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1  Introduction

Software requirements frequently evolve during the devel-
opment life cycle, with up to 50% changing before system 
deployment [1]. These changes can be driven by stakeholder 
needs, business goals, or technological advancements [2]. 
While these new requirements may only occupy a small 
portion of the system, they can significantly impact other 
requirements and critical design artifacts, including the 
architecture. Identifying these change impacts can be chal-
lenging due to the system’s size and complexity [3].

Studies show that 85–90% of software system budgets 
are spent on operation and maintenance [4], underlining the 
need for systematic and automated approaches to identify-
ing change impacts for cost-effective software development 
[5–7]. This has given rise to Change Impact Analysis (CIA), 
which various techniques have addressed [8, 9], including on 
requirements [10], architecture [11], source code [2], and a 
combination of them [12].

However, existing approaches often only provide a rough 
set of potentially impacted elements and use natural lan-
guages, making them difficult to process with automation 
tools [13]. Additionally, they do not usually provide meas-
ures to quantify change impacts, making cost estimation 
challenging [14, 15].

To tackle these issues, we propose a Behaviour Engi-
neering-based Change Impact Analysis (BECIA) that 
addresses these limitations by harnessing the advanced 
features of Behaviour Engineering (BE) [16]. We introduce 
a new model, the Requirements Components Dependency 
Network (RCDN), and algorithms to transform Integrated 
Behaviour Trees into Integrated Composition Trees and then 
to RCDNs. These can be automated to improve efficiency 
and reduce errors. We also present a Change Impact Indi-
cator (CII) to quantify change impacts, using the concept 
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of Kolmogorov Complexity [17] to estimate a component’s 
complexity. We evaluate our approach with final year pro-
jects of undergraduate students.

The remainder of this paper presents BECIA’s key ele-
ments (Sect. 2), a workflow example and evaluation (Sects. 3 
and 4), and a comparison with existing approaches (Sect. 5), 
followed by our conclusion and future work (Sect. 6)."

2 � Key elements of BECIA

This section introduces BECIA’s four key elements: the con-
version of an Integrated Behaviour Tree (IBT) to an Inte-
grated Composition Tree (ICT), the transformation of an 
ICT to a Requirements Components Dependency Network 
(RCDN), the transition from an IBT to Component Impact 
Diagrams (CIDs), and the calculation of the Change Impact 
Indicator (CII).

2.1 � Conversion of an IBT into an ICT

The original Behaviour Engineering (BE) methodology 
translates Behaviour Trees (BTs) and Composition Trees 
(CTs) directly from requirements. This process helps iden-
tify requirement defects and terminological ambiguities, 
which proves useful when requirements are poorly written, 
or the design team lacks familiarity with them.

In this research, we propose an algorithm for automating 
the conversion of an IBT into an ICT. This automation has 
three benefits: it ensures the completeness and correctness of 
the IBT, saves human effort during change management, and 
reduces human errors, guaranteeing consistency between the 
diagrams.

We illustrate the conversion process using a simple 
abstract example of a system with four requirements, as 
shown in Fig. 1. The IBT for this system includes five com-
ponents (C1 to C5) and eight behaviours (B1 to B8). All 
three-leaf nodes include a reversion sign (“^”), indicating 
a return to the closest parent node of the same behaviour.

Before constructing the ICT, we identify the system com-
ponent serving as the root node. The system component 
name is denoted within a double-lined rectangle. Processing 
each behaviour node in the IBT involves:

1.	 Checking the component name and creating a compo-
nent node in the ICT if it’s not already there. A simple 
ICT includes one system component, with all other com-
ponents as direct children. More complex systems may 
have more intricate composition trees.

2.	 Checking the node’s behaviour and requirement link. 
This step involves three possible scenarios:

a.	 If the ICT doesn’t have a node with the same behav-
iour under the component, a new node is created 
(Fig. 2a).

b.	 If the ICT has a node with the same behaviour under 
the component, but the requirement link is not in the 
node’s CT, the new requirement link from the BT 
node is added (Fig. 2b).

c.	 If the ICT has a node with the same behaviour and 
the requirement link is already in the CT’s require-
ment link cell, no changes are made (Fig. 3).

