
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (January 2024) 16(1):159–168
https://doi.org/10.1007/s41870-023-01471-9

ORIGINAL RESEARCH

BECIA: a behaviour engineering‑based approach for change
impact analysis

Sajid Anwer1,3 · Lian Wen1,2  · Shaoyang Zhang4 ·
Zhe Wang1,2 · Yong Sun5

Received: 19 April 2023 / Accepted: 28 August 2023 / Published online: 15 September 2023
© The Author(s) 2023

1  Introduction

Software requirements frequently evolve during the devel-
opment life cycle, with up to 50% changing before system
deployment [1]. These changes can be driven by stakeholder
needs, business goals, or technological advancements [2].
While these new requirements may only occupy a small
portion of the system, they can significantly impact other
requirements and critical design artifacts, including the
architecture. Identifying these change impacts can be chal-
lenging due to the system’s size and complexity [3].

Studies show that 85–90% of software system budgets
are spent on operation and maintenance [4], underlining the
need for systematic and automated approaches to identify-
ing change impacts for cost-effective software development
[5–7]. This has given rise to Change Impact Analysis (CIA),
which various techniques have addressed [8, 9], including on
requirements [10], architecture [11], source code [2], and a
combination of them [12].

However, existing approaches often only provide a rough
set of potentially impacted elements and use natural lan-
guages, making them difficult to process with automation
tools [13]. Additionally, they do not usually provide meas-
ures to quantify change impacts, making cost estimation
challenging [14, 15].

To tackle these issues, we propose a Behaviour Engi-
neering-based Change Impact Analysis (BECIA) that
addresses these limitations by harnessing the advanced
features of Behaviour Engineering (BE) [16]. We introduce
a new model, the Requirements Components Dependency
Network (RCDN), and algorithms to transform Integrated
Behaviour Trees into Integrated Composition Trees and then
to RCDNs. These can be automated to improve efficiency
and reduce errors. We also present a Change Impact Indi-
cator (CII) to quantify change impacts, using the concept

Abstract  This paper introduces Behaviour Engineering-
based Change Impact Analysis (BECIA), a novel approach
to Change Impact Analysis (CIA). BECIA enables visuali-
zation of change impacts from modified requirements on
architecture design. It also introduces the Change Impact
Indicator (CII) metric, quantifying impact by calculating the
Kolmogorov Complexity (KC) of design models. Our con-
tributions include: an algorithm to convert behavior trees to
composition trees, a requirements components dependency
network, and a metric for quantifying change impacts.

Keywords  Requirements change · Change impact
analysis · Changeability · Behaviour trees · Composition
trees · Kolmogorov complexity

 *	 Lian Wen
	 l.wen@griffith.edu.au

	 Sajid Anwer
	 Sajidanwer786@gmail.com

	 Shaoyang Zhang
	 zhsy@chd.edu.cn

	 Zhe Wang
	 zhe.wang@griffith.edu.au

	 Yong Sun
	 sunyong@chd.edu.cn
1	 School of Information and Communication Technology,

Griffith University, Brisbane, Australia
2	 Institute for Integrated and Intelligent Systems (IIIS), Griffith

University, Brisbane, Australia
3	 National University of Computer and Emerging Sciences,

Islamabad, Pakistan
4	 School of Information Engineering, Chang’an University,

Xi’an, China
5	 Information and Network Management, Chang’an University,

Xi’an, China

http://orcid.org/0000-0002-2840-6884
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01471-9&domain=pdf

160	 Int. j. inf. tecnol. (January 2024) 16(1):159–168

1 3

of Kolmogorov Complexity [17] to estimate a component’s
complexity. We evaluate our approach with final year pro-
jects of undergraduate students.

The remainder of this paper presents BECIA’s key ele-
ments (Sect. 2), a workflow example and evaluation (Sects. 3
and 4), and a comparison with existing approaches (Sect. 5),
followed by our conclusion and future work (Sect. 6)."

2 � Key elements of BECIA

This section introduces BECIA’s four key elements: the con-
version of an Integrated Behaviour Tree (IBT) to an Inte-
grated Composition Tree (ICT), the transformation of an
ICT to a Requirements Components Dependency Network
(RCDN), the transition from an IBT to Component Impact
Diagrams (CIDs), and the calculation of the Change Impact
Indicator (CII).

2.1 � Conversion of an IBT into an ICT

The original Behaviour Engineering (BE) methodology
translates Behaviour Trees (BTs) and Composition Trees
(CTs) directly from requirements. This process helps iden-
tify requirement defects and terminological ambiguities,
which proves useful when requirements are poorly written,
or the design team lacks familiarity with them.

In this research, we propose an algorithm for automating
the conversion of an IBT into an ICT. This automation has
three benefits: it ensures the completeness and correctness of
the IBT, saves human effort during change management, and
reduces human errors, guaranteeing consistency between the
diagrams.

