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Abstract In various applications across different platforms, 
image similarity features such as image searching and similar 
image recommendations are widely used. However, the chal-
lenges of semantic gap and querying speed continue to pose 
significant challenges in image similarity searching. In this 
study, we propose a novel solution to address these issues using 
contrastive learning within the TensorFlow Similarity library. 
Specifically, we trained and tested our proposed method using 
the Caltech-256 dataset and further evaluated it on the Corel1K 
dataset. Our work distinguishes itself from previous studies that 
primarily focus on evaluating accuracy while neglecting the 
importance of speed evaluation. As such, we propose evaluating 
both the mean average precision score and query time spend-
ing. Our experimental results reveal that our method based on 
EfficientNet (B7) yields the best average precision scores of 
0.93 on the Caltech-256 test dataset and 0.94 on the Corel1K 
dataset. However, other methods achieve faster query times, 
although their average precision scores are significantly lower.

Keywords Artificial intelligence · Deep learning · Image 
similarity · Image search · Image representation

1 Introduction

Image searching is a tool used by users to explore related 
visual content. Despite the progress made in image search-
ing by image, challenges related to the semantic gap and 

search speed still need addressing to meet business needs. 
The semantic gap is a subjective issue, as some image pairs 
may be visually similar but differ semantically. Previous 
studies have proposed different methods for image search-
ing by image, ranging from traditional image features [3, 5], 
machine learning, and deep learning. These studies involve 
extracting image features and calculating distances to iden-
tify the closest matches. However, even with the application 
of machine learning and neural networks, the semantic gap 
issue still persists, as highlighted in [8] and [28].

To address the semantic gap and search speed issues 
and improve image searching by image, we propose a solu-
tion that balances accuracy and speed using the Tensorflow 
similarity library [7]. As a core model, we used the pre-
trained EfficientNet (B7) whose last three original layers 
were further trained with the Caltech-256 dataset. Tensor-
flow similarity is used in our work as it leverages contrastive 
learning and offers Fast Approximate Nearest Neighbor that 
supports scalability for efficient and fast searching in sub-
linear time. Our study seeks to find a solution that provides 
similar images as the input image with high-speed searching. 
However, our work is restricted to the use of one baseline 
model at a time. Utilizing feature vectors from an ensem-
ble model like [20] may enhance accuracy at the obviously 
higher computational cost.

2  Related works

In the field of image retrieval, both text-based [9, 11, 17, 
18] and image-based methods have been proposed for 
image similarity search. However, this section will mainly 
concentrate on image-based retrieval. [15] proposed the 
feature-based sparse representation for image similarity 
using Scale-Invariant Feature Transform (SIFT) features, 
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K-singular value decomposition, and sparse coding. Despite 
its high precision, dictionary feature extraction has a high 
computation cost. To improve the accuracy without the need 
for image databases, [19] proposed multi-feature extraction 
using the three color space histogram, Color Coherence 
Vector, and the Sobel edge detection. Furthermore, [13] 
proposed Wavelets and Principal Component Analysis for 
feature extraction and dimensional reduction, focusing on 
an image retrieval system with reduced computational com-
plexity. In [10], the data is divided and randomly distributed 
among various nodes. The query image is distributed to all 
nodes, and artificial neural network is performed in each 
node. The local result from each node is combined in the 
central node for the final result. Although [10] focuses on 
query speed in the distributed system, it provides less infor-
mation on image features for similarity matching.

For machine learning solutions, [8] proposed the nearest 
neighbors of images using text-image relevant information. 
The result shows that some similarity pairs are matched with 
no semantic meaning but visual matching. Since the popular-
ity of neural networks, many studies have applied neural net-
works to image retrieval. [1] proposed a content-based medi-
cal image retrieval system using similarity or distance among 
feature vectors extracted by VGG19 and ResNet50. Deep 
Ranking model [27] outperformed traditional and deep clas-
sification models but there is no comparison with other deep 
similarity models. For image similarity matching, a multi-scale 
Siamese network (SimNet) [4] containing two Convolutional 
Neural Networks (CNNs) can capture both semantic and visual 
of images. Despite the high accuracy of 92.6%, the fully-con-
nected layers limit SimNet to fixed-length image inputs. To 
solve this problem, [28] proposed the triplet spatial pyramid 
pooling network (TSPP-Net). However, there is still a semantic 
gap between a query image and similar images from the model.

