
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (January 2024) 16(1):33–42
https://doi.org/10.1007/s41870-023-01590-3

ORIGINAL RESEARCH

altiro3d: scene representation from single image and novel view
synthesis

L. Tenze1 · E. Canessa1

Received: 6 July 2023 / Accepted: 6 October 2023 / Published online: 16 November 2023
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2023

Abstract We introduce altiro3D, a free extended C++
library developed to represent reality starting from a given
original RGB image or flat video. It allows to generate a
light-field (or Native) image or video and get a realistic 3D
experience. To synthesize N-number of virtual images and
add them sequentially into a Quilt collage, we apply MiDaS
models for the monocular depth estimation, simple OpenCV
and Telea inpainting techniques to map all pixels, and imple-
ment a "Fast" algorithm to handle 3D projection camera
and scene transformations along N-viewpoints. We use the

degree of depth to move proportionally the pixels, assuming
the original image to be at the center of all the viewpoints.
altiro3D can also be used with DIBR algorithm to compute
intermediate snapshots from a equivalent "Real (slower)"
camera with N-geometric viewpoints, which requires to cali-
brate a priori several intrinsic and extrinsic camera param-
eters. We adopt a pixel- and device-based Lookup Table
to optimize computing time. The multiple viewpoints and
video generated from a single image or frame can be dis-
played in a free-view LCD display.

 * E. Canessa
 canessae@ictp.it

1 The Abdus Salam International Centre for Theoretical
Physics, ICTP, Trieste 34151, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01590-3&domain=pdf
http://orcid.org/0000-0002-9581-9419

34 Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

Graphical abstract Flow diagram of altiro3D

LCD designed to efficiently compress all the image process-
ing time to approach realistic 3D rendering. This is a free,
extended C++ library developed to reconstruct reality start-
ing from a still RGB image or flat video to generate a light-
field (or Native) image or video and get a realistic 3D expe-
rience. In order to synthesize N-number of virtual images
and add them sequentially into a N ×M Quilt collage, we
apply MiDaS coding for the monocular depth estimation [7],
the OpenCV mapping [11] and Telea [12] inpainting tech-
niques to map all pixels, and implement a "Fast" algorithm
to mimic 3D projection and scene transformations along
the synthesized N-viewpoints. altiro3D uses the degree of
depth to move proportionally the pixels, assuming the origi-
nal image to be at the center of all the viewpoints. altiro3D
can also be used with the Depth Image Based Rendering
(DIBR) algorithm to compute in-between snapshots from a
equivalent "Real (slower)" camera with N-geometric view-
points, which requires to calibrate a priori several intrinsic
and extrinsic camera parameters [13]. We adopt a pixel- and
device-based Lookup Table (LUT) taking into account dis-
play calibration data for specific 3D monitors. As discussed
in [2, 3], the implementation of LUT allows reduction in the
computing time of about 50%. The multiple viewpoints and
video generated from single-shot data can be displayed in
any free-view LCD display [14], such as the slanted lenticu-
lar Looking Glass (LG) Portrait [15]. The latter is a low-cost
lenticular 3D device which allows to reduce loss of resolu-
tion in the horizontal direction by slanting the structure of
the lenticular lens.

1 ’altiro’: Real Academia Española: adv. coloq. Chile. ’inmediately’
(to the point, fast).

Keywords 3D computer vision · Light-field · Multiview ·
Deep convolutional neural networks

1 Introduction

There has been a growing interest in 3D scene represen-
tation and multiview synthesis using a RGB-D (color and
depth) input image or a pair of stereoscopic images and their
relative depth map (see e.g., [1], Morpholo [2, 3]). These
efforts may lead to impressive realistic results but still incur
high computational complexity, making them ill-suited to
run live streaming applications. Alternative methods that
have the key advantage of rendering the 3D computer recon-
struction faster, are those novel methods starting from just a
single, query RGB image given as the input, see e.g., [4–8].
This new possibility arises with the recent advancements
in modeling the 3D visual world through the generation of
depth maps from monocular images. These can be produced
by convolutional neural network (CNN) models such as the
so-called MiDaS (2.1 and 3.1) algorithms trained over large-
scale RGB datasets (6 and 12, respectively) [7]. Tremendous
progress has been done with this alternative framework in
recent years [9, 10].

The purpose of this work is to introduce altiro3D1, a new
2D-to-3D image and video conversion library for free-view

35Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

altiro3D is implemented with the goal of minimizing the
image processing time to approach real time applications in
3D streaming without the need for the viewer to wear any
special 3D glasses. On the whole, altiro3D command lines
allows to effectively

• Create Native (i.e., 3D image) from photo using MiDaS
small.

