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Abstract Rapid dissemination of Artificial Intelligence 
(AI) and machine learning in real-world problems has raised 
a concern about the reliability aspects of the model. A sepa-
rate sub-branch of AI solicitudes on reliability is known as 
Explainable AI (XAI). XAI analyses the cause and impact 
of the decision made by AI systems. The neural network 
plays a significant part in AI’s ability to upgrade with more 
recent data. However, the learning capability left the model 
obscure for most of its decisions. Breaking the black-box 
nature of the neural network model and giving understand-
ing and insight into the functionality of the model will miti-
gate the uncertainty. Here, in this research, we have designed 
Object oriented neural representation to devise a “Feature 
importance” technique from the correlation between Loss 
and Weight distribution devised method is effective in inter-
preting the decision to the end user and AI practitioners 
with optimal time complexity (TC = (L-1) × (E × C)). The 
proposed neural representation also extended to incorpo-
rate domain/business rules from which we introduced a new 
Loss, known as business loss. From getting the impact of 
business loss, we obtained an earlier decline in the overall 
Loss and improved performance from the ablation study.

Keywords Explainable AI · Black Box · Domain 
Knowledge · Feature importance · Interpretability

1 Introduction

Artificial Intelligence is driving technological innova-
tion to new dimensions that were once unimaginable, and 
various sectors have proven its supremacy [1, 2]. Neural 
Networks(NNs), especially, are a predominant part of AI 
due to their ability to infer complex patterns from data by 
passing through the layers of Artificial Neural Networks 
(ANNs) [3–5]. Hidden layers are responsible for learning 
patterns from the data, allowing ANNs to acquire experi-
ence with more data [6]. In contrast to rule-based systems, 
ANNs are known as Universal Function Approximators [7]. 
However, this raises significant concerns about the mapping 
learned in the hidden layers, as it lacks proper causes and 
consequences behind the decision. Therefore, the internal 
working mechanism of ANNs is generally known as a black 
box. The black box indicates a model whose inner workings 
are uninterruptible and unexplainable, which is a significant 
issue for end-users, AI practitioners, and researchers.

Even though renowned frameworks like TensorFlow, 
PyTorch, etc., suffice the requirements of practitioners and 
researchers using abstract methods (i.e., model.fit()), it is a 
concern for Explainable AI (XAI) since these abstract meth-
ods outline the parameters to be passed and mask the imple-
mentation details. XAI attempts to disclose the concrete 
nature of neural network systems by reasoning the causes 
and reasons for decisions using various XAI methods [8, 9]. 
XAI is a sub-branch of AI that is new and evolving.

The main objective and contribution of our work:

• We have used an object-oriented neural representation 
to study feature importance through a cyclic learning 
sequence and to enable the easy incorporation of busi-
ness parameters into a neural network.
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• We utilized the extensibility property of Object Oriented 
Modelling (OOM) to incorporate business parameters 
using object-oriented design and standard design pat-
terns. This enabled us to introduce a new loss function 
called the ’business loss’ and analyze its impact during 
training.

• We avoided using abstract methods and instead used 
primitive types and custom-built methods based on dif-
ferential calculus to train the neural network

• We evaluate the proposed Object Oriented model using 
a nonlinear XOR and XNOR function.

• Finally, with our proposed model, we attempted to answer 
one of the most transformative questions of the decade: 
from how machines work to how machines learn?

The paper is organized as follows: Sect. 2 describes the 
previous work. Section 3 reviews the literature. Section 4 
covers the significance of feature importance using cyclic 
learning sequence. Section 5 focuses on the design of the 
proposed Object-Oriented Neural Network model. Section 6 
provides the derivation for training the neural network. 
Section 7 describes the design of the algorithms. Section 8 
describes implementation details. Section 9 conducts experi-
ment. Section 10 presents the results and discussion. Finally, 
Sect. 11 draws the conclusions.

2  Previous work

In our earlier work, we reviewed deep neural networks 
(DNNs). DNNs automatically extract features for prediction 
without any hand-crafted feature engineering methods. More 
complex problems can be represented in DNNs. Increas-
ing the number of layers and nodes substantially increase 
the potential for representing complex problems. We also 
reviewed challenges in different circumstances and security 
concerns. Techniques and defensive strategies have evolved 
to compensate for those challenges, maintain performance, 
and provide a secure environment [10, 11]. DNNs have 
grown exponentially in the past decade. However, the auto-
matic learning capability has left the NN system uninter-
ruptible and unexplainable to end users/domain experts, AI 
practitioners, and researchers [12, 13].

