
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (March 2024) 16(3):1303–1318
https://doi.org/10.1007/s41870-023-01432-2

ORIGINAL RESEARCH

An object‑oriented neural representation and its implication
towards explainable AI

Enoch Arulprakash1  · A. Martin1

Received: 3 February 2023 / Accepted: 18 August 2023 / Published online: 14 September 2023
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2023

Abstract  Rapid dissemination of Artificial Intelligence
(AI) and machine learning in real-world problems has raised
a concern about the reliability aspects of the model. A sepa-
rate sub-branch of AI solicitudes on reliability is known as
Explainable AI (XAI). XAI analyses the cause and impact
of the decision made by AI systems. The neural network
plays a significant part in AI’s ability to upgrade with more
recent data. However, the learning capability left the model
obscure for most of its decisions. Breaking the black-box
nature of the neural network model and giving understand-
ing and insight into the functionality of the model will miti-
gate the uncertainty. Here, in this research, we have designed
Object oriented neural representation to devise a “Feature
importance” technique from the correlation between Loss
and Weight distribution devised method is effective in inter-
preting the decision to the end user and AI practitioners
with optimal time complexity (TC = (L-1) × (E × C)). The
proposed neural representation also extended to incorpo-
rate domain/business rules from which we introduced a new
Loss, known as business loss. From getting the impact of
business loss, we obtained an earlier decline in the overall
Loss and improved performance from the ablation study.

Keywords  Explainable AI · Black Box · Domain
Knowledge · Feature importance · Interpretability

1  Introduction

Artificial Intelligence is driving technological innova-
tion to new dimensions that were once unimaginable, and
various sectors have proven its supremacy [1, 2]. Neural
Networks(NNs), especially, are a predominant part of AI
due to their ability to infer complex patterns from data by
passing through the layers of Artificial Neural Networks
(ANNs) [3–5]. Hidden layers are responsible for learning
patterns from the data, allowing ANNs to acquire experi-
ence with more data [6]. In contrast to rule-based systems,
ANNs are known as Universal Function Approximators [7].
However, this raises significant concerns about the mapping
learned in the hidden layers, as it lacks proper causes and
consequences behind the decision. Therefore, the internal
working mechanism of ANNs is generally known as a black
box. The black box indicates a model whose inner workings
are uninterruptible and unexplainable, which is a significant
issue for end-users, AI practitioners, and researchers.

Even though renowned frameworks like TensorFlow,
PyTorch, etc., suffice the requirements of practitioners and
researchers using abstract methods (i.e., model.fit()), it is a
concern for Explainable AI (XAI) since these abstract meth-
ods outline the parameters to be passed and mask the imple-
mentation details. XAI attempts to disclose the concrete
nature of neural network systems by reasoning the causes
and reasons for decisions using various XAI methods [8, 9].
XAI is a sub-branch of AI that is new and evolving.

The main objective and contribution of our work:

•	 We have used an object-oriented neural representation
to study feature importance through a cyclic learning
sequence and to enable the easy incorporation of busi-
ness parameters into a neural network.

 *	 Enoch Arulprakash
	 enocharulprakash03@gmail.com

	 A. Martin
	 martin@cutn.ac.in

1	 Department of Computer Science, Central University
of Tamil Nadu, Thiruvarur 610104, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01432-2&domain=pdf
http://orcid.org/0000-0001-7533-1793

1304	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

•	 We utilized the extensibility property of Object Oriented
Modelling (OOM) to incorporate business parameters
using object-oriented design and standard design pat-
terns. This enabled us to introduce a new loss function
called the ’business loss’ and analyze its impact during
training.

•	 We avoided using abstract methods and instead used
primitive types and custom-built methods based on dif-
ferential calculus to train the neural network

•	 We evaluate the proposed Object Oriented model using
a nonlinear XOR and XNOR function.

•	 Finally, with our proposed model, we attempted to answer
one of the most transformative questions of the decade:
from how machines work to how machines learn?

The paper is organized as follows: Sect. 2 describes the
previous work. Section 3 reviews the literature. Section 4
covers the significance of feature importance using cyclic
learning sequence. Section 5 focuses on the design of the
proposed Object-Oriented Neural Network model. Section 6
provides the derivation for training the neural network.
Section 7 describes the design of the algorithms. Section 8
describes implementation details. Section 9 conducts experi-
ment. Section 10 presents the results and discussion. Finally,
Sect. 11 draws the conclusions.

2 � Previous work

In our earlier work, we reviewed deep neural networks
(DNNs). DNNs automatically extract features for prediction
without any hand-crafted feature engineering methods. More
complex problems can be represented in DNNs. Increas-
ing the number of layers and nodes substantially increase
the potential for representing complex problems. We also
reviewed challenges in different circumstances and security
concerns. Techniques and defensive strategies have evolved
to compensate for those challenges, maintain performance,
and provide a secure environment [10, 11]. DNNs have
grown exponentially in the past decade. However, the auto-
matic learning capability has left the NN system uninter-
ruptible and unexplainable to end users/domain experts, AI
practitioners, and researchers [12, 13].