• Create Native from photo using MiDaS large.
• Create Native from a given original RGB image and

depth image.
• Create Native from a given Quilt (N×M).
• Create Native from sorted N-views (i.e., sequential set of

plain images) stored in a given directory.
• Convert Quilt views to 2D video (.mp4).
• Convert given 2D video to Native 3D video (.mp4).

Our work leverages the advancement on 3D vision using a
single image or frame and presents a framework designed for
the Linux O.S. environment. Moreover, our work does not
require the use of heavy computing runtime, thus can sup-
port a wide range of application scenarios in education and
science, among others. The visual quality of our synthesized
views provides a rather realistic immersive experience.

2 Related work: depth map from single image

As discussed in [16], monocular deep estimation networks
are classified into these categories: supervised, unsupervised
and self-supervised learning. The first to apply supervised
learning for monocular image depth estimation were Eigen
et al. [4]. Their method uses for training, the input image and
the corresponding depth map to directly output the depth
prediction. Semi-supervised methods can obtain the cor-
responding depth map by training with less data sets [17].
Unsupervised and self-supervised learning methods enables
the network to perform deep predictions from unlabeled
images. Some approaches pass the whole image into the
network and perform convolution operation to only capture
local information. This limits passing information to other
sequence representations and leads to low prediction accu-
racy. Despite these limitations, deep learning-based monoc-
ular depth estimation that uses, e.g., CNN is a growing area
of research. These are methods limited to those scenarios
present in the process of training on the datasets [18, 19].

Recent review articles on the state-of-the-art develop-
ment and representative algorithms for deep learning-based
monocular depth estimation, which perform more accurately
under the many restricted conditions, can be found in [5, 6].
They review some mainstream monocular depth estimation
methods based on deep learning with examples according to

different datasets training. In particular, included are a vari-
ety of supervised learning methods to address the monocu-
lar depth estimation, in terms of (i) CNN-based method: to
capture depth features layer by layer through their convolu-
tion kernels and recover depth maps by deconvolution to
meet the spatial features of the scene; (ii) recurrent neural
network (RNN): designed to learn spatial-temporal features
from video sequences; (iii) generative adversarial network
(GAN): introduced to generate and discriminate between
depth maps. The confrontation between a generator and dis-
criminator function facilitates the training of the framework.
These surveys also introduce publicly available datasets and
evaluation metrics that have made significant contributions
to monocular depth estimation.

Very recently, a biologically inspired deep learning net-
work for monocular depth estimation has been reported
in [16]. This is based on a relationship between the self-
attention mechanism in biological visual systems and the
monocular depth estimation network. The input to the net-
work are normalized 3D (RGB) pixel values and informa-
tion interaction is established between an encoder, decoder
and self-attention fusion unit. The function of the encoder is
similar to the retina, processing visual information through
integration, and transmitting the information to a next-level
module. The information transfer between each module in
this bio-network mapping enables the deep learning net-
work to output a depth map with rich object information
and detailed information.

In our work we follow some of the ideas in [5, 6] and
apply a CNN-based method. Specifically we utilize MiDaS
models [7] to process an input image and produce multiple
views of a scene. By estimating a reasonable accurate depth
map in this way, we render synthesized views with a DIBR
process [13]. Output pixels in the N-views are shifted cop-
ies of the input image’s pixels. Unlike prior work, the depth
map generated within our altiro3D algorithm is not com-
pared against any real depth map and it serves the purpose
to represent horizontal parallax upon geometric constraints
between image sequences. As another difference, comput-
ing calculations are speed up by implementing a pixel- and
device-based LUT as in [2, 3].

3 Implementation

The simplest hardware needed to implement altiro3D is a
standard PC Computer (Intel Core i5, 64bit and at least 4 G
RAM), running a recent release of Linux O.S. (22.04LT or
newer) and any slanted lenticular display such as the LG
Portrait [15]. This is an external HDMI video monitor which
provides a novel glasses-free way to preview 3D objects and
scenes within an exteded FoV.

36 Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

The overall system has been developed in C++ and
deeply exploits libraries Qt v.5 [20] and OpenCV v.4 [21].
The system consists in a main library, libaltiro3D, where all
developed algorithms have been implemented together with
a set of program tools exploiting the library routines. All
important aspects of the library have been properly docu-
mented with Doxygen [22] in order to provide other users a
good reference to use the library.