3  Literature review

Various techniques have been developed to explain the inter-
nal functioning of opaque NN models for decision making. 
Methods such as surrogate models, gradient-based tech-
niques, undiscovered smooth functions, and model-specific 
methods have evolved. AI developers and researchers can 
gain insight into the inner workings of NNs using feature 

importance from XAI methods. Visual Analytics (VA) 
researchers adopt XAI methods in visual analytics to give a 
far-enhanced interpretation and understanding of the neural 
network system to end-users [13, 14].

Commonly in the surrogate technique, a local instance 
is selected for perturbation to frame similar instances from 
the impact of the perturbation. The surrogate model is sim-
ple and easy compared to the actual model, which can be 
easily discerned with linear relations, decision trees, fea-
ture scores, and decision boundaries. Representative meth-
ods include LIME [15], SHAP [16] [17], and ANCHOR 
[18]. Each method uses a different perturbation technique 
to determine the feature’s importance. LIME explains the 
linear model by discerning the positive and negative impact 
of the feature on the result. SHAP considers similar features 
as a team that contributes to the decision process, similar 
to game theory. On the other hand, the ANCHOR method 
selects the ANCHOR region from the feature space such 
that changes outside the ANCHOR will not affect the anchor 
region, using IF–THEN rules. ANCHOR creates the deci-
sion boundary for all the decisions in the feature space.

The gradient-based technique calculates feature impor-
tance based on gradients. Representative methods include 
Saliency Map, Class Activation Mapping (CAM) [19], 
GRAD-CAM [20], Deep LIFT [21], Integrated Gradients, 
and Layer-Wise Relevance Propagation (LRP) [22]. Sali-
ency Map produces a detailed heat map to show the fea-
ture’s importance to end-users, indicating which part of 
the data has been referred to for the decision. CAM uses 
average global pooling in the deep layer to produce feature 
importance. However, the CAM technique is not scalable. 
Grad-CAM addressed the drawback of CAM by using a 
gradient of any class technique to highlight the particular 
contribution. Integrated Gradients is similar to DeepLIFT 
but computes the gradient differently by averaging a linear 
path between the referred and selected input. LRP works 
based on conservation of relevance; propagated relevance for 
the decision is preserved and transmitted back to the lower 
layer along with the prediction to study the feature impor-
tance with the magnitude of neuron activation in each layer. 
Bayesian Rule List uses static pre-defined rules to reduce 
the feature space and makes it more interpretable with those 
rules by using simple IF–THEN rules.

Model-specific methods include GAM [23] and Mean 
Decrease Impurity (MDI) [24]. GAM provides feature 
importance by inferring the undiscovered smooth function. 
The inferred smooth functions are aggregated to demon-
strate the reason behind the decision. MDI uses a decision 
tree-based approach to obtain feature importance; it tries 
to find a point to split the Node to form a tree-like hierar-
chy. However, GAM and MDI are model-specific. Signifi-
cant methods are depicted with a timeline in Fig. 1. Fur-
thermore, feature distributions are analyzed from various 
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central data tendencies, such as mean, median, mode, sort-
ing, binning, and a combination of two or more methods, 
to interpret the weight distribution to the end-users and 
AI practitioners [25]. Moreover, researchers and experts 
suggest incorporating domain/business rules into neural 
network systems [26–28].

We have reviewed significant contributions from XAI 
methods. Our focus is to devise a feature importance 
method that is easily interpretable by the end-user and 
adaptable to Visual Analytics, as depicted in Fig. 2. Along 
with the feature importance method, we have extended the 
study to incorporate domain/business rules into a neural 
network system based on suggestions from experts and 
researchers in recent studies and analyses [26–28].