In conclusion, traditional approaches of image simi-
larity searching present computational and storage chal-
lenges. Despite advancements in accuracy, the semantic 
gap issue remains a challenge as mentioned by [8, 28]. 
In this study, we focus on the specific problem of image 
similarity searching by images, given the ongoing seman-
tic gap issue. Notably, while prior investigations have pri-
marily evaluated performance based on either accuracy 
or speed, as in Table 1, our work assesses performance in 
both domains. Furthermore, we employ the Tensorflow 
Similarity library to overcome the semantic gap and evalu-
ate similarity accuracy and query time.

3  Proposed methods

As shown in Fig.  1, this study employs two datasets, 
six experimental models, and two evaluation metrics as 
described in the following subsections.

3.1  Datasets

The Caltech-256 dataset [12] is used to train and test the 
models, with no overlap in classes between the two sets. 
Caltech-256 is a benchmark dataset consisting of 30,607 
real-world colorful images with 257 classes and at least 80 
images per class. For this study, the classes with more than 
100 images are selected before we randomly choose only 
120 classes for further uses. To limit the number of images 
to 100 per class, we randomly remove images from each 
class. Then, the total 120 classes are randomly split to 100 
classes for training and 20 classes for testing. The models to 
be trained with Caltech-256 are EfficientNet (B7), ResNet18, 
and ResNet50, all pre-trained on ImageNet. Additionally, 

Table 1  A summary of the differences between our study and previ-
ous studies in terms of evaluation metrics

Work Evaluation method

Accuracy Speed

Kang et al. [15] ✓

Roy and Mukherjee [19] ✓

Durmaz, and Bilge [10] ✓

Chechik et al. [8] ✓

Wang et al. [27] ✓

Appalaraju and Chaoji [4] ✓

Yuan et al. [28] ✓

Gao et al. [11] ✓

Portaz et al. [18] ✓

Chen et al. [9] ✓

Part and Im [17] ✓

Agrawal et al. [1] ✓

Harini and Bhaskari [13] ✓

Ours ✓ ✓

Fig. 1  The overview workflow of this study
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the Corel1K dataset [6, 16, 23–26] is used for testing the 
models. To prevent bias in data selection, classes and images 
from both datasets are randomly chosen. Corel1K is a data-
set designed for content-based image retrieval, consisting 
of 10,800 colorful images (in various sizes) grouped to 80 
classes. In this study, 10 classes with more than 100 images 
are randomly selected; each class is reduced to 100 images 
for testing the models. This dataset is selected because of its 
semantic grouping of similar images.

3.2  Models

This study aims to identify the optimal model for image sim-
ilarity by utilizing the Tensorflow Similarity library [7] ver-
sion 0.16 as the core library to construct the similarity mod-
els. The library was developed by Tensorflow specifically for 
similarity learning and can be integrated with deep learning 
model architectures that are well-suited for similarity, such 
as EfficientNet, ResNet18, and ResNet50. Therefore, we 
chose to experiment with these three architecture models 
instead of developing a new architecture from scratch.

Six models are evaluated in this study as shown Fig. 1. 
Three baseline models include EfficientNet (B7) pre-trained 
on ImageNet, ResNet50 pre-trained on ImageNet, and 
K-Nearest Neighbors (KNN). The KNN algorithm with a 
value of K=3 is used here as it provides the highest accuracy 
for both Caltech-256’s test dataset and the Corel1K Data-
set. The other three models are EfficientNet (B7) pre-trained 
on ImageNet and then finetuned on Caltech-256, ResNet18 
trained on Caltech-256, and ResNet50 pre-trained on Ima-
geNet and then finetuned on Caltech-256. The performance 
of these six models is evaluated on both Caltech-256’s test 
dataset and Corel1K dataset using the average precision 
score and average query time spent.

To facilitate deep feature learning, we utilized the Circle 
loss [21] as shown in Eq. 1. The Circle loss function is an 
improvement over the classification loss function and metric 
loss function, as described in [21]. This function provides 
flexibility in the penalty strength applied to within-class sim-
ilarity and between-class similarity, enabling the application 
of different weights to various similarity scores.

3.3  Model training

The study utilized a training batch size of 10 images per 
batch, with a Circle loss gamma of 256. The model was 
compiled using Adam optimizer with an initial learning rate 
of 0.0001. The models were trained for 40 epochs with 1000 
steps per epoch and 200 validation steps.

(1)Lcircle = log[1 +
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− �

i
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si
p
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• EfficientNet (B7)

In this study, we propose to implement the Tensorflow Simi-
larity model using EfficientNet (B7) [22] as the backbone. 
EfficientNet models were specifically designed for image 
classification, as described in [7]. The input image is first 
fed into EfficientNet (B7), which is pre-trained on ImageNet, 
with a shape of (600, 600, 3). We freeze all layers except 
for the last three layers, which are trainable. We then apply 
Global Max Pooling for feature extraction, and the last layer 
is the Metric Embedding layer, which produces an embed-
ding output of size 512. The final validation loss is 25.34, 
while the final training loss is 3.27.