The present altiro3D library is an evolution of our previ-
ous Morpholo library [2, 3]. These two have been designed
taking into account the naming convention used in the litera-
ture related to the field of 3D rendering and in particular, to
the conventions used by the display produced by the LG. So

Quilt, Native, Multiviews and other similar terms are used
to identify graphical objects and processing steps inside the
new altiro3D library. In addition to the algorithm to produce
N-views feeding the holographic display, the Morpholo library
implemented both routines to get info about the calibration of
the target display and functions to produce the LUT in order
to speed up the mapping from Quilt to Native.

With respect to the previous Morpholo library, the alti-
ro3D library has been integrated with sources taking into
account the CNN neural network inference and two new
models to generate, from a single image, intermediate
views. These views are used to create the Quilt and, hence,
to produce the Native image. Both these steps have been

Fig. 1 Upper left: Original RGB input photo. Upper right: Depth map obtained using MiDaS [7]. Lower left: (6×8) Quilt tile containing sequen-
tial views of a scene, starting from the bottom-left tile as the input image. Lower right: A section of the Quilt

37Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

optimized to speed up the processing and to approach future
real-time implementations. The CNN processing exploits
the capabilities provided by OpenCV to get the inference
from the deep neural network (DNN) and is able to use
the CUDA core, if present, or the usual CPU, as a fallback
solution. Some parts of the source code (such as the crea-
tion of the views) have been optimized by using the parallel
architecture provided by OpenCV. The problem image can

Intermediate views generated using altiro3D are then added
into a Quilt collage sequentially from a given N ×M number
of computed intermediate snapshots as shown in the example
of Fig. 1.

The processes involved and repeated within altiro3D (for
the creation of any Native image/frames output as shown in
Fig. 1), include

Fig. 2 A task for image inpainting: example of holes in some overall virtual digital images

be divided in some parts and each part can be processed by
a CPU core, improving the speed.

To achieve the goal of a scene representation from sin-
gle image and novel view synthesis, altiro3D (i) takes into
account display calibration data for each specific 3D monitor
(including lenticular pitches, slope, screen height and width
and number of lens per inch); (ii) implements a one-time con-
figuration LUT as a simple array indexing operations that save
runtime computation of Eq. (1) below; (iii) uses the MiDaS 2.1
DNN for a robust monocular depth map estimation. Although
the MiDaS 2.1 small model (included in altiro3D code) can-
not provide complete depth information on distant regions.
We mainly extrapolate information from nearby pixels only.

identify LCD device-related parameters (e.g., the LG Portrait’s ”visual.json” file)
set input image resolution (e.g., 560× 420px) and Quilt size (e.g., 6× 8px)
→ generate LUT binary file (e.g., ”portrait-6x8.map”)

→ generate Quilt (e.g, resolution 3360× 3360px) given MiDaS model
→ generate Native: 3D image or 3D video (e.g., size 1536× 2048px)

→ send the Native to display on a free-view LCD device.

3.1 Calibration data from LG portrait

The device used to test the developed library is the LG
Portrait holographic display. In order to proper map the
pixels from Quilt image to the Native one, it is necessary
to acquire the calibration of the display. As mentioned,
the calibration data changes from device to device, so the
calibration file is vital to produce the Native image.

The LG Portrait display provides the calibration data
available from a simulated storage device accessible from
the USB port. The user can connect the PC to the display
to read the internal storage and to get the required file
“visual.json”. The internal storage is provided by a Rasp-
berry PI embedded in the Portait display.

38 Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

3.2 LUT map from calibration file, quilt and inpainting

The LG Portrait per-device calibration file is necessary to
create the LUT to properly create the Native image. The
altiro3D suite provides the tool altiro3Dnative to exploit
the data inside the calibration file and to create the LUT.
The parameters required to generate the mapping are: the
resolution of each image inside the Quilt and the number
of rows and columns of the Quilt. From these arguments
the program produces an output file, usually with exten-
sion .map, containing the map matrix, which is crucial for
the other altiro3D generation steps and for all the other
provided command tools.

The LUT is created only once at the beginning of
the needed device-dependent mapping. Three matrices
are allocated for the color channels RGB. Each matrix
provides the X coordinate of the Quilt from which one
takes the corresponding value and the Y coordinate. The
multiplication by 2, allows to avoid unnecessary waste
of resources and consume the least possible amount of
RAM memory. All positions of the pixels are considered
and one then calculates the mapping value for each pixel
in the Quilt image. This value is stored in the 3 differ-
ent allocated matrices and each element of the matrices
is made of type uint16_t. The matrices are then saved in
binary format and these are reload (without recalculating)
when applying the mapping to all the N ×M images. This
LUT procedure allows to speed up significantly the needed
mapping procedure—the rendering operation of the final
native image which is essentially achieved by accessing
the elements of the 3 matrices to map the Quilt pixels.
The resolution of the LG display system corresponds to
the 1536 × 2048 pixels. Each of the LG Portrait devices
combine light-field and volumetric technologies, and have
specific display calibration values for a correct rendering.
This class of lenticular, autostereoscopic display require
multiple views of a scene to provide motion parallax and
get a realistic 3D experience by perceiving different ste-
reoscopic pairs.