4  Significance of the method (methodology)

We have reviewed significant XAI techniques, such as gra-
dient implication, undiscovered smooth function, model-
specific surrogating, and others [15–25]. These methods 
focus on weight distribution alone for feature importance. 
We approach feature importance from a novel perspective. 
We take a cyclic learning sequence that starts from the pre-
diction, based on how close the prediction is to the expected 
outcome. The Loss is impacted (the Loss is a derivative of 
the L2 function for the output nodes, and for non-output 
nodes, it is a propagated gradient to the node level). The 
Loss, in turn, affects the weights, as illustrated in Fig. 3a. 
Every neuron and connection weight must undergo these 
cyclic steps repeatedly to extract the necessary features for 

Fig. 1  Evolution of the XAI method with a timeline

Fig. 2  The focus of our research
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prediction. When the connection weights renew their magni-
tudes and directions in connection with the propagated Loss, 
the prediction moves closer to the expected result.

However, not all neurons and connection weights follow 
the loss direction; some may miss the track and get stuck 
in local minima, as shown in Fig. 3b. Nevertheless, those 
neurons and connection weights that follow the Loss play 
a significant role in contributing to the prediction [29]. It 
is impossible to determine those neurons and connection 
weights that renew according to the loss direction before 
training because the learning process is dynamic for the neu-
ral network. However, after training, as a post-hoc expla-
nation, analyzing weight distribution along with loss dis-
tribution can provide insight into the study by effectively 
measuring the degree of association between Loss and 
weight distribution using the correlation matrix, as given in 
Eq. (1), for feature importance [30–34].

The correlation coefficient measures the correlation 
between two variables, and r ranges from − 1 to + 1. When 
the correlation coefficient reaches the two extreme ranges, 
i.e., − 1 or 1, it implies a strong correlation or contribution. 
Being away from the range indicates less contribution, while 
being close to 0 means very little contribution [35].

After analyzing the importance of loss parameters for fea-
ture importance from the cyclic learning sequence, another 
purpose of our study is to incorporate domain/business 
knowledge into the neural network. These aspects require 
a novel neural representation that goes beyond the tensor 
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representation and can satisfy the requirements. The neural 
representation must combine relevant parameters such as 
neuron value, Loss, and connection weights so that loss and 
connection weight are bound together to compute feature 
importance through a correlation matrix [36, 37].

We have chosen Object-Oriented Modeling (OOM) for 
the neural network representation as it best fits the require-
ments. OOM has implicit encapsulation and extendibility 
properties, which make it convenient to combine relevant 
parameters. Extendibility can play a crucial role in the effort-
less incorporation of new parameters, allowing domain/busi-
ness-specific parameters to be incorporated into the neural 
network model. Therefore, we have provided a representa-
tion to combine relevant parameters and an easy plug-in to 
incorporate domain/business-specific parameters into a neu-
ral network using OOM and following the design principles 
of the interpreter, filter, and factory patterns [36, 37].

In backpropagation, the goal is to minimize the error or 
loss by adjusting the weights in the neural network. This is 
done by repeatedly computing the gradient of the loss func-
tion with respect to the weights and adjusting the weights 
in the direction of the negative gradient. This process is 
repeated iteratively until the loss function converges to 
a minimum value, indicating that the neural network has 
learned to predict the output.

Whereas, in the proposed feature importance method, 
the loss is not used to minimize a function. Instead, loss is 
considered in harmony with co-related parameters such as 
prediction and weight, as part of a cyclic learning sequence. 
This cyclic property is used to derive feature importance by 
evaluating whether a particular feature is adhering to the 
propagated loss or stuck in a local minimum without con-
tributing significantly to the prediction.

Fig. 3  a. Cyclic Learning Sequence, b Neurons and connection weights looses their connection when not adhered to the Loss
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To determine feature importance, the proposed method 
calculates a correlation coefficient value between the loss 
and connection weight using a correlation equation. By 
using this correlation equation, the proposed method is able 
to determine which features are important for making pre-
dictions or decisions and which features are not contributing 
significantly. This allows for a more transparent and under-
standable prediction process, providing assurance over the 
result of the predictions.

Furthermore, the proposed model has been expanded to 
utilize its object-oriented extendibility property, making 
it capable of easily integrating domain or business rules. 
Another important aspect of the proposed model is that it 
does not rely on conventional abstract methods like model.
fit() for training the neural network. Instead, it employs a 
differential calculus-based process to derive equations that 
facilitate the network’s training. This approach adds trans-
parency by identifying the key factors that contribute to the 
machine learning.