We illustrate the conversion process using a simple
abstract example of a system with four requirements, as
shown in Fig. 1. The IBT for this system includes five com-
ponents (C1 to C5) and eight behaviours (B1 to B8). All
three-leaf nodes include a reversion sign (“^”), indicating
a return to the closest parent node of the same behaviour.

Before constructing the ICT, we identify the system com-
ponent serving as the root node. The system component
name is denoted within a double-lined rectangle. Processing
each behaviour node in the IBT involves:

1.	 Checking the component name and creating a compo-
nent node in the ICT if it’s not already there. A simple
ICT includes one system component, with all other com-
ponents as direct children. More complex systems may
have more intricate composition trees.

2.	 Checking the node’s behaviour and requirement link.
This step involves three possible scenarios:

a.	 If the ICT doesn’t have a node with the same behav-
iour under the component, a new node is created
(Fig. 2a).

b.	 If the ICT has a node with the same behaviour under
the component, but the requirement link is not in the
node’s CT, the new requirement link from the BT
node is added (Fig. 2b).

c.	 If the ICT has a node with the same behaviour and
the requirement link is already in the CT’s require-
ment link cell, no changes are made (Fig. 3).

An important point in step 2 is the use of a plus sign
" + " with the requirement ID if the Requirement Behaviour
Tree (RBT) changes a component’s state. For instance, in
the ICT node for C1 [B3] (Fig. 3), the requirement link

C1

[B1]
R1

C2

??B2??
R1

C1

[B3]

R1

@

C2

??B2??
R2

C5

[B4]
R2

C4

??B5??
R3

C3

[B6]
R3

C5

??B7??
R4

C3

[B6]
R4

C1 ^
[B3]

R2
C1 ^
[B1]

R3
C1 ^
[B1]

R4

Fig. 1   A simple example IBT

(a)

C1

State

[B1]R1

C1

(b)

State

[B1]R1+, R3+

Fig. 2   Step to model example ICT

161Int. j. inf. tecnol. (January 2024) 16(1):159–168	

1 3

for R1 has a plus sign as R1 changes the state of C1 from
B1 to B3.

After following steps 1 and 2, we generate the ICT for all
four requirements (Fig. 3). Notably, the IBT’s integration
node shows both requirement links in the ICT, as this node
is a postcondition of one requirement and a precondition of
the other (as shown with the "@" sign in Fig. 1, integrating
R1 with R2, R3, and R4). Therefore, the behaviour B3 of
component C1 is associated with requirements links R1, R2,
R3, and R4 in the ICT (Fig. 3).

2.2 � Conversion of an ICT into RCDN

Individual functional requirements, as initially presented, do
not highlight their interdependent relationships. Therefore, a
thorough requirements analysis is necessary to identify and
visually represent these relationships.

Traditional techniques manually identify these relation-
ships, usually illustrating the requirements relationship in
the problem domain. For instance, in a use case diagram,
two related use cases like "create an order" and "pay an
order" are depicted. However, since these diagrams are con-
structed prior to considering implementation, they often fail
to reflect the relationship between two requirements in the
solution domain.

Our new model captures dependency relationships among
requirements based on their associations with components.
The logic is straightforward: if two requirements involve
the same component, they are closely related; conversely,
if two requirements don’t share components, they are rel-
atively independent. To achieve this, we introduce a new
Requirements Engineering (RE) model called Require-
ments Components Dependency Network (RCDN), which
connects requirements through the components involved in
their implementation. Hypergraph models have shown great
effectiveness in capturing higher-order relationships [18].

An RCDN is a hypergraph H = (V ,E) , where V is the
set of requirements (vertices) and E is the set of compo-
nents (hyperedges). Requirements v1,… , v

n
 are connected

by a component e if all these requirements involve e. We

use hypergraphs as one component (hyperedge) can con-
nect more than two requirements (vertices), effectively
capturing higher-order relationships.

To illustrate the ICT-to-RCDN conversion algorithm,
we return to the previous subsection’s example, with its
ICT depicted in Fig. 3. The algorithm starts with the root
component and travels through all components. Once a
component is selected, the process follows these steps:

1.	 Check the component name. If the component is not yet
in the RCDN, a new component is created (represented
as a circle).

2.	 Check the requirement links under the state section of
the ICT node for that component. This check presents
three potential situations:

a.	 If the RCDN does not have that requirement, a new
requirement is created (represented as a rectangle).
If there is a ’ + ’ sign next to the requirement, a
strong connection (solid line) between the require-
ment and component is added. Otherwise, a weak
connection (dotted line) is added. For example, in
component C1, the first requirement is R1, so we
create a new requirement R1 and connect it with a
strong line to component C1 (Fig. 4a).