A Quilt allows for an efficient way to store N ×M
images, or frames from a video, forming a collage ordered
as shown in Fig. 1 Quilts serve to save disk space and
fast retrieving images to be displayed. The N ×M images
forming the Quilt, are converted into a light-field image
via the following expression for the relation between the
pixels of a slanted lenticular 3D LCD and the multiple
perspective views [23]

(1)Ni,j = Ntot(i − i
off
− 3jtan(�))mod(Px)∕P ,

where i and j denote the panel coordinates for each sub-
pixel. Each sub-pixel on the 3D LCD is mapped to a certain
view number and color value (i.e., in the light-field domain).
N denotes the view number of a certain viewpoint, � the
slanted angle between the lenticular lens and the free-view
LCD panel and Px the lenticular pitch.

The CPU time for the computer rendering of a Quilt, and
especially the holographic multiview outputs, varies con-
siderably between different interpolation algorithms used
to obtain a virtual translation motion between consecutive
virtual images and the inpainting techniques adopted. These
include an interpolation for the approximate neighborhood
pixel intensities, warping, optimization, and the inpainting
of occlusions (i.e., empty spots, out-of-plane movements as
shown e.g. in Fig. 2) to get an acceptable illusion of depth
and parallax in the horizontal direction.

Inferring depth from a single input image and synthesiz-
ing novel views is a significant challenge because of the
huge need for objects information and rich geometric details
(landscape, buildings, sky, etc) [4, 24]. In addition to depth
ambiguities, pixels in the generated N-views may connect
invisible geometries across regions occluded in the origi-
nal view causing missing data that must be handled with
inpainting algorithms [25]. Image inpainting aims to fulfill
those missing regions as in the image of Fig. 2 (in white)
with plausible content and highly depends on the accuracy
of the associated depth map.

For inpainting in the generation of multiviews within
altiro3D, a default ”Fast” algorithm is implemented using
opencv::remap to map all the pixels even if the output may
become distorted sometimes [11]. For the "Real" genera-
tion of multiviews, giving as input an original RGB image
and keeping all calibration parameters fixed, altiro3D uses
Telea –an standard image inpainting technique based on the
fast marching method [12].

3.3 Neural network implementation

The altiro3D library exploits the well-known MiDaS DNN
to produce a reasonable depth map from a single image. The
trained network is very effective and can be easily evaluated
by using the DNN module of the OpenCV library. This mod-
ule can read the neural network coefficients and inference in
an efficient way, the depth map starting from a generic single
image. The format currently used by the altiro3D library is
the onnx and the DNN module is configured to prefer CUDA
speed-up. If the hardware is not present, the DNN automati-
cally switches to the CPU. The depth map can be properly
re-scaled to be used in the other stages of the library where

39Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

Fig. 3 Left: Multiview Native output by altiro3D library. Middle: a section of the multiview Native output. Right: 3D display on a headset-free
LG Protrait [15]—see also YouTube video: https:// www. youtu be. com/ shorts/ hJDVb 2TzBr0

views have to be fast generated to fill-in the Quilt image.
From the Quilt image and the LUT, it is then possible to
generate the output Native 3D image.

The C++ class devoted to the inference of the neural net-
work inside the altiro3D library is Network2Quilt. This is
an application of a generic class Depth2Quilt which imple-
ments the optimized reading of the network coefficients, the
DNN module configuration and the creation of the depth
map. Currently the class is able to exploit only the MiDaS
2.1 model-small.onnx and model-f6b98070.onnx. The
source code will be updated in future releases of altiro3D
to use other updated versions of MiDaS networks. From our
test the small network is recommended if the speed is a cru-
cial point.

By default, a “Fast" algorithm is adopted here to handle
a 3D virtual projection camera and scene transformations
along N-viewpoints. This method analyzes the (down-)
degree of depth to move proportionally the pixels, assum-
ing the original image to be at the center of all the novel
views. This is achieved using the ’cv::remap’ command of
OpenCV [11] by taking pixels from one place in the image
and locating them in another position in a new image.
This fast approach gives reasonable virtual interpretations
of reality—at least, within a wide Field of View (FoV)—
say, 40 − 100o . Generating arbitrary number of views can
be sometimes cumbersome due to occlusion and opening
regions leading to in-homogeneous motion fields.