5  Proposal of an object‑oriented neural 
representation model

In this section, we propose a model for the 
proposed methodology.

We inspect neural networks from an object-oriented per-
spective to provide an enhanced representation. The neural 
network is an arrangement of nodes and layers. Each layer 
consists of nodes, and the nodes from a layer are connected 
to the successive layer. From a conceptual background, the 
Node is the most primitive encapsulation that binds value, 
Loss, and connection weights to the successive layer. We 
have modeled Node with these highly cohesive attributes. 
Connections from one Node to other nodes are established 
through a Map: a key-value pair [Map < Node, Weight-
Pair >]. Designing the Node class with highly relevant and 
cohesive parameters is essential to find feature importance 
through loss and connection weight correlation. The layer 
is a composition of a list of nodes, and a list of layers con-
stitutes a baseline neural network, as depicted in the class 
diagram in Fig. 4 [38–40].

In addition to the baseline neural network model, we uti-
lize the extensibility property of object-oriented program-
ming to incorporate a business or domain-specific rules into 
the baseline representation. We have derived supplemental 
classes from the baseline ANN: “ExtendedNodeFunction” 
and “ExtendedLayerFunction” are inherited from the base 
Node and Layer classes. “ExtendedNodeFunction” inherits 
the node class and contains objects to assert the result with 
the business rules. Thus, the derived class provides composi-
tion to embed business or domain rules along with primitive 

neural network properties, as depicted in the class diagram 
in Fig. 5. The incorporated business rules are specific to 
output layers and nodes [38–40].

Business or domain rules are unique and specific to a 
particular problem. However, we tried to provide a standard 
template flexible to any problem domain by adopting the 
standard design principles from interpreter, filter, and fac-
tory patterns [38–40].

From the Business Rule template, as shown in Fig. 6, the 
business rule is a public interface with an assert method. 
All the concrete classes implementing the base template or 

Fig. 4  Class diagram for baseline Artificial Neural Network

Fig. 5  Base classes are extended for domain/business rules
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“BusinessRules” interface have to provide a specific imple-
mentation in the assert method. “SpecificRule” classes 
use sub-rule classes to reach their objective. Each neural 
network output node is associated with the specific rule to 
assert with the business rule, which is “SpecificRule” from 
the business template [38–40].

For our experiment, we have taken XOR and XNOR func-
tions; the business rule Module for XOR is represented in 
Fig. 7.

XOR and XNOR use the subrules(ComplementRule, 
AndRule, OrRule) to build their specific XOR and XNOR 
Rules, respectively, as depicted in Fig. 7.

“BusinessRuleDispatcher” acts as a dispatcher for busi-
ness rules, providing the appropriate “SpecificRule” instance 
to the extended node function, as shown in Fig. 7. When 
there is a list of rules, the business dispatcher provides an 
appropriate rule for the extended Node by examining its type 
[38–40].

We designed a baseline neural network model for feature 
importance and then extended base functionality for incor-
porating domain/business rules. Therefore, the complete 
representation of the proposed model is an integration of 
extended neural representation and business rule model, as 
presented in Fig. 8.

During the training, the extended class obtains a business 
rule from the dispatcher, and the result is asserted with a 
business rule to obtain business loss. Obtained business loss 
is combined with L2 Loss.

We have designed a neural network in such a way as to 
embed appropriate business rules dynamically during the 
training process and combine the asserted business loss with 
the regular L2 Loss as shown in Fig. 9,  [26–28]. Integrating 
the business loss assists the entire learning process by giving 
additional semanticity of the domain to the neural network, 
apart from the general input–output mapping representation. 
We will analyze the impact of the business loss in the experi-
ment section.

6  Derivation for neural network training

To train the neural network, abstract methods such as model.
fit() are not used. Instead, formulas have been derived for 
end-to-end training.

Consider a neural network learning the function 
f(x) = Y. The target function is learned through a series 
of hidden layers, where each layer acts as a sub-function 
that maps relevant features to the target function f(x) = Y. 
Successive layers learn more relevant representations by 

Fig. 6  General template class diagram for Business Rules following interpreter, filter, and factory patterns

Fig. 7  Business rules template for XOR and XNOR functions
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obtaining features from the previous layer. As a result, the 
neural network approximates the target function f(x) by 
composing multiple functions, as shown in Fig. 10 and 
Eq. (2) , [34, 41–44].

