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Abstract We introduce altiro3D, a free extended C++ 
library developed to represent reality starting from a given 
original RGB image or flat video. It allows to generate a 
light-field (or Native) image or video and get a realistic 3D 
experience. To synthesize N-number of virtual images and 
add them sequentially into a Quilt collage, we apply MiDaS 
models for the monocular depth estimation, simple OpenCV 
and Telea inpainting techniques to map all pixels, and imple-
ment a "Fast" algorithm to handle 3D projection camera 
and scene transformations along N-viewpoints. We use the 

degree of depth to move proportionally the pixels, assuming 
the original image to be at the center of all the viewpoints. 
altiro3D can also be used with DIBR algorithm to compute 
intermediate snapshots from a equivalent "Real (slower)" 
camera with N-geometric viewpoints, which requires to cali-
brate a priori several intrinsic and extrinsic camera param-
eters. We adopt a pixel- and device-based Lookup Table 
to optimize computing time. The multiple viewpoints and 
video generated from a single image or frame can be dis-
played in a free-view LCD display.
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Graphical abstract Flow diagram of altiro3D

LCD designed to efficiently compress all the image process-
ing time to approach realistic 3D rendering. This is a free, 
extended C++ library developed to reconstruct reality start-
ing from a still RGB image or flat video to generate a light-
field (or Native) image or video and get a realistic 3D expe-
rience. In order to synthesize N-number of virtual images 
and add them sequentially into a N ×M Quilt collage, we 
apply MiDaS coding for the monocular depth estimation [7], 
the OpenCV mapping [11] and Telea [12] inpainting tech-
niques to map all pixels, and implement a "Fast" algorithm 
to mimic 3D projection and scene transformations along 
the synthesized N-viewpoints. altiro3D uses the degree of 
depth to move proportionally the pixels, assuming the origi-
nal image to be at the center of all the viewpoints. altiro3D 
can also be used with the Depth Image Based Rendering 
(DIBR) algorithm to compute in-between snapshots from a 
equivalent "Real (slower)" camera with N-geometric view-
points, which requires to calibrate a priori several intrinsic 
and extrinsic camera parameters [13]. We adopt a pixel- and 
device-based Lookup Table (LUT) taking into account dis-
play calibration data for specific 3D monitors. As discussed 
in [2, 3], the implementation of LUT allows reduction in the 
computing time of about 50%. The multiple viewpoints and 
video generated from single-shot data can be displayed in 
any free-view LCD display [14], such as the slanted lenticu-
lar Looking Glass (LG) Portrait [15]. The latter is a low-cost 
lenticular 3D device which allows to reduce loss of resolu-
tion in the horizontal direction by slanting the structure of 
the lenticular lens.

1 ’altiro’: Real Academia Española: adv. coloq. Chile. ’inmediately’ 
(to the point, fast).

Keywords 3D computer vision · Light-field · Multiview · 
Deep convolutional neural networks

1 Introduction

There has been a growing interest in 3D scene represen-
tation and multiview synthesis using a RGB-D (color and 
depth) input image or a pair of stereoscopic images and their 
relative depth map (see e.g., [1], Morpholo [2, 3]). These 
efforts may lead to impressive realistic results but still incur 
high computational complexity, making them ill-suited to 
run live streaming applications. Alternative methods that 
have the key advantage of rendering the 3D computer recon-
struction faster, are those novel methods starting from just a 
single, query RGB image given as the input, see e.g., [4–8]. 
This new possibility arises with the recent advancements 
in modeling the 3D visual world through the generation of 
depth maps from monocular images. These can be produced 
by convolutional neural network (CNN) models such as the 
so-called MiDaS (2.1 and 3.1) algorithms trained over large-
scale RGB datasets (6 and 12, respectively) [7]. Tremendous 
progress has been done with this alternative framework in 
recent years [9, 10].