In alternative to our “Fast" method for the genera-
tion of multiview images giving as input an original RGB
image, altiro3D can also be used applying the DIBR algo-
rithm [13] to synthesize N number of virtual images from
a (almost equivalent) real camera with N geometric view-
points between the original camera and the virtual camera.

It requires to calibrate a priori several intrinsic and extrinsic
camera for each RGB photo input.

3.4 Native image from N‑views

The generation of multiview images starting from a single
image (or video frame) through altiro3D can still offer a
potential alternative method for fast 3D vision. Better results
may be found using MiDaS 3.1 hybrid and large models, but
these require extensive computations for the conversion and
present limits for any real-time 3D streaming.

With such simple processes involved based on monocular
(color or b/w) scene and novel view synthesis, the altiro3D
library provides several different programs. While the accu-
racy of the present approach may not be yet competitive with
other multiview stereo algorithms [1–3], our simpler line
of research is particularly promising due to the availabil-
ity of the diverse pre-trained models of MiDaS algorithm.
Using MiDaS 2.1 (small or large) models, altiro3D creates
from photo or videos frames a 3D Native image or a 3D
video, respectively. The altiro3D library also allows to cre-
ate Native from still N-views, i.e., sorted in sequential order
and stored in a given directory, with output as in Fig. 3, and
convert a given 2D video to Native 3D video (.mp4) as well.

Scaling N ×M views—e.g., scaling from the (6 × 8)
Quilt (of size 3360 × 3360px) to a Native image (of size
1536 × 2048px) with an output illustrated as in Fig. 3, leads
to increase system complexity and requires lots of CPU
resources. However, as we discussed in [2, 3], this problem
can be reduced with the generation of a device-dependent
LUT table.

The class concerning the views creation is Depth2Quilt
implemented starting from the evaluated depth map and

https://www.youtube.com/shorts/hJDVb2TzBr0

40 Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

from the input image view. As anticipated, the current class
provides two rendering methods: “Fast" and “Real". The
“Fast" method is an efficient method to fast create multiple
views to feed the Quilt image. The "Fast" implementation
leverages on the fast remap method provided by the OpenCV
library [11]. This is a simplified method and does not use a
real model based on intrinsic and extrinsic matrices of cam-
era. There are simple approaches to estimate the focal length
of a camera given the horizontal FoV and image width [26].

altiro3D simply creates a dense map to the new pose from
the original image which is considered as the central image
(mapped in the central position of the Quilt) and the depth as
proportional to the distance. In a dual-camera depth recon-
struction algorithm, the depth map is related to the differ-
ence position of the same object in the reference frames of
two cameras, so called “disparity map". So the depth can
be interpreted as produced by a disparity map and it can
be used to remap pixels of the central image according to
the depth/disparity map. The process used in our simpler
“Fast" method maps pixels in the new pose accordingly
and proportionally to the depth. Then the produced map is
applied to the original by the OpenCV remap function which
is implemented with a linear interpolation algorithm. Such
interpolation algorithm avoids artifacts due to occlusion

and dis-occlusion with a modest image deformation. The
flow of the "Fast" algorithm is shown with pseudo-code in
Algorithm 1.

Where the depthMap is the depthmap obtained by the
MiDaS network, offset is a multiplicative constant control-
ling the output view position, cols and rows are the the width
and the height of the input image, origImage is the image
acquired by the camera. If “specular views” have to be pro-
duced, the function GetFastMapFromDepth has to be called
twice: the first time with offset and the second time with
-offset.

On the other hand, the “Real" method considered is a
more sophisticated implementation of a real camera DIBR
model [13]. It takes into account two matrices, intrinsic and
extrinsic, to produce the new real pose. The intrinsic matrix is
related to the acquisition parameters such as focal and center
of camera frame, while the extrinsic matrix is related to the
position and attitude of the camera frame relative to the real
world frame, where the original object is located. By modi-
fying the extrinsic camera it is possible to create a new view
of the original image: the extrinsic matrix allows rotation or
translation of the frame. This method takes into account the
real model to get new views, but it produces more artifacts due
to the occlusion and dis-occlusion effect. In order to reduce
artifacts in the final view (c.f., Fig. 2), we apply an inpainting
technique [12], along with a median spatial filter.

The “Real" method may be more effective, but the evalu-
ation of view is computational intensive compared to the
alternative “Fast" method, so it is not well suited for real-
time implementations. To obtain geometric viewpoints
between the original and virtual camera, the “Real" method
also require calculation power for generating a final Native
image with resolution 3360 × 3360px . RGB color channels
for a 6 × 8 Quilt—such that, once the pixel to be mapped is
fixed, the map value for each color channel implies separated
calculations. In essence this procedure as such makes real-
time video in 3D difficult to achieve.