Fig. 3   Example ICT
C1

C4R3 C5R2

State

[B4]R2+

[B7]R4

State

[B5]R3

C3R3C2R1

State State

State

[B3]
R1+, R2+,

R3, R4[B2]R1, R2

[B1]
R1, R3+,

R4+

[B6]R3+, R4+

(a) (b)

R1

C1

R3

R2

C1

C5 C2

R1

C3

R4 C4

Fig. 4   The RCDN for the Example ICT

162	 Int. j. inf. tecnol. (January 2024) 16(1):159–168

1 3

b.	 If the RCDN already has the requirement, it is only
connected to the component based on the connection
type.

c.	 If the RCDN has the requirement, and it’s con-
nected to that component with a weak connection,
but another instance of the same requirement with
different behavior requires a strong connection, the
weak connection is replaced with a strong one.

After traversing all nodes in the ICT, we achieve a com-
plete RCDN, as shown in Fig. 4b.

2.3 � Transformation of an IBT into CID

In this subsection, we delve into another fundamental com-
ponent of BECIA: the conversion of an IBT into a CID.
While the specifics of the algorithm are already documented
[19], we will provide a CID for reference here.

In our work, a CID is used to evaluate whether a com-
ponent has undergone any changes and, if applicable, to
identify the nature of these changes. We continue with the
example introduced earlier. Figure 5 displays the CID of
component C1, derived from the IBT shown in Fig. 1. This
CID effectively maps any changes in the component’s struc-
ture or behavior.

2.4 � Calculation of change impact indicator

One of the features of BECIA is not just the identification of
which components and requirements will be influenced by
a proposed change, but also quantifying the change impact
through a newly introduced Change Impact Indicator (CII).

Changes, according to requirements change taxonomies
[20–22], can be classified into three categories: adding
new requirements, deleting an existing requirement, and
modifying an existing requirement. In BECIA, we first
identify a set of components from the RCDN that may be
affected due to the proposed change. Then we use CIDs to

quantify the actual impact on each component. The set of
impacted components is defined as follows:

where Θ represents the set of impacted components,, Θ
n
 is

the set of new components, Θ
m
 is the set of modified com-

ponents, and Θ
d
 is the set of deleted components.

To quantify the change impact on a component, we pro-
pose a method to estimate the description complexity of
the component. Following this, the change impact on the
entire system is defined as the sum of the change impacts
on all components.

From a CID, we see that each component contains a
number of states (or interfaces), and each state is linked
to a number of incoming and outgoing components. As
shown in Fig. 5, component C1 has two states [B1] and
[B3]. State [B1] has one incoming and one outgoing com-
ponent, whereas state [B3] has two incoming components
and three outgoing components.

Kolmogorov Complexity (KC) [17] has been widely
studied and accepted as a universally applicable complex-
ity measure in mathematics. It has found various applica-
tions in software engineering, often with positive results
[23].

In our approach, we employ KC to measure the com-
plexity of individual impacted components, using it as a
change impact indicator for the component. We then esti-
mate the overall change impact by aggregating the change
impacts on all impacted components. The general formula
to estimate an upper boundary of KC of an integer n is as
follows:

We simplify the computation for practical purposes and
use log (n + 1) to estimate the complexity of non-negative
integer value n.

In a CID, each component comprises a number of
states; therefore, the complexity of a component can be
estimated as the sum of all states’ complexities. Let Let S
be a state in component C ,, n

c
 is the number of states in C .

The complexity of state S can be estimated as:

We’ve ignored the constant c when calculating the com-
plexity of a state, as the value is only significant when
compared to others, and the constant c could be omitted
as it appears in all compared items.

After estimating the complexity of individual states, the
complexity of a component can be calculated as:

(1)Θ = Θ
n
∪ Θ

m
∪ Θ

d
,

(2)K(n) ≤ log∗n + c

(3)K(n) ≤ log (n + 1) + c

(4)K(S) ≤ log
(

n
c
+ 1

)

log
(

n
s
i
+ n

s
o
+ 1

)

C1

[B1] C2: ??B2??C3: [B6]

[B3]

C2: ??B2??

C4: ??B5??

C5: ??B7??

C2: ??B2??

C5: [B4]

Fig. 5   The CID for Component C1

163Int. j. inf. tecnol. (January 2024) 16(1):159–168	

1 3

where K(C) is the Complexity of component C and Φ is the
set of states of component C.

The individual component’s complexity is then used
to calculate the impact of the proposed change on system
components. We use �

C
 to denote the change impact fac-

tor on component C. For a new component, we define the
change impact factor as the component’s KC, calculated
in Eq. (5).