The purpose of this work is to introduce altiro3D1, a new 
2D-to-3D image and video conversion library for free-view 
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altiro3D is implemented with the goal of minimizing the 
image processing time to approach real time applications in 
3D streaming without the need for the viewer to wear any 
special 3D glasses. On the whole, altiro3D command lines 
allows to effectively

• Create Native (i.e., 3D image) from photo using MiDaS 
small.

• Create Native from photo using MiDaS large.
• Create Native from a given original RGB image and 

depth image.
• Create Native from a given Quilt (N×M).
• Create Native from sorted N-views (i.e., sequential set of 

plain images) stored in a given directory.
• Convert Quilt views to 2D video (.mp4).
• Convert given 2D video to Native 3D video (.mp4).

Our work leverages the advancement on 3D vision using a 
single image or frame and presents a framework designed for 
the Linux O.S. environment. Moreover, our work does not 
require the use of heavy computing runtime, thus can sup-
port a wide range of application scenarios in education and 
science, among others. The visual quality of our synthesized 
views provides a rather realistic immersive experience.

2  Related work: depth map from single image

As discussed in [16], monocular deep estimation networks 
are classified into these categories: supervised, unsupervised 
and self-supervised learning. The first to apply supervised 
learning for monocular image depth estimation were Eigen 
et al. [4]. Their method uses for training, the input image and 
the corresponding depth map to directly output the depth 
prediction. Semi-supervised methods can obtain the cor-
responding depth map by training with less data sets [17]. 
Unsupervised and self-supervised learning methods enables 
the network to perform deep predictions from unlabeled 
images. Some approaches pass the whole image into the 
network and perform convolution operation to only capture 
local information. This limits passing information to other 
sequence representations and leads to low prediction accu-
racy. Despite these limitations, deep learning-based monoc-
ular depth estimation that uses, e.g., CNN is a growing area 
of research. These are methods limited to those scenarios 
present in the process of training on the datasets [18, 19].

Recent review articles on the state-of-the-art develop-
ment and representative algorithms for deep learning-based 
monocular depth estimation, which perform more accurately 
under the many restricted conditions, can be found in [5, 6]. 
They review some mainstream monocular depth estimation 
methods based on deep learning with examples according to 

different datasets training. In particular, included are a vari-
ety of supervised learning methods to address the monocu-
lar depth estimation, in terms of (i) CNN-based method: to 
capture depth features layer by layer through their convolu-
tion kernels and recover depth maps by deconvolution to 
meet the spatial features of the scene; (ii) recurrent neural 
network (RNN): designed to learn spatial-temporal features 
from video sequences; (iii) generative adversarial network 
(GAN): introduced to generate and discriminate between 
depth maps. The confrontation between a generator and dis-
criminator function facilitates the training of the framework. 
These surveys also introduce publicly available datasets and 
evaluation metrics that have made significant contributions 
to monocular depth estimation.

Very recently, a biologically inspired deep learning net-
work for monocular depth estimation has been reported 
in [16]. This is based on a relationship between the self-
attention mechanism in biological visual systems and the 
monocular depth estimation network. The input to the net-
work are normalized 3D (RGB) pixel values and informa-
tion interaction is established between an encoder, decoder 
and self-attention fusion unit. The function of the encoder is 
similar to the retina, processing visual information through 
integration, and transmitting the information to a next-level 
module. The information transfer between each module in 
this bio-network mapping enables the deep learning net-
work to output a depth map with rich object information 
and detailed information.

In our work we follow some of the ideas in [5, 6] and 
apply a CNN-based method. Specifically we utilize MiDaS 
models [7] to process an input image and produce multiple 
views of a scene. By estimating a reasonable accurate depth 
map in this way, we render synthesized views with a DIBR 
process [13]. Output pixels in the N-views are shifted cop-
ies of the input image’s pixels. Unlike prior work, the depth 
map generated within our altiro3D algorithm is not com-
pared against any real depth map and it serves the purpose 
to represent horizontal parallax upon geometric constraints 
between image sequences. As another difference, comput-
ing calculations are speed up by implementing a pixel- and 
device-based LUT as in [2, 3].

