the 15th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pp. 482-484

Hazari SS, Mahmoud QH (2019) A parallel proof of work to
improve transaction speed and scalability in blockchain systems.
2019 IEEE 9th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 0916-0921. https://doi.org/10.1109/
CCWC.2019.8666593

He G, Su W, Gao S (2018) Chameleon: a scalable and adaptive
permissioned blockchain architecture. 2018 1st IEEE International
Conference on Hot Information-Centric Networking (HotICN),
2018, pp. 87-93. https://doi.org/10.1109/HOTICN.2018.8605944
John K, O’Hara M, Saleh F (2021) Bitcoin and beyond. Ann
Rev Financ Econ. https://doi.org/10.1146/annurev-finan
cial-110720-111326

Kogias EK, Jovanovic P, Gailly N, Khoffi I, Gasser L, Ford B
(2016) Enhancing bitcoin security and performance with strong
consistency via collective signing. 25th USENIX security sym-
posium (USENIX Security 16), pp. 279-296

Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford
B (2018) Omniledger: a secure, scale-out, decentralized ledger via
sharding. 2018 IEEE Symposium on Security and Privacy (SP),
IEEE, pp. 583-598. https://doi.org/10.1109/SP.2018.00029
Kuzmanovic A (2019) Net neutrality: unexpected solution to
blockchain scaling. Commun ACM 62(5):50-55. https://doi.org/
10.1145/3292034

. Tiwari A, Batra U (2021) Ipfs enabled blockchain for smart cities.

Int J Inf Technol 13(1):201-211

Liu J, Li W, Karame GO, Asokan N (2018) Scalable byzantine
consensus via hardware-assisted secret sharing. IEEE Trans Com-
put 68(1):139-151. https://doi.org/10.1109/TC.2018.2859961
Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena
P (2016) A secure sharding protocol for open blockchains.

@ Springer

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ACM, 2016, pp. 17-30. https://doi.
org/10.1145/2976749.2978389

Malavolta G, Moreno-Sanchez P, Schneidewind C, Kate A, Maffei
M (2018) Anonymous multi-hop locks for blockchain scalability
and interoperability. Cryptology ePrint Archive. https://eprint.iacr.
org/2018/472

Quamara S, Singh AK (2022) Schain: towards the quest for rede-
signing supply-chain by augmenting blockchain for end-toend
management. Int J Inf Technol 14(5):2343-2354

Poon J, Dryja T (2016) The bitcoin lightning network: scalable
off-chain instant payments. https://lightning.network/lightning-
network-paper.pdf

Teutsch J, ReitwieBner C (2019) A Scalable Verification Solution
for Blockchains. arXiv preprint arXiv:1908.04756

Pabitha P, Priya JC, Praveen R, Jagatheswari S (2023) Modchain:
a hybridized secure and scaling blockchain framework for iot envi-
ronment. Int J Inf Technol 15(3):1741-1754

Balamurugan S, Ayyasamy A, Joseph KS (2021) Iot-blockchain
driven traceability techniques for improved safety measures in
food supply chain. Int J Inf Technol. https://doi.org/10.1007/
s41870-020-00581-y

Hossain CA, Mohamed MA, Zishan MSR, Ahasan R, Sharun SM
(2022) Enhancing the security of e-health services in bangladesh
using blockchain technology. Int J Inf Technol 14(3):1179-1185
Zamani M, Movahedi M, Raykova M (2018) Rapidchain: scal-
ing blockchain via full sharding. Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
pp. 931-948. https://doi.org/10.1145/3243734.3243841

Vacca A, Di Sorbo A, Visaggio CA, Canfora G (2021) A sys-
tematic literature review of blockchain and smart contract devel-
opment: techniques, tools, and open challenges. J Syst Softw
174:110891. https://doi.org/10.1016/j.jss.2021.110891

Kwon Y, Kim H, Shin J, Kim, Y (2019) Bitcoin vs. Bitcoin cash:
coexistence or Downfall of Bitcoin Cash? 2019 IEEE Symposium
on Security and Privacy (SP), IEEE, pp. 935-951. https://doi.org/
10.1109/SP.2019.00059

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1145/3299869.3319886
https://doi.org/10.1145/3194113.3194119
https://doi.org/10.1145/3194113.3194119
https://doi.org/10.1109/CCWC.2019.8666593
https://doi.org/10.1109/CCWC.2019.8666593
https://doi.org/10.1109/HOTICN.2018.8605944
https://doi.org/10.1146/annurev-financial-110720-111326
https://doi.org/10.1146/annurev-financial-110720-111326
https://doi.org/10.1109/SP.2018.00029
https://doi.org/10.1145/3292034
https://doi.org/10.1145/3292034
https://doi.org/10.1109/TC.2018.2859961
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://eprint.iacr.org/2018/472
https://eprint.iacr.org/2018/472
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://arxiv.org/abs/1908.04756
https://doi.org/10.1007/s41870-020-00581-y
https://doi.org/10.1007/s41870-020-00581-y
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1016/j.jss.2021.110891
https://doi.org/10.1109/SP.2019.00059
https://doi.org/10.1109/SP.2019.00059

	A novel approach to optimizing transaction processing rate and space requirement of blockchain via off-chain architecture
	Abstract
	1 Introduction
	2 Literature review
	3 System overview
	3.1 Utilizing CID for enhancing throughput
	3.2 Twin-ledger mechanism to reduce space requirement

	4 Methodology
	4.1 Transaction generation
	4.2 Uploading transactions to IPFS
	4.3 Transfer of transactions to nearby miners using peer-to-peer network
	4.4 Retrieving transactions from IPFS
	4.5 Verification of transactions
	4.6 Creation of original blocks
	4.7 Creation of final blocks
	4.8 Validation of the final blocks

	5 Result analysis
	6 Theoretical analysis
	6.1 Evaluating storage efficiency
	6.1.1 Evaluating throughput enhancement

	7 Practical analysis
	7.1 Assessing storage efficiency
	7.1.1 Assessing scalability

	8 Conclusion
	References