The pseudo-code of the “Real" algorithm is summarized
in Algorithm 2. In main loop the views are created according

Algorithm 2: Real algorithm to create intermediate views

Require: depthMap, offset, origImage
Ensure: dst1, dst2

function GetRealMapFromDepth(origImage, depthMap, offset, Ko, Ro, Kv, Rv)
R ← init rotation matrix
T ← init translation vector
T[0] ← offset
Rv ← createExtrinsicMatrix(R, T)
setMatrices(Ko, Ro, Kv, Rv) � To create transform from original matrices to the new virtual pose
setInput(origImage, depthMap) � To set input image and depth
evalTransform � To create a new view
return getProducedView

end function

for i = 1 to numberOfViews/2 do � Main loop
offset ← position of view to be produced
dst1 ← GetRealMapFromDepth(origImage, depthMap, offset, Ko, Ro, Kv, Rv)
dst2 ← GetRealMapFromDepth(origImage, depthMap, -offset, Ko, Ro, Kv, Rv)

end for

Require: depthMap, offset, cols, rows, origImage
Ensure: destImage

function GetFastMapFromDepth(depthMap, offset, cols, rows)
MapX ← 0
MapY ← 0
for c = 1 to cols do

for r = 1 to rows do
MapX[r,c]= r
MapY[r,c]= c−depthMap[r,c]∗offset

end for
end for
return MapX, MapY

end function

MapX,MapY ← GetFastMapFromDepth(depthMap, offset, cols, rows)
destImage ← cv::remap(origImage, MapX, MapY)

Algorithm 1: Fast algorithm to create intermediate views

41Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

to the value of the offset parameter. Every loop produces
two output images with a symmetric offset value. The func-
tion GetRealMapFromDepth sets all the needed structures to
evaluate the transform from the single image to the required
view. This function exploits a camera model composed by
intrinsic and extrinsic matrix: the function generates the
transformation from the original set of matrices (Ko , R o) to
the virtual pose (Kv , R v).

4 Conclusion and future work

We introduced the altiro3D C++ library to synthesize
N-number of virtual images and add them sequentially into
a Quilt collage by applying MiDaS code for the monocular
depth estimation. Novel view synthesis from a single image
is carried out by using simple inpainting techniques to map
all pixels, and implementing “Fast" and “Real" algorithms
for the camera and scene transformations along N-view-
points. A unique pixel- and device-based LUT to optimize
computing time is implemented. In the absence of a LUT
procedure, it would become computationally expensive and
difficult to apply many techniques for real-time video in 3D.

This latter aspect of our algorithm could stimulate further
investigations toward real-time 3D applications deployed
from Desktop computers and/to mobile devices [27].
Streaming in real time a hologram feed is computationally
demanding, because of the larger amount of information
contained in the many light-fields to be streamed live, as
compared to sending “realistic" frames (of monocular views)
via 2D video streams. Finally, removing the dependency on
stereoscopic images as input [2, 3], it makes our altiro3D
algorithm more widely applicable to a larger amount of
entire (historical) datasets. The generated images may be
further improved by obtaining more “realistic" perspectives
from recent machine learning or deep learning algorithms of
MiDaS 3.1 to obtain meaningful information [7].

In future work, we want to extend the present scene static
representation from a single image to a more dynamical,
glasses free live 3D vision. The N-view synthesis of altiro3D
in this case requires a fast conversion of each video frame into
native light-field images, and respective Quilts, at a reasonable
frame rate of at least 10fps in order to get a free-viewpoint
real-time streaming on lenticular displays. These interesting
directions have tremendous potential to be explored.

Data availability Further information, binaries, papers, presenta-
tions, manuals, or to report bugs, can be found athttps:// github. com/
canes sae/ altir o3D.

Declarations

Conflict of interest The authors have no competing interests to de-
clare that are relevant to the content of this article.