3  Implementation

The simplest hardware needed to implement altiro3D is a 
standard PC Computer (Intel Core i5, 64bit and at least 4 G 
RAM), running a recent release of Linux O.S. (22.04LT or 
newer) and any slanted lenticular display such as the LG 
Portrait [15]. This is an external HDMI video monitor which 
provides a novel glasses-free way to preview 3D objects and 
scenes within an exteded FoV.
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The overall system has been developed in C++ and 
deeply exploits libraries Qt v.5 [20] and OpenCV v.4 [21]. 
The system consists in a main library, libaltiro3D, where all 
developed algorithms have been implemented together with 
a set of program tools exploiting the library routines. All 
important aspects of the library have been properly docu-
mented with Doxygen [22] in order to provide other users a 
good reference to use the library.

The present altiro3D library is an evolution of our previ-
ous Morpholo library [2, 3]. These two have been designed 
taking into account the naming convention used in the litera-
ture related to the field of 3D rendering and in particular, to 
the conventions used by the display produced by the LG. So 

Quilt, Native, Multiviews and other similar terms are used 
to identify graphical objects and processing steps inside the 
new altiro3D library. In addition to the algorithm to produce 
N-views feeding the holographic display, the Morpholo library 
implemented both routines to get info about the calibration of 
the target display and functions to produce the LUT in order 
to speed up the mapping from Quilt to Native.

With respect to the previous Morpholo library, the alti-
ro3D library has been integrated with sources taking into 
account the CNN neural network inference and two new 
models to generate, from a single image, intermediate 
views. These views are used to create the Quilt and, hence, 
to produce the Native image. Both these steps have been 

Fig. 1  Upper left: Original RGB input photo. Upper right: Depth map obtained using MiDaS [7]. Lower left: (6×8) Quilt tile containing sequen-
tial views of a scene, starting from the bottom-left tile as the input image. Lower right: A section of the Quilt
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optimized to speed up the processing and to approach future 
real-time implementations. The CNN processing exploits 
the capabilities provided by OpenCV to get the inference 
from the deep neural network (DNN) and is able to use 
the CUDA core, if present, or the usual CPU, as a fallback 
solution. Some parts of the source code (such as the crea-
tion of the views) have been optimized by using the parallel 
architecture provided by OpenCV. The problem image can 

Intermediate views generated using altiro3D are then added 
into a Quilt collage sequentially from a given N ×M number 
of computed intermediate snapshots as shown in the example 
of Fig. 1.

The processes involved and repeated within altiro3D (for 
the creation of any Native image/frames output as shown in 
Fig. 1), include

Fig. 2  A task for image inpainting: example of holes in some overall virtual digital images

be divided in some parts and each part can be processed by 
a CPU core, improving the speed.

To achieve the goal of a scene representation from sin-
gle image and novel view synthesis, altiro3D (i) takes into 
account display calibration data for each specific 3D monitor 
(including lenticular pitches, slope, screen height and width 
and number of lens per inch); (ii) implements a one-time con-
figuration LUT as a simple array indexing operations that save 
runtime computation of Eq. (1) below; (iii) uses the MiDaS 2.1 
DNN for a robust monocular depth map estimation. Although 
the MiDaS 2.1 small model (included in altiro3D code) can-
not provide complete depth information on distant regions. 
We mainly extrapolate information from nearby pixels only. 

identify LCD device-related parameters (e.g., the LG Portrait’s ”visual.json” file)
set input image resolution (e.g., 560× 420px) and Quilt size (e.g., 6× 8px)
→ generate LUT binary file (e.g., ”portrait-6x8.map”)

→ generate Quilt (e.g, resolution 3360× 3360px) given MiDaS model
→ generate Native: 3D image or 3D video (e.g., size 1536× 2048px)

→ send the Native to display on a free-view LCD device.