For a modified component, its states are classified into
three different sets: newly introduced states, modified
states (some of which may have the number of incoming
and outgoing components altered), and deleted states:

where Φ is the set of all states in component C , which equals
the union of newly introduced states Φ

n
 , the set of modified

states Φ
m
 , and the set of deleted states Φ

d
.

where �
C
 is the complexity of a modified component, K(S) is

the Complexity of the new state and also Complexity before
the change, K

(

S
′
)

 is the complexity of a modified state after
the change. We use max to avoid negative values. If com-
plexity is equal to a negative value, we consider it as zero.

Finally, the overall impact of the proposed change can
be quantified as follows:

where Δ is the overall change impact factor, and Θ is the set
of impacted components defined in Eq. (1).

(5)K(C) =
∑

S∈Φ

K(S)

(6)�
C
= K(C)

(7)Φ = Φ
n
∪ Φ

m
∪ Φ

d

(8)�
C
=

∑

S∈Φ
n

K(S) +
∑

S∈Φ
m

max
(

K
(

S
�
)

− K(S), 0
)

(9)Δ =
∑

C�Θ

�C

3 � BECIA workflow with an example

The previous section detailed all the key elements in BECIA.
This section will first explain the BECIA workflow by com-
bining all these elements and then provide an example to
illustrate the process.

3.1 � BECIA workflow

The workflow of BECIA is shown in Fig. 6 and comprises
seven steps. Step 1 falls within the problem domain, steps
2–4 are in the analysis domain, and steps 5–7 lie in the solu-
tion domain of the software development life cycle.

The initial three steps are standard practices in the BE
approach that have been introduced in the background sec-
tion and detailed in previous papers [19, 24]. The last four
steps have been explained in the preceding section. Now, we
will illustrate these steps with an example.

3.2 � Impact analysis example

This section extends the simple example introduced in
Sect. 3 to demonstrate the BECIA workflow. We will reuse
the IBT example shown in Fig. 1 and then add a new RBT
based on an assumed new requirement. Afterwards, we will
carry out steps 3–7 of BECIA based on the IBT and RBT.

3.2.1 � Step 2,3‑Draw/Modify RBTs and Integrate them
with the IBT

Based on the assumed new requirement, we have created a
new RBT(R5) in step 2, as illustrated in Fig. 7. Then, in step
3, we merge this RBT with the IBT from Fig. 1. The result-
ing integration is shown in Fig. 8. The two trees are united
through the root node, which is drawn with a thick border.
To highlight the changes, we use a grey background color to
depict new nodes, and a light grey color with a pattern fill to
illustrate modified nodes.

Fig. 6   BECIA Workflow

3. RBTs to

form an IBT
6. IBT into

CID

2. Draw/

Modify

RBTs

1. Functional

Requirements

4. IBT Into

ICT

System DesignRequirements Analysis

Analysis Domain Solution DomainProblem

 Domain

7. Calculate

CII

5. ICT into

RCDN

Convert

Transform

Help to

Help to

Convert

Integrate

164	 Int. j. inf. tecnol. (January 2024) 16(1):159–168

1 3

3.2.2 � Step 4 convert an IBT to an ICT

During step 4, we illustrate the process to convert the
updated IBT into an ICT. Since the original IBT shown in
Fig. 1 already has an associated ICT displayed in Fig. 3,
we only need to process the updated section in the IBT to
modify the associated ICT accordingly.

We read each node one by one from the updated IBT
and incorporate it into the existing ICT based on the two
steps defined in Sect. 2.1. For example, we first read the root
node of R5, which is an integration node with R1, so we

update the state section of the C1. The node with behavior
B1 already exists, so we add a new requirement ID in the left
cell, make the node boundary bold, and fill it with a cross
pattern to highlight this node as a changed node. Conversely,
if no node exists for the changed behavior, we model a new
node with a grey background, as shown for one node of
component C4 in Fig. 9. If any new component appears in
the changed requirement, we then create a node for the new
component and connect it to the root of the tree, as we did
for component C6.

3.2.3 � Step 5 Convert an ICT to an RCDN

During step 5, we update the RCDN based on the changes
in the ICT. This is achieved by following the same process
discussed in Sect. 2.2. Given that this change is to add a new
requirement (R5), we first model it in Fig. 10 in a rectangle
filled with a grey colour. After that, we add a new compo-
nent C6, which is represented in a circle also filled with grey
colour, and then we connect it with R5.

Subsequently, we search for updated components and dis-
cover one new node in component C4. This node changes the
component state, so a strong connection is formed between
R5 and C4. We represent changed components/requirements
with a bold boundary filled with a cross pattern, as depicted
in Fig. 10. Lastly, we also find one new requirement ID in
the existing state of component C1, so we connect require-
ment R5 to component C1. This completes the conversion
of the updated ICT into the RCDN.