An important point in step 2 is the use of a plus sign 
" + " with the requirement ID if the Requirement Behaviour 
Tree (RBT) changes a component’s state. For instance, in 
the ICT node for C1 [B3] (Fig. 3), the requirement link 
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for R1 has a plus sign as R1 changes the state of C1 from 
B1 to B3.

After following steps 1 and 2, we generate the ICT for all 
four requirements (Fig. 3). Notably, the IBT’s integration 
node shows both requirement links in the ICT, as this node 
is a postcondition of one requirement and a precondition of 
the other (as shown with the "@" sign in Fig. 1, integrating 
R1 with R2, R3, and R4). Therefore, the behaviour B3 of 
component C1 is associated with requirements links R1, R2, 
R3, and R4 in the ICT (Fig. 3).

2.2 � Conversion of an ICT into RCDN

Individual functional requirements, as initially presented, do 
not highlight their interdependent relationships. Therefore, a 
thorough requirements analysis is necessary to identify and 
visually represent these relationships.

Traditional techniques manually identify these relation-
ships, usually illustrating the requirements relationship in 
the problem domain. For instance, in a use case diagram, 
two related use cases like "create an order" and "pay an 
order" are depicted. However, since these diagrams are con-
structed prior to considering implementation, they often fail 
to reflect the relationship between two requirements in the 
solution domain.

Our new model captures dependency relationships among 
requirements based on their associations with components. 
The logic is straightforward: if two requirements involve 
the same component, they are closely related; conversely, 
if two requirements don’t share components, they are rel-
atively independent. To achieve this, we introduce a new 
Requirements Engineering (RE) model called Require-
ments Components Dependency Network (RCDN), which 
connects requirements through the components involved in 
their implementation. Hypergraph models have shown great 
effectiveness in capturing higher-order relationships [18].

An RCDN is a hypergraph H = (V ,E) , where V  is the 
set of requirements (vertices) and E is the set of compo-
nents (hyperedges). Requirements v1,… , v

n
 are connected 

by a component e if all these requirements involve e. We 

use hypergraphs as one component (hyperedge) can con-
nect more than two requirements (vertices), effectively 
capturing higher-order relationships.

To illustrate the ICT-to-RCDN conversion algorithm, 
we return to the previous subsection’s example, with its 
ICT depicted in Fig. 3. The algorithm starts with the root 
component and travels through all components. Once a 
component is selected, the process follows these steps:

1.	 Check the component name. If the component is not yet 
in the RCDN, a new component is created (represented 
as a circle).

2.	 Check the requirement links under the state section of 
the ICT node for that component. This check presents 
three potential situations:

a.	 If the RCDN does not have that requirement, a new 
requirement is created (represented as a rectangle). 
If there is a ’ + ’ sign next to the requirement, a 
strong connection (solid line) between the require-
ment and component is added. Otherwise, a weak 
connection (dotted line) is added. For example, in 
component C1, the first requirement is R1, so we 
create a new requirement R1 and connect it with a 
strong line to component C1 (Fig. 4a).

Fig. 3   Example ICT
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b.	 If the RCDN already has the requirement, it is only 
connected to the component based on the connection 
type.

c.	 If the RCDN has the requirement, and it’s con-
nected to that component with a weak connection, 
but another instance of the same requirement with 
different behavior requires a strong connection, the 
weak connection is replaced with a strong one.

After traversing all nodes in the ICT, we achieve a com-
plete RCDN, as shown in Fig. 4b.

2.3 � Transformation of an IBT into CID

In this subsection, we delve into another fundamental com-
ponent of BECIA: the conversion of an IBT into a CID. 
While the specifics of the algorithm are already documented 
[19], we will provide a CID for reference here.