• ResNet18

We employed ResNet18 [14], a deep neural network for 
similarity learning [7], as another underlying architecture. 
The input images, sized (224,224,3), were processed through 
the ResNet18 model to extract features using Global Max 
Pooling, and finally fed into the Metric Embedding layer 
to produce the 512-dimensional output embeddings. As the 
Tensorflow Similarity library did not provide a pre-trained 
ResNet18 model with accessible parameters trained on 
Imagenet, we opted to train ResNet18 from scratch with 
randomly initialized weights. To ensure reliable evalua-
tion, we trained the model ten times, each with different 
initial weights. The average final validation loss and training 
loss across the ten models were found to be 25.42 and 6.85, 
respectively.

• ResNet50

ResNet50 [14], a well-known deep neural network for 
similarity learning [7], was chosen as another underlying 
architecture. We utilized the pre-trained ResNet50 model 
on ImageNet, with the input images sized (512,512,3). All 
layers except the last three were frozen, and the remaining 
layers were made trainable. Global Max Pooling was applied 
for feature extraction, and the Metric Embedding layer pro-
duced the final embeddings with a dimension of 512. A final 
validation loss is 21.96 whereas a final training loss is 3.76.

4  Experimental results and discussion

The software utilized in this study included Python 3.7, 
Numpy 1.21.6, Matplotlib 3.5.2, Tensorflow 2.6.4, Ten-
sorflow Similarity 0.16.3, and tabulate 0.8.9. For hardware 
resources, we used Model 79, Intel(R) Xeon(R) CPU @ 
2.20GHz with one CPU core and 12 GB memory. The GPU 
used was the Tesla P100-PCIE with 16 GB memory.
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The study employed the Tensorflow Similarity library as 
the primary tool for similarity learning. Three models, Effi-
cientNet (B7), ResNet18, and ResNet50, were utilized as 
the backbone for the study because these models have been 
shown to perform well in similarity learning tasks [7]. Two 
datasets, namely Caltech-256’s test set and Corel1K, were 
used for evaluating the models. The Caltech-256’s test set 
comprised 2,000 images, while the Corel1K dataset con-
tained 1,000 images. The indexing component of the Ten-
sorflow Similarity was applied to all test images.

For each test dataset, ten query images were randomly 
selected to find the top 20 similar images based on the lowest 
Cosine Similarity distance. Evaluation metrics included the 
average precision score and average query time spent. For 
ResNet18, we trained it from scratch ten times with different 
random weights. The standard deviation (SD) was calculated 
based on the average precision score and average query time 
spent for each test dataset. Evaluation metrics included the 
mean average precision (Eq. 2) and query time spent (Eq. 3), 
along with the corresponding SD.

(2)Average precision =
∑

(

TP

TP + FP

)

∕N,

(3)Average time spending =

∑

Query time spending

N
.

4.1  Results

EfficientNet (B7) pretrained on ImageNet, with the last 3 
layers finetuned on the Caltech-256 dataset, achieved an 
average precision score of 0.88, which is higher than the 
average precision score of ResNet50 pretrained on Ima-
geNet, with the last 3 layers finetuned on the Caltech-256 
dataset, which achieved a score of 0.69. For ResNet18 
trained on the Caltech-256 dataset, the 10 trained-from-
scratch models results in 10 different validation loss values.

Overall, EfficientNet (B7) pretrained on ImageNet and 
fine-tuned on Caltech-256 dataset provides the best results 
in terms of average precision scores of 0.93 on the Caltech-
256’s test dataset and 0.94 on the Corel1K dataset. Mean-
while, ResNet18 trained from scratch on Caltech-256 dataset 
provides the lowest query time spending of 6.76±1.90 s for 
the Caltech-256’s test dataset and 3.85±0.63 s for the Corel1K 
dataset. Both models can compete with their baseline models 
as shown in Tables 2, 3, and Fig. 2. According to [2] that 
applied the traditional method on the Corel1K dataset, it got 
an average precision score of 0.90 which is lower than ours.

KNN with K = 3 provides the fastest query speed of 
0.67 s for both test datasets. However, it suffers from low 
average precision scores of 0.16 on the Caltech-256’s test 
dataset and 0.00 on the Corel1K dataset, compared to deep 
learning-based models. Despite its best result in precision, 
EfficientNet (B7) pretrained on ImageNet and finetuned on 
Caltech-256 dataset is still not able to improve the query 
time spending compared to its baseline of Efficient (B7) 
pretrained on ImageNet. 