References

 1. Anantrasirichai N, Geravand M, et al. (2021) “Fast Depth Esti-
mation for View Synthesis”, 28th European Signal Processing
Conference (EUSIPCO), 575-579. https:// doi. org/ 10. 23919/ Eusip
co479 68. 2020. 92873 71 ArXiv: https:// arxiv. org/ abs/ 2003. 06637
Last visited 30 Mar 2023

 2. Canessa E, Tenze L (2020) Morpholo: a hologram generator algo-
rithm. Electron Imaging 53:53-1–53-5. https:// doi. org/ 10. 2352/
ISSN. 2470- 1173. 2020.2. SDA- 053

 3. Canessa E, Tenze L (2000) Morphing a stereogram into hologram.
J Imaging 6:1. https:// doi. org/ 10. 3390/ jimag ing60 10001

 4. Eigen D, Puhrsch C et al. (2014) "Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network", NIPS’14: Proc.
27th Intl. Conf. Neural Information Process. Sys. 2, 2366-2374.
https:// doi. org/ 10. 5555/ 29690 33. 29690 91 ArXiv: https:// arxiv.
org/ abs/ 1406. 2283 Last visited 30 Mar 2023

 5. Zhao Ch, Sun QY et al. (2020) “Monocular depth estimation
based on deep learning: An overview”, Sci China Tech Sciences
63, 1612-1627. https:// doi. org/ 10. 1007/ s11431- 020- 1582-8
ArXiv: https:// arxiv. org/ abs/ 2003. 06620 Last visited 30 Mar 2023

 6. Ming Y, Meng X et al (2021) Deep learning for monocular depth
estimation: a review. Neurocomputing 438:14–33. https:// doi. org/
10. 1016/j. neucom. 2020. 12. 089

 7. Ranftl R, Lasinger K et al. (2022) “Towards Robust Monocular
Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset
Transfer”, IEEE Trans. Pattern Analysis. Mach. Intell. 44, 1623-
1637. https:// doi. org/ 10. 1109/ TPAMI. 2020. 30199 67 ArXiv:
https:// arxiv. org/ abs/ 1907. 01341 v3 Last visited 30 Mar 2023

 8. Bhat SF, Birkl R et al. "ZoeDepth: Zero-shot Transfer by Combin-
ing Relative and Metric Depth", Arxiv: https:// arxiv. org/ abs/ 2302.
12288 Last visited 30 Mar 2023

 9. Pandey J, Asati AR (2023) Lightweight convolutional neu-
ral network architecture implementation using TensorFlow
lite. Int J Inf Tecnol 15:2489–2498. https:// doi. org/ 10. 1007/
s41870- 023- 01320-9

 10. Chaurasiya R, Ganotra D (2023) Deep dilated CNN based image
denoising. Int J Inf Tecnol 15:137–148. https:// doi. org/ 10. 1007/
s41870- 022- 01125-2

 11. OpenCV—simple remapping and impainting implementation:
https:// docs. opencv. org/3. 4/ d1/ da0/ tutor ial_ remap. html and
https:// docs. opencv. org/3. 4/ df/ d3d/ tutor ial_ py_ inpai nting. html
Last visited 30 Mar 2023

 12. Telea A (2004) An image inpainting technique based on the fast
marching method. J Graphics Tools 9:23–34. https:// doi. org/ 10.
1080/ 10867 651. 2004. 10487 596

 13. Fehn C (2004) “Depth-image-based rendering (DIBR), com-
pression, and transmission for a new approach on 3D-TV”, Proc.
SPIE 5291, Stereoscopic Displays and Virtual Reality Systems
XI. https:// doi. org/ 10. 1117/ 12. 524762 Code available at https://
github. com/ 3Zade SSG/ DIBR- Algor ithm Last visited 30 Mar 2023

 14. Takaki Y, Tanaka K, Nakamura J (2011) Super multi-view display
with a lower resolution flat-panel display. Opt Express 19:4129.
https:// doi. org/ 10. 1364/ OE. 19. 004129

 15. Low cost Looking Glass Portrait: https:// looki nggla ssfac tory. com/
looki ng- glass- portr ait Last visited 30 Mar 2023

 16. Wang J, Chen Y et al (2023) SABV-depth: a biologically inspired
deep learning network for monocular depth estimation. Knowl-
Based Syst 263:110301–14. https:// doi. org/ 10. 1016/j. knosys.
2023. 110301

 17. Shamalik R, Koli S (2023) FabDepth I: a unique dataset for effi-
cient gesture detection. Int J Inf Tecnol 15:2645–2649. https:// doi.
org/ 10. 1007/ s41870- 023- 01295-7