In our work, a CID is used to evaluate whether a com-
ponent has undergone any changes and, if applicable, to 
identify the nature of these changes. We continue with the 
example introduced earlier. Figure 5 displays the CID of 
component C1, derived from the IBT shown in Fig. 1. This 
CID effectively maps any changes in the component’s struc-
ture or behavior.

2.4 � Calculation of change impact indicator

One of the features of BECIA is not just the identification of 
which components and requirements will be influenced by 
a proposed change, but also quantifying the change impact 
through a newly introduced Change Impact Indicator (CII).

Changes, according to requirements change taxonomies 
[20–22], can be classified into three categories: adding 
new requirements, deleting an existing requirement, and 
modifying an existing requirement. In BECIA, we first 
identify a set of components from the RCDN that may be 
affected due to the proposed change. Then we use CIDs to 

quantify the actual impact on each component. The set of 
impacted components is defined as follows:

where Θ represents the set of impacted components,, Θ
n
 is 

the set of new components, Θ
m
 is the set of modified com-

ponents, and Θ
d
 is the set of deleted components.

To quantify the change impact on a component, we pro-
pose a method to estimate the description complexity of 
the component. Following this, the change impact on the 
entire system is defined as the sum of the change impacts 
on all components.

From a CID, we see that each component contains a 
number of states (or interfaces), and each state is linked 
to a number of incoming and outgoing components. As 
shown in Fig. 5, component C1 has two states [B1] and 
[B3]. State [B1] has one incoming and one outgoing com-
ponent, whereas state [B3] has two incoming components 
and three outgoing components.

Kolmogorov Complexity (KC) [17] has been widely 
studied and accepted as a universally applicable complex-
ity measure in mathematics. It has found various applica-
tions in software engineering, often with positive results 
[23].

In our approach, we employ KC to measure the com-
plexity of individual impacted components, using it as a 
change impact indicator for the component. We then esti-
mate the overall change impact by aggregating the change 
impacts on all impacted components. The general formula 
to estimate an upper boundary of KC of an integer n is as 
follows:

We simplify the computation for practical purposes and 
use log (n + 1) to estimate the complexity of non-negative 
integer value n.

In a CID, each component comprises a number of 
states; therefore, the complexity of a component can be 
estimated as the sum of all states’ complexities. Let Let S 
be a state in component C ,, n

c
 is the number of states in C . 

The complexity of state S can be estimated as:

We’ve ignored the constant c when calculating the com-
plexity of a state, as the value is only significant when 
compared to others, and the constant c could be omitted 
as it appears in all compared items.

After estimating the complexity of individual states, the 
complexity of a component can be calculated as:

(1)Θ = Θ
n
∪ Θ

m
∪ Θ

d
,

(2)K(n) ≤ log∗n + c

(3)K(n) ≤ log (n + 1) + c

(4)K(S) ≤ log
(

n
c
+ 1

)

log
(

n
s
i
+ n

s
o
+ 1

)
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where K(C) is the Complexity of component C and Φ is the 
set of states of component C.

The individual component’s complexity is then used 
to calculate the impact of the proposed change on system 
components. We use �

C
 to denote the change impact fac-

tor on component C. For a new component, we define the 
change impact factor as the component’s KC, calculated 
in Eq. (5).

For a modified component, its states are classified into 
three different sets: newly introduced states, modified 
states (some of which may have the number of incoming 
and outgoing components altered), and deleted states:

where Φ is the set of all states in component C , which equals 
the union of newly introduced states Φ

n
 , the set of modified 

states Φ
m
 , and the set of deleted states Φ

d
.

where �
C
 is the complexity of a modified component, K(S) is 

the Complexity of the new state and also Complexity before 
the change, K

(

S
′
)

 is the complexity of a modified state after 
the change. We use max to avoid negative values. If com-
plexity is equal to a negative value, we consider it as zero.

Finally, the overall impact of the proposed change can 
be quantified as follows:

where Δ is the overall change impact factor, and Θ is the set 
of impacted components defined in Eq. (1).