3.1  Calibration data from LG portrait

The device used to test the developed library is the LG 
Portrait holographic display. In order to proper map the 
pixels from Quilt image to the Native one, it is necessary 
to acquire the calibration of the display. As mentioned, 
the calibration data changes from device to device, so the 
calibration file is vital to produce the Native image.

The LG Portrait display provides the calibration data 
available from a simulated storage device accessible from 
the USB port. The user can connect the PC to the display 
to read the internal storage and to get the required file 
“visual.json”. The internal storage is provided by a Rasp-
berry PI embedded in the Portait display.
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3.2  LUT map from calibration file, quilt and inpainting

The LG Portrait per-device calibration file is necessary to 
create the LUT to properly create the Native image. The 
altiro3D suite provides the tool altiro3Dnative to exploit 
the data inside the calibration file and to create the LUT. 
The parameters required to generate the mapping are: the 
resolution of each image inside the Quilt and the number 
of rows and columns of the Quilt. From these arguments 
the program produces an output file, usually with exten-
sion .map, containing the map matrix, which is crucial for 
the other altiro3D generation steps and for all the other 
provided command tools.

The LUT is created only once at the beginning of 
the needed device-dependent mapping. Three matrices 
are allocated for the color channels RGB. Each matrix 
provides the X coordinate of the Quilt from which one 
takes the corresponding value and the Y coordinate. The 
multiplication by 2, allows to avoid unnecessary waste 
of resources and consume the least possible amount of 
RAM memory. All positions of the pixels are considered 
and one then calculates the mapping value for each pixel 
in the Quilt image. This value is stored in the 3 differ-
ent allocated matrices and each element of the matrices 
is made of type uint16_t. The matrices are then saved in 
binary format and these are reload (without recalculating) 
when applying the mapping to all the N ×M images. This 
LUT procedure allows to speed up significantly the needed 
mapping procedure—the rendering operation of the final 
native image which is essentially achieved by accessing 
the elements of the 3 matrices to map the Quilt pixels. 
The resolution of the LG display system corresponds to 
the 1536 × 2048 pixels. Each of the LG Portrait devices 
combine light-field and volumetric technologies, and have 
specific display calibration values for a correct rendering. 
This class of lenticular, autostereoscopic display require 
multiple views of a scene to provide motion parallax and 
get a realistic 3D experience by perceiving different ste-
reoscopic pairs.

A Quilt allows for an efficient way to store N ×M 
images, or frames from a video, forming a collage ordered 
as shown in Fig. 1 Quilts serve to save disk space and 
fast retrieving images to be displayed. The N ×M images 
forming the Quilt, are converted into a light-field image 
via the following expression for the relation between the 
pixels of a slanted lenticular 3D LCD and the multiple 
perspective views [23]

(1)Ni,j = Ntot(i − i
off
− 3jtan(�))mod(Px)∕P ,

where i and j denote the panel coordinates for each sub-
pixel. Each sub-pixel on the 3D LCD is mapped to a certain 
view number and color value (i.e., in the light-field domain). 
N denotes the view number of a certain viewpoint, � the 
slanted angle between the lenticular lens and the free-view 
LCD panel and Px the lenticular pitch.

The CPU time for the computer rendering of a Quilt, and 
especially the holographic multiview outputs, varies con-
siderably between different interpolation algorithms used 
to obtain a virtual translation motion between consecutive 
virtual images and the inpainting techniques adopted. These 
include an interpolation for the approximate neighborhood 
pixel intensities, warping, optimization, and the inpainting 
of occlusions (i.e., empty spots, out-of-plane movements as 
shown e.g. in Fig. 2) to get an acceptable illusion of depth 
and parallax in the horizontal direction.