3.2.4 � Steps 6,7‑Project out CIDs from an IBT
and calculate change impact

Step 6 involves projecting out Component Interaction Dia-
grams (CIDs) from the updated Interacting Behavior Tree
(IBT). We only need to project CIDs for the components
potentially impacted by the change. To identify these com-
ponents, we refer to the Requirement-Component Depend-
ency Network (RCDN), which highlights all newly intro-
duced and modified components.

As per Fig. 10, a new component C6 and two modi-
fied components (C1 and C4) have been identified. Thus,
we project out the CIDs of these three components from
the IBT presented in Fig. 8. The CID for C4 (illustrated in
Fig. 11) reveals a newly added state in component C4, with
one outgoing interface also altered. The CID of C1 (shown
in Fig. 12) reveals multiple interface updates resulting from
this change.

Next, we examine the possible indirect impacts based on
the relationships between a changed requirement and other
requirements. Since R3 and R5 are competing requirements,
we need to check R3. Given that R3 hasn’t changed, there’s
no need to assess components connected to R3.

C1

[B1]
R5

C6

??B9??
R5

C4

[B8]
R5

C1 ^
[B1]

R5

Fig. 7   R5 RBT

C1

[B1]

R1

@

C2

??B2??
R1

C1

[B3]

R1

@

C2

??B2??
R2

C5

[B4]
R2

C4

??B5??
R3

C3

[B6]
R3

C5

??B7??
R4

C3

[B6]
R4

C1 ^
[B3]

R2
C1 ^
[B1]

R3
C1 ^
[B1]

R4

C6

??B9??
R5

C4

[B8]
R5

C1 ^
[B1]

R5

Fig. 8   Updated IBT

165Int. j. inf. tecnol. (January 2024) 16(1):159–168	

1 3

Having identified the actually impacted components, we
now measure the complexity of these components. Using
the CID of these components and Eq. (5), we calculate the
complexity of each state in a new component. The CID of

C6, shown in Fig. 13, allows us to compute the complexity
of its state ’B9’:

As there is only one state in C6, the state complexity
equals the component complexity. Then, using Eq. (6), we
find the change impact of C6 to be:

Next, we calculate the complexity of the modified com-
ponent. We start with C4 (CID in Fig. 12), which has two

K(B9) ≤ log(1 + 1)log(1 + 1 + 1) = 1 × 1.58 = 1.58

�
C6 = 1.58

Fig. 9   Updated ICT
C1

C4R3 C5R3

State

[B4]R2+

[B7]R4

State

[B5]R3

C3R2C2R1

State State

State

[B3]
R1+, R2+,

R3, R4

[B8]R5+

C6R5

State

[B9]R5

[B2]R1, R2

[B1]
R1, R3+,

R4+, R5+

[B6]R3+, R4+

R3

R2

C1

C5 C2

R1

C3

R4

C4

R5

C6

Fig. 10   Updated RCDN

C1

[B1]

C2: ??B2??C3: [B6]

[B3]

C2: ??B2??

C4: ??B5??

C5: ??B7??

C2: ??B2??

C5: [B4]

C6: ??B9??C4: [B8]

Fig. 11   The CID for C1

C4

??B5?? C3: [B6]

C6: ??B9??

C1: [B3]

C1: [B1][B8]

Fig. 12   The CID for C4

C6

[B9]C1: [B1] C1: [B8]

Fig. 13   The CID for Component C6

166	 Int. j. inf. tecnol. (January 2024) 16(1):159–168

1 3

states: one unchanged state (B5) and one new state (B8). For
the unchanged state, the complexity is zero, and for the new
state, the complexity is:

After measuring the complexity of all the states of C4, we
can calculate the change impact for the modified component
(C4) using Eq. (8):

Similarly, for component C1 (CID in Fig. 11), the
unchanged state (B3) has a complexity of zero, and the
modified state (B1) has a complexity of:

So, the change impact for C1 can be calculated as follows:

After measuring the change impact of the new and modi-
fied components, using Eq. (9), we can calculate the change
impact indicator (∆):

This complexity value is on a logarithmic scale in the
bits unit. The Change Impact Indicator (CII) unit is a bit,
which quantifies how many bits of information are needed
to describe the change. This absolute value can be mean-
ingless without comparison. The comparison provides an
understanding of the magnitude of the change impact on
the software.

4 � Evaluation

In this section, we evaluate the effectiveness of our BECIA
approach using final year projects from undergraduate stu-
dents at the FAST-National University of Computer and
Emerging Sciences (NUCES), Chiniot-Faisalabad campus.
FAST-NUCES is one of the top computer science universi-
ties in Pakistan [25].

We engaged three groups consisting of nine practition-
ers in applying BECIA, asking them to critically evaluate
the proposed approach against "ease of learning" and "user
satisfaction" metrics.

•	 Ease of Learning: All three groups rated the model as
clear and easy to understand. They felt the division of the
proposed approach into self-explanatory steps assisted
them in their understanding. This is encouraging as it
indicates that our model is both concise and comprehen-
sive.