(5)K(C) =
∑

S∈Φ

K(S)

(6)�
C
= K(C)

(7)Φ = Φ
n
∪ Φ

m
∪ Φ

d

(8)�
C
=

∑

S∈Φ
n

K(S) +
∑

S∈Φ
m

max
(

K
(

S
�
)

− K(S), 0
)

(9)Δ =
∑

C�Θ

�C

3 � BECIA workflow with an example

The previous section detailed all the key elements in BECIA. 
This section will first explain the BECIA workflow by com-
bining all these elements and then provide an example to 
illustrate the process.

3.1 � BECIA workflow

The workflow of BECIA is shown in Fig. 6 and comprises 
seven steps. Step 1 falls within the problem domain, steps 
2–4 are in the analysis domain, and steps 5–7 lie in the solu-
tion domain of the software development life cycle.

The initial three steps are standard practices in the BE 
approach that have been introduced in the background sec-
tion and detailed in previous papers [19, 24]. The last four 
steps have been explained in the preceding section. Now, we 
will illustrate these steps with an example.

3.2 � Impact analysis example

This section extends the simple example introduced in 
Sect. 3 to demonstrate the BECIA workflow. We will reuse 
the IBT example shown in Fig. 1 and then add a new RBT 
based on an assumed new requirement. Afterwards, we will 
carry out steps 3–7 of BECIA based on the IBT and RBT.

3.2.1 � Step 2,3‑Draw/Modify RBTs and Integrate them 
with the IBT

Based on the assumed new requirement, we have created a 
new RBT(R5) in step 2, as illustrated in Fig. 7. Then, in step 
3, we merge this RBT with the IBT from Fig. 1. The result-
ing integration is shown in Fig. 8. The two trees are united 
through the root node, which is drawn with a thick border. 
To highlight the changes, we use a grey background color to 
depict new nodes, and a light grey color with a pattern fill to 
illustrate modified nodes.

Fig. 6   BECIA Workflow
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3.2.2 � Step 4 convert an IBT to an ICT

During step 4, we illustrate the process to convert the 
updated IBT into an ICT. Since the original IBT shown in 
Fig. 1 already has an associated ICT displayed in Fig. 3, 
we only need to process the updated section in the IBT to 
modify the associated ICT accordingly.

We read each node one by one from the updated IBT 
and incorporate it into the existing ICT based on the two 
steps defined in Sect. 2.1. For example, we first read the root 
node of R5, which is an integration node with R1, so we 

update the state section of the C1. The node with behavior 
B1 already exists, so we add a new requirement ID in the left 
cell, make the node boundary bold, and fill it with a cross 
pattern to highlight this node as a changed node. Conversely, 
if no node exists for the changed behavior, we model a new 
node with a grey background, as shown for one node of 
component C4 in Fig. 9. If any new component appears in 
the changed requirement, we then create a node for the new 
component and connect it to the root of the tree, as we did 
for component C6.

3.2.3 � Step 5 Convert an ICT to an RCDN

During step 5, we update the RCDN based on the changes 
in the ICT. This is achieved by following the same process 
discussed in Sect. 2.2. Given that this change is to add a new 
requirement (R5), we first model it in Fig. 10 in a rectangle 
filled with a grey colour. After that, we add a new compo-
nent C6, which is represented in a circle also filled with grey 
colour, and then we connect it with R5.

Subsequently, we search for updated components and dis-
cover one new node in component C4. This node changes the 
component state, so a strong connection is formed between 
R5 and C4. We represent changed components/requirements 
with a bold boundary filled with a cross pattern, as depicted 
in Fig. 10. Lastly, we also find one new requirement ID in 
the existing state of component C1, so we connect require-
ment R5 to component C1. This completes the conversion 
of the updated ICT into the RCDN.

3.2.4 � Steps 6,7‑Project out CIDs from an IBT 
and calculate change impact

Step 6 involves projecting out Component Interaction Dia-
grams (CIDs) from the updated Interacting Behavior Tree 
(IBT). We only need to project CIDs for the components 
potentially impacted by the change. To identify these com-
ponents, we refer to the Requirement-Component Depend-
ency Network (RCDN), which highlights all newly intro-
duced and modified components.