The output 
∑N

i=1
Y
�
i
 from a neural network can be 

approximated as a sum of the products of the node val-
ues and their connected weights, each passed through an 
activation function across all the nodes in the network. 
This approximation is obtained by a process called forward 
propagation, which is represented in Eq. (3).
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is the error that needs to be minimized. The Mean Square 
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] is considered for this pur-

pose. Based on the loss value, the weights [w1 − w3] are 
updated to reach the target function (x). The sensitivity 
or derivative of the loss function provides the magnitude 
and direction in which the weights have to be changed, as 
shown in Eq. (4)

E| is the derivative of the loss function along with the 
derivative of the sigmoid function.

E| is back propagated through intermediate layers. Par-
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Fig. 8  Object-oriented class diagram representing the proposed model after combining neural network and business model

Fig. 9  Total Loss = L2 + Domain/Business Loss
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From the Jacobean composition of function, the derivate 
of composition (layer) is the product of the partial derivative.

Derivative of the output layer is the direct derivative of 
the loss function (MSE) Therefore, 

∑N

i=1
�5
i
 is obtained from 

Eq. (4).
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From the Jacobean property derivative of f4 is:

Partial derivative of f4 w.r.t. connection weight �f4
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In General, all the nodes in  L4 can be represented as

Gradient descent to change the connection weight w4 is

where �  is the learning rate.
Similarly, for the remaining non-output layers L4 to L1 , 

partial derivatives with respect to [w3-w1] are required to be 
transferred from the successive layer, with a magnitude of 
connection weight [34, 41–44].
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For the nodes in L4 is obtained as

In General, for the non-output layer [�4-�2] is computed as

Equation (10) gives δ for non-output layers [�4-�2] from 
this, we expand the weight update for all the layers of the 
neural network  [w1 − w4] [34, 41–44].

Therefore, Eqs. (7 , 8) are also extended for the non-
output layer using Eq. (10) as
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7  Algorithms

7.1  Part a—Algorithm for training the proposed model

This section provides an algorithm for training neural net-
works and recording the Loss and weight instances for 
correlation analysis between Loss and weight.

Fig. 10  Layers of the neural network representing the composition of functions
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PART A-  ALGORITHM 1: Algorithm for training the proposed model

INPUT : input_file, epochs , batch_size, model, use_business_loss, business_rule_type

OUTPUT :Loss and weight instances of neural networks.

A. Train for every epoch

FOR EACH epochIndex FROM epochs DO:

a. Initialize_input(model, batchIndex)

b. ForwardFlow:

LayerList⟵model.getLayers()
FOR EACH Layer IN LayerList DO:

PrevList⟵getPrevNodes(Layer)

NodeList⟵getNodes(Layer)
FOR EACH Node IN NodeList DO:

ComNodeValFromPrevNode(Node,PrevList,batchIndex) 

//above line computes equation 3 from section 6

IF Layer is LastLayer THEN

FOR EACH Node IN NodeList DO:

ExtendedNode.businessLoss⟵
assetNodeWithBusinessRule(ExclusiveNode,business_rule_type)

END FOR

END IF

NNParameters⟵getInstanceOfNodeAndConnection(Node) 
// above line of code stores loss and weight for feature importance

END FOR

END FOR

c. BackwardFlow :

ExtendedNodeList⟵getLastLayer(LayerList)
FOR  EACH enode IN ExtendedNodeList DO:

actualOutput⟵ extractOutputFromFile(Input_file, batchIndex)

L2_Loss⟵computeRegressionLoss(enode,actualOutput)
//Computes derivative at the output layer which is  equation 4 from section 6

IF use_businessLoss IS true THEN

enode.delta⟵  L2_Loss + enode.BusinessLoss
// above line combines business loss L2 computed in ForwardPass with

ELSE

enode.delta⟵ L2_Loss // line computes only L2 loss
END IF 

END FOR

//Transfers the computed derivative to other layers in reverse order

FOR  EACH Layer IN LayerList TRAVERSE -IN REVERSE-ORDER :

NodeList⟵getNodes(Layer)`
FOR  EACH Node IN NodeList DO:

ComputePropagatedLoss(Node,Conn⟵ Node.Map) 
// above line computes equations 11 from section 6

END FOR

END FOR

B. Updating with new weights at end of each epoch

FOR  EACH Layer IN  LayerList DO:

NodeList⟵getNodes (Layer)
FOR  EACH Node IN NodeList DO:

updateWeights(Conn ⟵ Node.Map)
//above line computes equation 12 from section 6.