Inferring depth from a single input image and synthesiz-
ing novel views is a significant challenge because of the 
huge need for objects information and rich geometric details 
(landscape, buildings, sky, etc) [4, 24]. In addition to depth 
ambiguities, pixels in the generated N-views may connect 
invisible geometries across regions occluded in the origi-
nal view causing missing data that must be handled with 
inpainting algorithms [25]. Image inpainting aims to fulfill 
those missing regions as in the image of Fig. 2 (in white) 
with plausible content and highly depends on the accuracy 
of the associated depth map.

For inpainting in the generation of multiviews within 
altiro3D, a default ”Fast” algorithm is implemented using 
opencv::remap to map all the pixels even if the output may 
become distorted sometimes [11]. For the "Real" genera-
tion of multiviews, giving as input an original RGB image 
and keeping all calibration parameters fixed, altiro3D uses 
Telea –an standard image inpainting technique based on the 
fast marching method [12].

3.3  Neural network implementation

The altiro3D library exploits the well-known MiDaS DNN 
to produce a reasonable depth map from a single image. The 
trained network is very effective and can be easily evaluated 
by using the DNN module of the OpenCV library. This mod-
ule can read the neural network coefficients and inference in 
an efficient way, the depth map starting from a generic single 
image. The format currently used by the altiro3D library is 
the onnx and the DNN module is configured to prefer CUDA 
speed-up. If the hardware is not present, the DNN automati-
cally switches to the CPU. The depth map can be properly 
re-scaled to be used in the other stages of the library where 
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Fig. 3  Left: Multiview Native output by altiro3D library. Middle: a section of the multiview Native output. Right: 3D display on a headset-free 
LG Protrait [15]—see also YouTube video: https:// www. youtu be. com/ shorts/ hJDVb 2TzBr0

views have to be fast generated to fill-in the Quilt image. 
From the Quilt image and the LUT, it is then possible to 
generate the output Native 3D image.

The C++ class devoted to the inference of the neural net-
work inside the altiro3D library is Network2Quilt. This is 
an application of a generic class Depth2Quilt which imple-
ments the optimized reading of the network coefficients, the 
DNN module configuration and the creation of the depth 
map. Currently the class is able to exploit only the MiDaS 
2.1 model-small.onnx and model-f6b98070.onnx. The 
source code will be updated in future releases of altiro3D 
to use other updated versions of MiDaS networks. From our 
test the small network is recommended if the speed is a cru-
cial point.

By default, a “Fast" algorithm is adopted here to handle 
a 3D virtual projection camera and scene transformations 
along N-viewpoints. This method analyzes the (down-)
degree of depth to move proportionally the pixels, assum-
ing the original image to be at the center of all the novel 
views. This is achieved using the ’cv::remap’ command of 
OpenCV [11] by taking pixels from one place in the image 
and locating them in another position in a new image. 
This fast approach gives reasonable virtual interpretations 
of reality—at least, within a wide Field of View (FoV)—
say, 40 − 100o . Generating arbitrary number of views can 
be sometimes cumbersome due to occlusion and opening 
regions leading to in-homogeneous motion fields.

In alternative to our “Fast" method for the genera-
tion of multiview images giving as input an original RGB 
image, altiro3D can also be used applying the DIBR algo-
rithm [13] to synthesize N number of virtual images from 
a (almost equivalent) real camera with N geometric view-
points between the original camera and the virtual camera. 

It requires to calibrate a priori several intrinsic and extrinsic 
camera for each RGB photo input.

3.4  Native image from N‑views

The generation of multiview images starting from a single 
image (or video frame) through altiro3D can still offer a 
potential alternative method for fast 3D vision. Better results 
may be found using MiDaS 3.1 hybrid and large models, but 
these require extensive computations for the conversion and 
present limits for any real-time 3D streaming.