https://github.com/canessae/altiro3D
https://github.com/canessae/altiro3D
https://doi.org/10.23919/Eusipco47968.2020.9287371
https://doi.org/10.23919/Eusipco47968.2020.9287371
https://arxiv.org/abs/2003.06637
https://doi.org/10.2352/ISSN.2470-1173.2020.2.SDA-053
https://doi.org/10.2352/ISSN.2470-1173.2020.2.SDA-053
https://doi.org/10.3390/jimaging6010001
https://doi.org/10.5555/2969033.2969091
https://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1406.2283
https://doi.org/10.1007/s11431-020-1582-8
https://arxiv.org/abs/2003.06620
https://doi.org/10.1016/j.neucom.2020.12.089
https://doi.org/10.1016/j.neucom.2020.12.089
https://doi.org/10.1109/TPAMI.2020.3019967
https://arxiv.org/abs/1907.01341v3
https://arxiv.org/abs/2302.12288
https://arxiv.org/abs/2302.12288
https://doi.org/10.1007/s41870-023-01320-9
https://doi.org/10.1007/s41870-023-01320-9
https://doi.org/10.1007/s41870-022-01125-2
https://doi.org/10.1007/s41870-022-01125-2
https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html
https://docs.opencv.org/3.4/df/d3d/tutorial_py_inpainting.html
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1117/12.524762
https://github.com/3ZadeSSG/DIBR-Algorithm
https://github.com/3ZadeSSG/DIBR-Algorithm
https://doi.org/10.1364/OE.19.004129
https://lookingglassfactory.com/looking-glass-portrait
https://lookingglassfactory.com/looking-glass-portrait
https://doi.org/10.1016/j.knosys.2023.110301
https://doi.org/10.1016/j.knosys.2023.110301
https://doi.org/10.1007/s41870-023-01295-7
https://doi.org/10.1007/s41870-023-01295-7

42 Int. j. inf. tecnol. (January 2024) 16(1):33–42

1 3

 18. Chetty G, Yamin M, White M (2022) A low resource 3D U-Net
based deep learning model for medical image analysis. Int J Inf
Tecnol 14:95–103. https:// doi. org/ 10. 1007/ s41870- 021- 00850-4

 19. Chaurasia RK, Jaiswal UC (2023) Spatio-temporal based video
anomaly detection using deep neural networks. Int J Inf Tecnol
15:1569–1581. https:// doi. org/ 10. 1007/ s41870- 023- 01193-y

 20. QT ("cute") software to create graphical user interfaces ans cross-
platform applications. https:// www. qt. io/. Accessed 08 Oct 2023

 21. Open Source Computer Vision Library (OpenCV): an open source
computer vision and machine learning software library. https://
opencv. org/. Accessed 08 Oct 2023

 22. Doxygen de facto standard tool for generating documentation from
annotated C++ sources. https:// www. doxyg en. nl/. Accessed 08
Oct 2023

 23. van Berkel C, Clarke JA (1997) “Characterization and optimi-
zation of 3D-LCD module design”. Proc. SPIE 3012:179–186.
https:// doi. org/ 10. 1117/ 12. 274456

 24. Han Y, Wang R et al (2022) Single-view view synthesis in the
wild with learned adaptive multiplane images. Proc ACM SIG-
GRAPH Article 14:1–8. https:// doi. org/ 10. 1145/ 35282 33. 35307
55

 25. Meng-Li S, Shih-Yang S et al. "3D Photography using Context-
aware Layered Depth Inpainting", IEEE Conf. Comp. Vision and
Pattern Recognition (CVPR) 2020 ArXiv: https:// arxiv. org/ abs/
2004. 04727 Last visited 30 Mar 2023

 26. Workman S, Greenwell C (2015) “DEEPFOCAL: A Method for
Direct Focal Lenght Estimation”. Proc. IEEE International Con-
ference on Image Processing -ICIP. https:// doi. org/ 10. 1109/ ICIP.
2015. 73510 24

 27. DIY Arduino Parallax 3D Display: https:// hacka day. io/ proje ct/
174756- diy- ardui no- paral lax- 3d- displ ay Last visited 30 Mar 2023

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1007/s41870-021-00850-4
https://doi.org/10.1007/s41870-023-01193-y
https://www.qt.io/
https://opencv.org/
https://opencv.org/
https://www.doxygen.nl/
https://doi.org/10.1117/12.274456
https://doi.org/10.1145/3528233.3530755
https://doi.org/10.1145/3528233.3530755
https://arxiv.org/abs/2004.04727
https://arxiv.org/abs/2004.04727
https://doi.org/10.1109/ICIP.2015.7351024
https://doi.org/10.1109/ICIP.2015.7351024
https://hackaday.io/project/174756-diy-arduino-parallax-3d-display
https://hackaday.io/project/174756-diy-arduino-parallax-3d-display

	altiro3d: scene representation from single image and novel view synthesis
	Abstract
	Graphical abstract
	1 Introduction
	2 Related work: depth map from single image
	3 Implementation
	3.1 Calibration data from LG portrait
	3.2 LUT map from calibration file, quilt and inpainting
	3.3 Neural network implementation
	3.4 Native image from N-views

	4 Conclusion and future work
	References