END FOR

END FOR

END FOR
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PART B - Algorithm 2 : ALGORITHM COMPUTES CO-RELATION CO-EFFICIENT BETWEEN 

LOSS AND WEIGHT DISTRIBUTION FOR FEATURE IMPORTANCE

// The algorithm computes the correlation coefficient between Loss and weight distribution 

INPUT :NNparameters - a Map containing neural network instances computed in Algo 1.

OUTPUT : A correlation coefficient matrix between Loss and weight distribution

Row  ⟵ 0 // Initialize to 0
FOR EACH delta IN deltaList FROM  NNparameters EXCEPT inputLayer DO: 

//  in the above line delta is a propagated loss
conectionList⟵getConnection(delta) //return list of connected weight

Colum_num⟵ 0 // Initialize to 0
FOR EACH connection IN conectionList DO:

Corr⟵ComputeCorrelationCofficient(delta,connection)
// above line computes eqn(1) from section 4

CorrMatrix[Row][ Colum_num]⟵Corr

Colum_num⟵Colum_num+ 1
END FOR

Row  ⟵ Row + 1
END FOR

Return CorrMatrix

8  Implementation

We have implemented the proposed object-oriented neural 
network representation in Java using the Eclipse IDE. We 
designed the proposed model to be scalable and flexible, 
allowing us to add or remove layers and nodes as required. 
For graphical plots, we utilized the XChart open-source tool.

9  Experiment

We have utilized an ANN feed-forward neural network that 
learns XOR and XNOR functions with three layers to experi-
ment with the proposed feature importance technique. We 
followed the naming convention of prefixing with “N” and 
including the column and row numbers. For instance, “ N1,1 ” 
represents the first Node in the first layer. Generally, “ Nx,y ” 
represents the node in layer “x” and position “y,” as depicted 
in the feed-forward neural network in Fig. 11.

The experiment was carried out for 3000 epochs, using 
a learning rate of 0.1 and a batch size of 04 for the input 

combinations (0,0), (0,1), (1,0), and (1,1). The Loss and 
weight distributions were analyzed to determine the feature 
importance through Loss and weight correlation based on 
the cyclic learning principle.

We took the neurons and their corresponding connection 
weight distribution from the training and analyzed their cor-
relation on a graph for two different circumstances: when 
the model fit the training set with the least RMSE error, and 
when the model did not fit the training set with consider-
able RMSE error. In the properly fit model, the neuron and 
connection weights adhered to the propagated Loss, as we 
discussed in Sect. 4. Therefore, we observed a clear spike or 
dip in the loss distribution, and the distribution of the cor-
responding weights learned by moving towards a converging 
point for most of the neurons and connection weights, as 
shown in Fig. 12a, b. Similarly, for the underfit model, most 
of the neuron and connection weights did not adhere to the 
propagated Loss. Therefore, a clear spike or dip in the loss 
distribution was unseen, the Loss never decreased through-
out the learning, and the weight distribution was barely a 
straight line (unlearned), as shown in Fig. 12c, d.

Fig. 11  A neural network 
trained to perform XOR and 
XNOR functions
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Note: In the Fig. 12, blue curve represents loss distri-
bution, while the other curves, such as green, yellow, and 
purple, represent the weight distributions. Furthermore, to 
measure the correlation between all the connection weights 
and the propagated Loss, we used the correlation coefficient 
as discussed in the methodology section, which is calculated 
using Eq. (1).

To determine feature importance, we measured the corre-
lation coefficient of all the connection weights in the neural 
network across multiple trials.

Table 1 describes the feature importance derived from 
the correlation between Loss and weight distribution. Since 
the loss curve can either be a dip or a spike, the correlation 
values can be either positive or negative. We found that the 
correlation coefficient for all the connection weights was 
maximum across multiple trials, indicating that this is the 
optimal neural network configuration for learning the XOR 
and XNOR functions. To obtain varying levels of feature 

importance, we added an additional layer to the neural net-
work, as shown in Fig. 11.