With such simple processes involved based on monocular 
(color or b/w) scene and novel view synthesis, the altiro3D 
library provides several different programs. While the accu-
racy of the present approach may not be yet competitive with 
other multiview stereo algorithms [1–3], our simpler line 
of research is particularly promising due to the availabil-
ity of the diverse pre-trained models of MiDaS algorithm. 
Using MiDaS 2.1 (small or large) models, altiro3D creates 
from photo or videos frames a 3D Native image or a 3D 
video, respectively. The altiro3D library also allows to cre-
ate Native from still N-views, i.e., sorted in sequential order 
and stored in a given directory, with output as in Fig. 3, and 
convert a given 2D video to Native 3D video (.mp4) as well.

Scaling N ×M views—e.g., scaling from the (6 × 8) 
Quilt (of size 3360 × 3360px ) to a Native image (of size 
1536 × 2048px ) with an output illustrated as in Fig. 3, leads 
to increase system complexity and requires lots of CPU 
resources. However, as we discussed in [2, 3], this problem 
can be reduced with the generation of a device-dependent 
LUT table.

The class concerning the views creation is Depth2Quilt 
implemented starting from the evaluated depth map and 

https://www.youtube.com/shorts/hJDVb2TzBr0
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from the input image view. As anticipated, the current class 
provides two rendering methods: “Fast" and “Real". The 
“Fast" method is an efficient method to fast create multiple 
views to feed the Quilt image. The "Fast" implementation 
leverages on the fast remap method provided by the OpenCV 
library [11]. This is a simplified method and does not use a 
real model based on intrinsic and extrinsic matrices of cam-
era. There are simple approaches to estimate the focal length 
of a camera given the horizontal FoV and image width [26].

altiro3D simply creates a dense map to the new pose from 
the original image which is considered as the central image 
(mapped in the central position of the Quilt) and the depth as 
proportional to the distance. In a dual-camera depth recon-
struction algorithm, the depth map is related to the differ-
ence position of the same object in the reference frames of 
two cameras, so called “disparity map". So the depth can 
be interpreted as produced by a disparity map and it can 
be used to remap pixels of the central image according to 
the depth/disparity map. The process used in our simpler 
“Fast" method maps pixels in the new pose accordingly 
and proportionally to the depth. Then the produced map is 
applied to the original by the OpenCV remap function which 
is implemented with a linear interpolation algorithm. Such 
interpolation algorithm avoids artifacts due to occlusion 

and dis-occlusion with a modest image deformation. The 
flow of the "Fast" algorithm is shown with pseudo-code in 
Algorithm 1.

Where the depthMap is the depthmap obtained by the 
MiDaS network, offset is a multiplicative constant control-
ling the output view position, cols and rows are the the width 
and the height of the input image, origImage is the image 
acquired by the camera. If “specular views” have to be pro-
duced, the function GetFastMapFromDepth has to be called 
twice: the first time with offset and the second time with 
-offset.

On the other hand, the “Real" method considered is a 
more sophisticated implementation of a real camera DIBR 
model [13]. It takes into account two matrices, intrinsic and 
extrinsic, to produce the new real pose. The intrinsic matrix is 
related to the acquisition parameters such as focal and center 
of camera frame, while the extrinsic matrix is related to the 
position and attitude of the camera frame relative to the real 
world frame, where the original object is located. By modi-
fying the extrinsic camera it is possible to create a new view 
of the original image: the extrinsic matrix allows rotation or 
translation of the frame. This method takes into account the 
real model to get new views, but it produces more artifacts due 
to the occlusion and dis-occlusion effect. In order to reduce 
artifacts in the final view (c.f., Fig. 2), we apply an inpainting 
technique [12], along with a median spatial filter.

The “Real" method may be more effective, but the evalu-
ation of view is computational intensive compared to the 
alternative “Fast" method, so it is not well suited for real-
time implementations. To obtain geometric viewpoints 
between the original and virtual camera, the “Real" method 
also require calculation power for generating a final Native 
image with resolution 3360 × 3360px . RGB color channels 
for a 6 × 8 Quilt—such that, once the pixel to be mapped is 
fixed, the map value for each color channel implies separated 
calculations. In essence this procedure as such makes real-
time video in 3D difficult to achieve.