K(B8) ≤ log(2 + 1)log(1 + 1 + 1) = 1.58x1.58 = 2.51

�
C4 = (0 + 2.51) = 2.51

K(B1) ≤ log(2 + 1)log(2 + 2 + 1) = 1.58x2.32 = 3.68

�
C1 = (3.68 + 0) = 3.68

Δ = 1.58 + 2.51 + 3.68 = 7.77

•	 User Satisfaction: All practitioners agreed that, in gen-
eral, our model would be useful within the software
industry. They believed that the Change Impact Analysis
(CIA) approach is clear and can effectively estimate the
proposed change’s impact on other system components.

Based on this preliminary evaluation, we are confident
that the proposed approach can assist in estimating the
impact of a proposed change on other system components.
However, we also recognize the necessity for further evalu-
ation of the proposed approach through additional case stud-
ies. This would help ensure that our model can be effectively
and reliably applied in different contexts and scales of soft-
ware development.

5 � Related work and comparison

Much of the existing research focuses on executing Change
Impact Analysis (CIA) in source code relative to other Soft-
ware Development Life Cycle (SDLC) phases. According
to Kretsou [26], 62% of the current research concentrates
on performing CIA in source code, followed by 22% in the
design phase, 14% in architecture, and a mere 2% in require-
ments. In the context of CIA across various development
phases, our approach introduces a method to comprehend
change impact, starting from requirements to design and
architecture. This covers phases of the SDLC not extensively
explored before.

Several studies trace changes from one software artifact
to other artifacts. For instance, from source code to software
design, Hammad et al. [27] demonstrated a methodology
that tracks design evolution based on source code changes.

Considering change propagation from requirements to
design, Al-Saiyd and Zriqat [28], Sudin and Kristensen [29],
and Kchaou et al. [30] presented various traceability-based
approaches.

In terms of techniques employed for CIA, according to
Kilpinen [31], CIA research can be divided into two groups:
traceability-based and non-traceability or dependency
matrix-based methods. Some studies also employ a combi-
nation of these approaches.

While Spilkerman [32] and Goknil et al. [33] proposed
formal semantics of requirements relations [34] for under-
standing change impact under traceability methods, Hassine
et al. [35] and Ali and Lai [35] presented non-traceability
approaches.

Analyzing the above-discussed approaches for CIA,
several conclusions can be drawn:

•	 While various techniques such as dependency graph [30],
dynamic slicing [36], distance measure [37], and reverse

167Int. j. inf. tecnol. (January 2024) 16(1):159–168	

1 3

engineering [38] have been used for change propagation
across different software artifacts, traceability-based
approaches have inherent issues such as time and cost
required to establish traceability links [39]. and the chal-
lenge in managing excessive links between artifacts auto-
matically through software [40].

•	 Our approach offers traceability benefits due to the
inherent properties of the modeling language, BT, used
to model system requirements [41]. We exploit these
properties and propose two algorithms to systematically
transform system requirements from one software artifact
to another.

•	 Regarding quantifying change impact, except a few in
source code traceability analysis [2, 35, 42], most exist-
ing studies execute CIA without quantifying the change
impact. Our approach, in contrast, estimates change
impact at the architectural level, identifies impacted com-
ponents, and estimates the complexity of these compo-
nents.

•	 Our approach is fully automatic except for the first step
of translating functional requirements into RBTs. All
other steps are based on well-defined rules and processes,
which provide visible and verifiable traceability across
all different design artifacts.

The comparisons between BECIA and existing CIA
approaches are summarised in Table 1.

6 � Conclusion and future work

In this paper, we have introduced a novel behavior engi-
neering-based approach to conduct change impact analy-
sis, named BECIA. BECIA utilizes an IBT to model sys-
tem requirements and offers algorithms to convert an IBT
into an ICT, and subsequently, the ICT into an RCDN. The
RCDN assists in identifying a preliminary set of architec-
tural elements potentially impacted by a proposed change.
We then use the CID derived from the IBT and RCDN to
investigate which components are genuinely impacted and

require modification due to the proposed change. Lastly, we
introduce a CII metric to quantify change impact, providing
more objective evidence to estimate the development cost
for a suggested change.

We believe our approach will aid practitioners in under-
standing the change impact of functional requirements on
design and architecture and establish traceability among dif-
ferent types of software artifacts.

However, the proposed CIA method does have its limi-
tations: firstly, it leverages BE models to estimate change
impact, making it inapplicable to other modeling languages.
Secondly, it only encapsulates requirements that can be
described as "behaviors" and may not be adept at handling
certain non-functional requirements such as constraints.