As per Fig. 10, a new component C6 and two modi-
fied components (C1 and C4) have been identified. Thus, 
we project out the CIDs of these three components from 
the IBT presented in Fig. 8. The CID for C4 (illustrated in 
Fig. 11) reveals a newly added state in component C4, with 
one outgoing interface also altered. The CID of C1 (shown 
in Fig. 12) reveals multiple interface updates resulting from 
this change.

Next, we examine the possible indirect impacts based on 
the relationships between a changed requirement and other 
requirements. Since R3 and R5 are competing requirements, 
we need to check R3. Given that R3 hasn’t changed, there’s 
no need to assess components connected to R3.
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Having identified the actually impacted components, we 
now measure the complexity of these components. Using 
the CID of these components and Eq. (5), we calculate the 
complexity of each state in a new component. The CID of 

C6, shown in Fig. 13, allows us to compute the complexity 
of its state ’B9’:

As there is only one state in C6, the state complexity 
equals the component complexity. Then, using Eq. (6), we 
find the change impact of C6 to be:

Next, we calculate the complexity of the modified com-
ponent. We start with C4 (CID in Fig. 12), which has two 

K(B9) ≤ log(1 + 1)log(1 + 1 + 1) = 1 × 1.58 = 1.58

�
C6 = 1.58

Fig. 9   Updated ICT
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states: one unchanged state (B5) and one new state (B8). For 
the unchanged state, the complexity is zero, and for the new 
state, the complexity is:

After measuring the complexity of all the states of C4, we 
can calculate the change impact for the modified component 
(C4) using Eq. (8):

Similarly, for component C1 (CID in Fig.  11), the 
unchanged state (B3) has a complexity of zero, and the 
modified state (B1) has a complexity of:

So, the change impact for C1 can be calculated as follows:

After measuring the change impact of the new and modi-
fied components, using Eq. (9), we can calculate the change 
impact indicator (∆):

This complexity value is on a logarithmic scale in the 
bits unit. The Change Impact Indicator (CII) unit is a bit, 
which quantifies how many bits of information are needed 
to describe the change. This absolute value can be mean-
ingless without comparison. The comparison provides an 
understanding of the magnitude of the change impact on 
the software.

4 � Evaluation

In this section, we evaluate the effectiveness of our BECIA 
approach using final year projects from undergraduate stu-
dents at the FAST-National University of Computer and 
Emerging Sciences (NUCES), Chiniot-Faisalabad campus. 
FAST-NUCES is one of the top computer science universi-
ties in Pakistan [25].

We engaged three groups consisting of nine practition-
ers in applying BECIA, asking them to critically evaluate 
the proposed approach against "ease of learning" and "user 
satisfaction" metrics.

•	 Ease of Learning: All three groups rated the model as 
clear and easy to understand. They felt the division of the 
proposed approach into self-explanatory steps assisted 
them in their understanding. This is encouraging as it 
indicates that our model is both concise and comprehen-
sive.

K(B8) ≤ log(2 + 1)log(1 + 1 + 1) = 1.58x1.58 = 2.51

�
C4 = (0 + 2.51) = 2.51

K(B1) ≤ log(2 + 1)log(2 + 2 + 1) = 1.58x2.32 = 3.68

�
C1 = (3.68 + 0) = 3.68

Δ = 1.58 + 2.51 + 3.68 = 7.77

•	 User Satisfaction: All practitioners agreed that, in gen-
eral, our model would be useful within the software 
industry. They believed that the Change Impact Analysis 
(CIA) approach is clear and can effectively estimate the 
proposed change’s impact on other system components.

Based on this preliminary evaluation, we are confident 
that the proposed approach can assist in estimating the 
impact of a proposed change on other system components. 
However, we also recognize the necessity for further evalu-
ation of the proposed approach through additional case stud-
ies. This would help ensure that our model can be effectively 
and reliably applied in different contexts and scales of soft-
ware development.