The pseudo-code of the “Real" algorithm is summarized 
in Algorithm 2. In main loop the views are created according 

Algorithm 2: Real algorithm to create intermediate views

Require: depthMap, offset, origImage
Ensure: dst1, dst2

function GetRealMapFromDepth(origImage, depthMap, offset, Ko, Ro, Kv, Rv)
R ← init rotation matrix
T ← init translation vector
T[0] ← offset
Rv ← createExtrinsicMatrix(R, T)
setMatrices(Ko, Ro, Kv, Rv) � To create transform from original matrices to the new virtual pose
setInput(origImage, depthMap) � To set input image and depth
evalTransform � To create a new view
return getProducedView

end function

for i = 1 to numberOfViews/2 do � Main loop
offset ← position of view to be produced
dst1 ← GetRealMapFromDepth(origImage, depthMap, offset, Ko, Ro, Kv, Rv)
dst2 ← GetRealMapFromDepth(origImage, depthMap, -offset, Ko, Ro, Kv, Rv)

end for

Require: depthMap, offset, cols, rows, origImage
Ensure: destImage

function GetFastMapFromDepth(depthMap, offset, cols, rows)
MapX ← 0
MapY ← 0
for c = 1 to cols do

for r = 1 to rows do
MapX[r,c]= r
MapY[r,c]= c−depthMap[r,c]∗offset

end for
end for
return MapX, MapY

end function

MapX,MapY ← GetFastMapFromDepth(depthMap, offset, cols, rows)
destImage ← cv::remap(origImage, MapX, MapY)

Algorithm 1: Fast algorithm to create intermediate views
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to the value of the offset parameter. Every loop produces 
two output images with a symmetric offset value. The func-
tion GetRealMapFromDepth sets all the needed structures to 
evaluate the transform from the single image to the required 
view. This function exploits a camera model composed by 
intrinsic and extrinsic matrix: the function generates the 
transformation from the original set of matrices (Ko , R o ) to 
the virtual pose (Kv , R v).

4  Conclusion and future work

We introduced the altiro3D C++ library to synthesize 
N-number of virtual images and add them sequentially into 
a Quilt collage by applying MiDaS code for the monocular 
depth estimation. Novel view synthesis from a single image 
is carried out by using simple inpainting techniques to map 
all pixels, and implementing “Fast" and “Real" algorithms 
for the camera and scene transformations along N-view-
points. A unique pixel- and device-based LUT to optimize 
computing time is implemented. In the absence of a LUT 
procedure, it would become computationally expensive and 
difficult to apply many techniques for real-time video in 3D.

This latter aspect of our algorithm could stimulate further 
investigations toward real-time 3D applications deployed 
from Desktop computers and/to mobile devices  [27]. 
Streaming in real time a hologram feed is computationally 
demanding, because of the larger amount of information 
contained in the many light-fields to be streamed live, as 
compared to sending “realistic" frames (of monocular views) 
via 2D video streams. Finally, removing the dependency on 
stereoscopic images as input  [2, 3], it makes our altiro3D 
algorithm more widely applicable to a larger amount of 
entire (historical) datasets. The generated images may be 
further improved by obtaining more “realistic" perspectives 
from recent machine learning or deep learning algorithms of 
MiDaS 3.1 to obtain meaningful information [7].

In future work, we want to extend the present scene static 
representation from a single image to a more dynamical, 
glasses free live 3D vision. The N-view synthesis of altiro3D 
in this case requires a fast conversion of each video frame into 
native light-field images, and respective Quilts, at a reasonable 
frame rate of at least 10fps in order to get a free-viewpoint 
real-time streaming on lenticular displays. These interesting 
directions have tremendous potential to be explored.

Data availability Further information, binaries, papers, presenta-
tions, manuals, or to report bugs, can be found athttps:// github. com/ 
canes sae/ altir o3D.
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