For future work, we intend to create a prototyping tool to
augment the proposed approach further and assist in auto-
mating it. We also plan to conduct a survey with industry
practitioners to empirically validate the proposed approach.
The applicability of the proposed framework in the global
software development paradigm is another avenue worthy
of future exploration.

Funding  Open Access funding enabled and organized by CAUL and
its Member Institutions.

Data availability  Not applicable.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Bhatti MW, Hayat F, Ehsan N, Ishaque A, Ahmed S, Sarwar SZ
(2010) An investigation of changing requirements with respect to
development phases of a software project. In: International Con-
ference on Computer Information Systems and Industrial Manage-
ment Applications (CISIM), 2010: IEEE, pp 323–327.

	 2.	 Jayatilleke S, Lai R, Reed K (2018) A method of requirements
change analysis. Requir Eng 23(4):493–508

	 3.	 Anwer S, Wen L, Wang Z (2019) A systematic approach for iden-
tifying requirement change management challenges: preliminary
results. In: Proceedings of the Evaluation and Assessment on Soft-
ware Engineering, 2019, pp 230–235

	 4.	 Erlikh L (2000) Leveraging legacy system dollars for e-business.
IT Professional 2(3):17–23

	 5.	 Arnold RS, Bohner SA (1993) Impact analysis-towards a frame-
work for comparison. In: Conference on Software Maintenance,
1993, IEEE, pp 292–301

Table 1   The comparisons between BECIA and existing CIA
approaches

Aspect Existing CIA approaches BECIA

Source code Majority (62%) N/A
Design Some (22%) Focus
Architecture Some (16%) Focus
Requirements analysis Few (2%) Focus
Time & Cost High Low
Automation Usually difficult Easy
Quantify impact Usually not Yes

http://creativecommons.org/licenses/by/4.0/

168	 Int. j. inf. tecnol. (January 2024) 16(1):159–168

1 3

	 6.	 Arif M, Mohammad CW, Sadiq M (2023) UML and NFR-frame-
work based method for the analysis of the requirements of an
information system. Int J Inf Technol 15(1):411–422

	 7.	 Khan T, Faisal M (2023) An efficient Bayesian network model
(BNM) for software risk prediction in design phase development.
Int J Inf Technol 15(4):2147–2160

	 8.	 Ibrahim S, Idris NB, Munro M, Deraman A (2005) A requirements
traceability to support change impact analysis. Asian J Inform
Tech 4(4):345–355

	 9.	 Khurshid S, Shrivastava AK, Iqbal J (2021) Effort based software
reliability model with fault reduction factor, change point and
imperfect debugging. Int J Inf Technol 13(1):331–340

	10.	 Zhang H et al (2014) Investigating dependencies in software
requirements for change propagation analysis. Inf Softw Technol
56(1):40–53

	11.	 Rostami K, Heinrich R, Busch A, Reussner R (2017) Architecture-
based change impact analysis in information systems and business
processes. In: IEEE International Conference on Software Archi-
tecture (ICSA), 2017: IEEE, pp 179–188

	12.	 Yazdanshenas AR, Moonen L (2012) Fine-grained change impact
analysis for component-based product families. In: 28th IEEE
International Conference on Software Maintenance (ICSM), 2012,
pp 119–128

	13.	 Goknil A, Kurtev I, Berg Kvd (2016) A rule-based change impact
analysis approach in software architecture for requirements
changes. arXiv preprint arXiv:​1608.​02757

	14.	 Angerer F, Grimmer A, Prähofer H, Grünbacher P (2019) Change
impact analysis for maintenance and evolution of variable soft-
ware systems. Autom Softw Eng 26(2):417–461

	15.	 Sharma S, Vijayvargiya S (2022) Modeling of software pro-
ject effort estimation: a comparative performance evaluation
of optimized soft computing-based methods. Int J Inf Technol
14(5):2487–2496

	16.	 Dromey RG (2006) Formalizing the transition from requirements
to design. In: Liu Z (ed) Mathematical frameworks for component
software: models for analysis and synthesis. World Scientific, pp
173–205

	17.	 Li M, Vitányi P (2008) An introduction to Kolmogorov complex-
ity and its applications. Springer

	18.	 Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs:
clustering, classification, and embedding. Adv Neural Inform Pro-
cess Syst 19:1601–1608

	19.	 Lian W, Dromey RG (2004) From requirements change to design
change: a formal path. In: Proceedings of the Second International
Conference on software engineering and formal methods, 2004,
pp 104–113

	20.	 Jayatilleke S, Lai R (2013) A method of specifying and classify-
ing requirements change. In: Proceedings of the 22nd Australian
Conference on software engineering, 2013, pp 175–180

	21.	 Jayatilleke S, Lai R, Reed K (2018) Managing software require-
ments changes through change specification and classification.
Comput Sci Inf Syst 15(2):321–346