5 � Related work and comparison

Much of the existing research focuses on executing Change 
Impact Analysis (CIA) in source code relative to other Soft-
ware Development Life Cycle (SDLC) phases. According 
to Kretsou [26], 62% of the current research concentrates 
on performing CIA in source code, followed by 22% in the 
design phase, 14% in architecture, and a mere 2% in require-
ments. In the context of CIA across various development 
phases, our approach introduces a method to comprehend 
change impact, starting from requirements to design and 
architecture. This covers phases of the SDLC not extensively 
explored before.

Several studies trace changes from one software artifact 
to other artifacts. For instance, from source code to software 
design, Hammad et al. [27] demonstrated a methodology 
that tracks design evolution based on source code changes.

Considering change propagation from requirements to 
design, Al-Saiyd and Zriqat [28], Sudin and Kristensen [29], 
and Kchaou et al. [30] presented various traceability-based 
approaches.

In terms of techniques employed for CIA, according to 
Kilpinen [31], CIA research can be divided into two groups: 
traceability-based and non-traceability or dependency 
matrix-based methods. Some studies also employ a combi-
nation of these approaches.

While Spilkerman [32] and Goknil et al. [33] proposed 
formal semantics of requirements relations [34] for under-
standing change impact under traceability methods, Hassine 
et al. [35] and Ali and Lai [35] presented non-traceability 
approaches.

Analyzing the above-discussed approaches for CIA, 
several conclusions can be drawn:

•	 While various techniques such as dependency graph [30], 
dynamic slicing [36], distance measure [37], and reverse 
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engineering [38] have been used for change propagation 
across different software artifacts, traceability-based 
approaches have inherent issues such as time and cost 
required to establish traceability links [39]. and the chal-
lenge in managing excessive links between artifacts auto-
matically through software [40].

•	 Our approach offers traceability benefits due to the 
inherent properties of the modeling language, BT, used 
to model system requirements [41]. We exploit these 
properties and propose two algorithms to systematically 
transform system requirements from one software artifact 
to another.

•	 Regarding quantifying change impact, except a few in 
source code traceability analysis [2, 35, 42], most exist-
ing studies execute CIA without quantifying the change 
impact. Our approach, in contrast, estimates change 
impact at the architectural level, identifies impacted com-
ponents, and estimates the complexity of these compo-
nents.

•	 Our approach is fully automatic except for the first step 
of translating functional requirements into RBTs. All 
other steps are based on well-defined rules and processes, 
which provide visible and verifiable traceability across 
all different design artifacts.

The comparisons between BECIA and existing CIA 
approaches are summarised in Table 1.

6 � Conclusion and future work

In this paper, we have introduced a novel behavior engi-
neering-based approach to conduct change impact analy-
sis, named BECIA. BECIA utilizes an IBT to model sys-
tem requirements and offers algorithms to convert an IBT 
into an ICT, and subsequently, the ICT into an RCDN. The 
RCDN assists in identifying a preliminary set of architec-
tural elements potentially impacted by a proposed change. 
We then use the CID derived from the IBT and RCDN to 
investigate which components are genuinely impacted and 

require modification due to the proposed change. Lastly, we 
introduce a CII metric to quantify change impact, providing 
more objective evidence to estimate the development cost 
for a suggested change.

We believe our approach will aid practitioners in under-
standing the change impact of functional requirements on 
design and architecture and establish traceability among dif-
ferent types of software artifacts.

However, the proposed CIA method does have its limi-
tations: firstly, it leverages BE models to estimate change 
impact, making it inapplicable to other modeling languages. 
Secondly, it only encapsulates requirements that can be 
described as "behaviors" and may not be adept at handling 
certain non-functional requirements such as constraints.

For future work, we intend to create a prototyping tool to 
augment the proposed approach further and assist in auto-
mating it. We also plan to conduct a survey with industry 
practitioners to empirically validate the proposed approach. 
The applicability of the proposed framework in the global 
software development paradigm is another avenue worthy 
of future exploration.
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