Table 2  Models evaluation on 
Caltech-256’s test dataset. The 
bold text is the best (the highest) 
average precision score

No Model Avg precision Avg time

1 EfficientNet (B7) pretrained on ImageNet (baseline) 0.88 7.12 s
2 ResNet50 pretrained on Imagenet (baseline) 0.80 10.26 s
3 EfficientNet (B7) pretrained on ImageNet, and trained last 

existing 3 layers from Caltech-256 (ours)
0.93 7.08 s

4 ResNet18 trained from Caltech-256 (ours) 0.33 ± 0.01 6.76 ± 1.90 s
5 ResNet50 pretrained on ImageNet, and trained last exist-

ing 3 layers from Caltech-256 (ours)
0.69 10.92 s

6 KNN with K = 3 0.16 0.67 s

Table 3  Models evaluation on 
Corel1K dataset. The bold text 
is the best (the highest) average 
precision score and the best (the 
lowest) average time spending

No Model Avg precision Avg time

1 EfficientNet (B7) pretrained on ImageNet (baseline) 0.92 5.36 s
2 ResNet50 pretrained on Imagenet (baseline) 0.86 7.42 s
3 EfficientNet (B7) pretrained on ImageNet, and trained last 

existing 3 layers from Caltech-256 (ours)
0.94 5.49 s

4 ResNet18 trained from Caltech-256 (ours) 0.46 ± 0.01 3.85±0.63 s
5 ResNet50 pretrained on ImageNet, and trained last existing 

3 layers from Caltech-256 (ours)
0.77 6.92 s

6 KNN with K = 3 0.00 0.67 s
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4.2  Discussion

EfficientNet (B7) pretrained on ImageNet and trained on the 
last existing 3 layers from Caltech-256 demonstrates the best 
average precision score in this study. However, it requires a 
larger input image size of 600×600 pixels, which is larger 
than the input size required for other models. This model 
is particularly effective for images with unique patterns, 
shapes, and colors, as demonstrated by the accurate results 
obtained for images of dinosaurs, bonsai, and balloons in 
Fig. 3. Nonetheless, the model is prone to returning similar 
images of different classes with similar patterns, shapes, or 
colors as the query image, as shown in Fig. 4. Average query 

time spending of the deep learning models remains an area 
of potential improvement. ResNet18 trained on Caltech-256 
and tested on Corel1K exhibits the fastest query time among 
the deep learning models, albeit with the lowest average pre-
cision score. In contrast, KNN provides the fastest query 
time among all models, but with the lowest average preci-
sion score compared to the deep learning models. Despite 
this, the deep learning approach still yields superior accu-
racy compared to the traditional machine learning method, 
as evidenced by the results in this study. 

Fig. 2  Comparing the average 
precision score between models 
on both Caltech-256 test dataset 
and Corel1K dataset

Fig. 3  An example of the 
accurate results of the similarity 
search algorithm applied in this 
study. The numbers displayed 
above each image indicate the 
distance between the respective 
image and the query image

Fig. 4  An example of the inaccurate results of the similarity search algorithm applied in this study. The numbers displayed above each image 
indicate the distance between the respective image and the query image
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5  Conclusion and future works

This study utilized the Tensorflow Similarity library as 
the core library for identifying the optimal solution for 
finding similar images of a query image. The Tensorflow 
Similarity library is plugged in to three models that are 
efficient for similar searching: EfficientNet, ResNet50, 
and ResNet18. We conducted experiments on these three 
backbone models, using the Tensorflow Similarity for 
similarity calculation. The results indicate that Efficient-
Net (B7), pre-trained on ImageNet, and finetuned the last 
three existing layers from Caltech-256, achieved the high-
est precision scores on both the Caltech-256 test dataset 
and Corel1K dataset, scoring 0.93 and 0.94, respectively. 
Among other deep learning models, ResNet18, trained 
from scratch with Caltech-256, provided the fastest aver-
age query time of 3.85±0.63  s. The KNN algorithm 
exhibited the fastest average query time of 0.67 s but 
yielded the lowest average precision score.

For future work, there is a need to enhance accuracy 
of similar image searching while optimize query time 
spending. This can be achieved by exploring other back-
bone architectures for identifying similar images, which 
should accept input sizes smaller than 600×600 pixels to 
decrease query time. It is also recommended to evaluate 
the proposed method on the CIFAR-100 dataset because 
there are 600 images of each class with fine label. So, we 
can evaluate semantic gap issue using this dataset.
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