The additional layer neural network configuration (N4,2 
and N4,1), as depicted in Table 2, shows a drop in the cor-
relation coefficient for the connection weights N3,1—N4,2, 
N3,2—N4,1, and N3,1—N4,1, as well as negligible connec-
tion weights for the connections N3,2—N4,2 and N3,3—
N2,1. Furthermore, other connections contribute the most to 
the prediction. We have also tabulated the correlation coef-
ficient for the underfit or non-convergence case in Table 3.

For the underfit or non-convergence case, we can see that 
most connection weights provide either less or least con-
tribution, or it is strange to find a strong contribution, as 
depicted in Table 3.

For the next part of our experiment, we have designed an 
output layer and nodes with extended functionality to incor-
porate business rules in neural network training, as discussed 
in Section. 5. The extended output node obtains its relevant 

Fig. 12  a Neurons and connection weight that follow Loss (apparent 
spike), b Neurons and connection weight that follow Loss (apparent 
Dip), c Neurons and connection weight that does not adhere to Loss 

(misses clear spike), Fig. 12 d. Neurons and connection weight that 
does not adhere to Loss (misses clear dip)



1314 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

business rule from the business model for each epoch of 
the training. The result is asserted with the corresponding 
rule, and the asserted Loss is then combined with regular L2 
Loss. We have conducted an ablation study to determine the 
impact of business loss.

The combined business loss performs exceptionally well 
compared to L2 Loss alone, as shown in Fig. 13. There is 
a faster decline in Loss with a few epochs, and improved 
predictions from the RMSE and R2 metrics in Table 5. As 
seen from the result comparison in Fig. 14, the solid lines for 
all four combinations closely overlap and move towards the 
targeted results, i.e., either 0 or 1 for the combined business 
loss, followed by the dotted line for L2 Loss alone.

10  Results and discussion

In this section, we compare the proposed feature importance 
technique, Feature Importance through the Cyclic Learning 
Sequence (FICLS), with various XAI evaluation parameters, 
and then analyze the impact of business loss from an ablation 
study.

FICLS computes feature importance for the entire neural 
network, starting from the input to output layers, and there-
fore provides a global explanation as represented in Table 4. 
For implementation level and model dependency, FICLS falls 
under post-hoc and model-agnostic explanation. Since FICLS 
infers the feature importance from the post-trained Loss and 
weight distribution and measures feature importance for gen-
eralized ANN, it is relevant for other types of neural networks. 
From an interpretation perspective, proposed method provides 
improved interpretation as the cyclic learning sequence is 
straightforward and can be easily understood with minimal 
understanding of neural network training, compared to sur-
rogating, gradient importance, and other techniques.

Moreover, the correlation coefficient matrix gives the 
end-user additional assurance for the decision. As part of 
the interpretation from developers’ and researchers’ perspec-
tives, FICLS explains the feature importance of each connec-
tion with discrete measures. The developer and researcher 
can gain insights by determining which connection weight 
plays a significant role. Also, feature importance values are 
discrete, with positive and negative values, therefore adapt-
able to Parallel Coordinate Plots (PCP) for visual analytics.

We have done a time complexity analysis for the proposed 
technique:

Let us consider ANN with,
L Number of layers,
N Number of nodes in each layer,

Let E be the number of epochs for training.
(13)

The number of connections in a layer is C = (N × N) + N
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Table 2  Correlation coefficient with an additional layer

Bolded values represent a lesser contribution from the connection weight

N3,3 N3,2 N3,1

N4,2 1 − 0.17 0.40
N4,1 1 − 0.21 0.36

N2,3 N2,2 N2,1

N3,3 − 0.74 0.84 − 0.05
N3,2 0.98 − 0.95 − 0.99

N1,3 N1,2 N1,1

N2,3 − 0.88 − 0.89 0.89
N2,2 0.98 0.99 − 0.95

Table 3  The correlation coefficient forunderfit or non-convergence training

Bolded values represent a lesser contribution from the connection weight

N2,1 N2,2 N2,3

N3,2 − 0.64 − 0.32 1
N3,1 − 0.38 − 0.38 1

N1,1 N1,2 N1,3

N2,3 − 0.52 0.29 0.30
N2,2 0.05 0.45 0.46

Fig. 13   Loss Comparison: L2 + business Loss with L2 alone
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The time complexity (TC) to compute the correlation 
coefficient for a layer is.