	22.	 McGee S, Greer D (2011) Software requirements change tax-
onomy: evaluation by case study. In: 19th International Require-
ments Engineering Conference, 2011: IEEE, pp 25–34

	23.	 Gates AQ, Kreinovich V, Longpre L (1998) Kolmogorov com-
plexity justifies software engineering heuristics. Departmental
Technical Reports (CS). 558. https://​schol​arwor​ks.​utep.​edu/​cs_​
techr​ep/​558

	24.	 Ahmed K, Wen L, Sattar A (2014) iRE: a semantic network based
interactive requirements engineering framework. In: Second

World Conference on complex systems (WCCS), 2014: IEEE, pp
171–177

	25.	 FAST-NUCES https://​cfd.​nu.​edu.​pk/. Accessed 13 Sept 2023
	26.	 Kretsou M, Arvanitou E-M, Ampatzoglou A, Deligiannis I, Gero-

giannis VC (2020) Change impact analysis: a systematic mapping
study. J Syst Softw 174:110892

	27.	 Hammad M, Collard ML, Maletic JI (2011) Automatically iden-
tifying changes that impact code-to-design traceability during
evolution. Softw Qual J 19(1):35–64

	28.	 Al-Saiyd N, Zriqat E (2015) Analyzing the impact of requirement
changing on software design. Eur J Sci Res 136:1–11

	29.	 Sudin MN, Ahmed-Kristensen S (2011) Change in requirements
during the design process. In: 18th International Conference on
engineering design, 2011, pp 200–208

	30.	 Kchaou D, Bouassida N, Ben-Abdallah H (2017) UML models
change impact analysis using a text similarity technique. IET
Softw 11(1):27–37

	31.	 Kilpinen MS (2008) The emergence of change at the systems engi-
neering and software design interface. University of Cambridge

	32.	 Spijkerman W (2010) Tool support for change impact analysis in
requirement models: exploiting semantics of requirement relations
as traceability relations. University of Twente

	33.	 Goknil A, Kurtev I, Van Den Berg K, Spijkerman W (2014)
Change impact analysis for requirements: a metamodeling
approach. Inf Softw Technol 56(8):950–972

	34.	 Goknil A, Kurtev I, van den Berg K, Veldhuis J-W (2011) Seman-
tics of trace relations in requirements models for consistency
checking and inferencing. Softw Syst Model 10(1):31–54

	35.	 Ali N, Lai R (2016) A method of requirements change man-
agement for global software development. Inf Softw Technol
70:49–67

	36.	 Lallchandani JT, Mall R (2011) A dynamic slicing technique
for UML architectural models. IEEE Trans Software Eng
37(6):737–771

	37.	 Briand LC, Labiche Y, O’Sullivan L, Sówka MM (2006)
Automated impact analysis of UML models. J Syst Softw
79(3):339–352

	38.	 Canfora G, Di Penta M (2007) New frontiers of reverse engineer-
ing. In: Future of Software Engineering (FOSE’07), 2007: IEEE,
pp 326–341

	39.	 Bashir MF, Qadir MA (2006) Traceability techniques: A critical
study. In: 10th IEEE International Multitopic Conference, INMIC,
2006, pp 265–268

	40.	 Verhanneman T, Piessens F, Win BD, Joosen W (2005) Require-
ments traceability to support evolution of access control. In: Pre-
sented at the Proceedings of the workshop on Software engineer-
ing for secure systems—building trustworthy applications, St.
Louis, Missouri, 2005

	41.	 Dromey RG (2001) Genetic software engineering-simplifying
design using requirements integration. In: IEEE Working Con-
ference on Complex and Dynamic Systems Architecture, 2001,
pp 251–257

	42.	 Saraf I, Iqbal J (2019) Generalized software fault detection and
correction modeling framework through imperfect debugging,
error generation and change point. Int J Inf Technol 11(4):751–757

http://arxiv.org/abs/1608.02757
https://scholarworks.utep.edu/cs_techrep/558
https://scholarworks.utep.edu/cs_techrep/558
https://cfd.nu.edu.pk/

	BECIA: a behaviour engineering-based approach for change impact analysis
	Abstract
	1 Introduction
	2 Key elements of BECIA
	2.1 Conversion of an IBT into an ICT
	2.2 Conversion of an ICT into RCDN
	2.3 Transformation of an IBT into CID
	2.4 Calculation of change impact indicator

	3 BECIA workflow with an example
	3.1 BECIA workflow
	3.2 Impact analysis example
	3.2.1 Step 2,3-DrawModify RBTs and Integrate them with the IBT
	3.2.2 Step 4 convert an IBT to an ICT
	3.2.3 Step 5 Convert an ICT to an RCDN
	3.2.4 Steps 6,7-Project out CIDs from an IBT and calculate change impact

	4 Evaluation
	5 Related work and comparison
	6 Conclusion and future work
	References