For all the layers

(14)TC For single layer = E × C
The time complexity (TC) for FICLS is the same as train-

ing the neural network, which is optimistic.
Business loss plays a crucial part by giving progress in 

the training, which proved to decline the mean Loss faster 
and close to 0 as shown in Fig. 13. The performance of the 
model improved when the business loss was combined with 
L2 Loss by a significant decrease in the RMSE Loss and an 
improved prediction by a substantial increase in R2 metrics, 
as represented in Table 5. Therefore, apart from the mapping 
learned from the dataset, the known rules and predicates 

(15)TC = (L − 1) × (E × C)

Fig. 14   XOR function approximation with L2 + business loss and L2 Loss alone

Table 4  Comparison of Feature Importance methods with XAI evolution parameter

XAI Methods Explanation 
level

Implementation
Level

Model
Dependency

Interpretation
Level

Computation
Level

Global Local Intrinsic
Explanation

Post-Hoc 
Explana-
tion

Model- specific Model-
Agnostic

Low Mid high Low Mid high

Anchors ✓ ✓ ✓ ✓ ✓ ✓
Bayesian Rule Lists ✓ ✓ ✓ ✓ ✓
Distillation ✓ ✓ ✓ ✓ ✓
Grad-CAM ✓ ✓ ✓ ✓ ✓
Integrated Gradients(IG) ✓ ✓ ✓ ✓ ✓
LIME ✓ ✓ ✓ ✓ ✓
SHAP ✓ ✓ ✓ ✓ ✓
FICLS(Proposed
method)

✓ ✓ ✓ ✓ ✓

Table 5  Ablation study for the combined domain/business loss

Experiments L2 Loss business 
Loss + L2

RMSE R
2

L2 Loss ✓ 0.1693 ↓ 0.73 ↑
L2 + Business Loss ✓ ✓ 0.0070 ↓ 0.99 ↑
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can substantially ease the effort required to extract features 
for prediction by giving early convergence and improving 
performance for the appropriately designed and combined 
conceptual part into the general neural network structure.

11  Conclusions

We have introduced a feature importance technique through 
Cyclic Learning Sequence (CLS) by analyzing the learning 
integrity of prediction, Loss, and Weight. We designed a 
neural network representation for CLS using Object Ori-
ented Programming (OOP) and extended the representation 
to embed domain/business rules from the researcher’s and 
expert’s perspectives. The designed proposed model is effec-
tive enough to draw feature importance from the association 
between Loss and Weight for different learning conditions 
with optimal time complexity. CLS gives the degree of par-
ticipation of each connection weight for the decision with 
discrete measures. The discrete measure assists end users 
and AI developers/researchers with insight from the training. 
Moreover, the correlation coefficient matrix adds assurance 
to the decision. AI developers/researchers can mitigate the 
black box nature by inspecting the feature importance of 
connection weight for different inputs and their correspond-
ing decision. Further to the baseline representation, we have 
extended the representation to embed domain/business rules 
using standard design principles, which is effective in the 
dynamic embedding of business rules and showed a posi-
tive impact on performance in terms of early convergence, 
RMSE, and R2 metrics. Therefore, the integration of busi-
ness loss adds additional semantics to the neural network.

Modern technological evolution has uncovered many 
exceptional aspects of natural phenomena that were previ-
ously inscrutable. One such aspect is the ability of crea-
tures to learn and reason, which has been better understood 
through progress in machine learning (ML) and neural 
networks (NN), leading to a better realization of biologi-
cal neural networks from artificial neural networks [45]. In 
order to avoid abstract "magic" functions, we must delve 
into the depth and length of neural network derivation, from 
which we can answer the most transformative question of 
this decade: “from how machines work to how they learn?” 
The optimization techniques from differential calculus, data 
organization, and restless computation play crucial roles 
in discerning patterns from data. This transformation has 
indeed provided a glimpse of natural phenomena from bio-
logical neural networks. However, understanding and ensur-
ing the decisions made by a “mindless” machine is more 
challenging. Explainable AI (XAI) is a new and evolving 
field, but XAI methods and their advanced derivatives have 

tremendous potential to mitigate this challenge and enhance 
the reliability of the decision.
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