3 � Literature review

Various techniques have been developed to explain the inter-
nal functioning of opaque NN models for decision making.
Methods such as surrogate models, gradient-based tech-
niques, undiscovered smooth functions, and model-specific
methods have evolved. AI developers and researchers can
gain insight into the inner workings of NNs using feature

importance from XAI methods. Visual Analytics (VA)
researchers adopt XAI methods in visual analytics to give a
far-enhanced interpretation and understanding of the neural
network system to end-users [13, 14].

Commonly in the surrogate technique, a local instance
is selected for perturbation to frame similar instances from
the impact of the perturbation. The surrogate model is sim-
ple and easy compared to the actual model, which can be
easily discerned with linear relations, decision trees, fea-
ture scores, and decision boundaries. Representative meth-
ods include LIME [15], SHAP [16] [17], and ANCHOR
[18]. Each method uses a different perturbation technique
to determine the feature’s importance. LIME explains the
linear model by discerning the positive and negative impact
of the feature on the result. SHAP considers similar features
as a team that contributes to the decision process, similar
to game theory. On the other hand, the ANCHOR method
selects the ANCHOR region from the feature space such
that changes outside the ANCHOR will not affect the anchor
region, using IF–THEN rules. ANCHOR creates the deci-
sion boundary for all the decisions in the feature space.

The gradient-based technique calculates feature impor-
tance based on gradients. Representative methods include
Saliency Map, Class Activation Mapping (CAM) [19],
GRAD-CAM [20], Deep LIFT [21], Integrated Gradients,
and Layer-Wise Relevance Propagation (LRP) [22]. Sali-
ency Map produces a detailed heat map to show the fea-
ture’s importance to end-users, indicating which part of
the data has been referred to for the decision. CAM uses
average global pooling in the deep layer to produce feature
importance. However, the CAM technique is not scalable.
Grad-CAM addressed the drawback of CAM by using a
gradient of any class technique to highlight the particular
contribution. Integrated Gradients is similar to DeepLIFT
but computes the gradient differently by averaging a linear
path between the referred and selected input. LRP works
based on conservation of relevance; propagated relevance for
the decision is preserved and transmitted back to the lower
layer along with the prediction to study the feature impor-
tance with the magnitude of neuron activation in each layer.
Bayesian Rule List uses static pre-defined rules to reduce
the feature space and makes it more interpretable with those
rules by using simple IF–THEN rules.

Model-specific methods include GAM [23] and Mean
Decrease Impurity (MDI) [24]. GAM provides feature
importance by inferring the undiscovered smooth function.
The inferred smooth functions are aggregated to demon-
strate the reason behind the decision. MDI uses a decision
tree-based approach to obtain feature importance; it tries
to find a point to split the Node to form a tree-like hierar-
chy. However, GAM and MDI are model-specific. Signifi-
cant methods are depicted with a timeline in Fig. 1. Fur-
thermore, feature distributions are analyzed from various

1305Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

central data tendencies, such as mean, median, mode, sort-
ing, binning, and a combination of two or more methods,
to interpret the weight distribution to the end-users and
AI practitioners [25]. Moreover, researchers and experts
suggest incorporating domain/business rules into neural
network systems [26–28].

We have reviewed significant contributions from XAI
methods. Our focus is to devise a feature importance
method that is easily interpretable by the end-user and
adaptable to Visual Analytics, as depicted in Fig. 2. Along
with the feature importance method, we have extended the
study to incorporate domain/business rules into a neural
network system based on suggestions from experts and
researchers in recent studies and analyses [26–28].

4 � Significance of the method (methodology)

We have reviewed significant XAI techniques, such as gra-
dient implication, undiscovered smooth function, model-
specific surrogating, and others [15–25]. These methods
focus on weight distribution alone for feature importance.
We approach feature importance from a novel perspective.
We take a cyclic learning sequence that starts from the pre-
diction, based on how close the prediction is to the expected
outcome. The Loss is impacted (the Loss is a derivative of
the L2 function for the output nodes, and for non-output
nodes, it is a propagated gradient to the node level). The
Loss, in turn, affects the weights, as illustrated in Fig. 3a.
Every neuron and connection weight must undergo these
cyclic steps repeatedly to extract the necessary features for

Fig. 1   Evolution of the XAI method with a timeline

Fig. 2   The focus of our research

1306	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

prediction. When the connection weights renew their magni-
tudes and directions in connection with the propagated Loss,
the prediction moves closer to the expected result.

However, not all neurons and connection weights follow
the loss direction; some may miss the track and get stuck
in local minima, as shown in Fig. 3b. Nevertheless, those
neurons and connection weights that follow the Loss play
a significant role in contributing to the prediction [29]. It
is impossible to determine those neurons and connection
weights that renew according to the loss direction before
training because the learning process is dynamic for the neu-
ral network. However, after training, as a post-hoc expla-
nation, analyzing weight distribution along with loss dis-
tribution can provide insight into the study by effectively
measuring the degree of association between Loss and
weight distribution using the correlation matrix, as given in
Eq. (1), for feature importance [30–34].

The correlation coefficient measures the correlation
between two variables, and r ranges from − 1 to + 1. When
the correlation coefficient reaches the two extreme ranges,
i.e., − 1 or 1, it implies a strong correlation or contribution.
Being away from the range indicates less contribution, while
being close to 0 means very little contribution [35].

After analyzing the importance of loss parameters for fea-
ture importance from the cyclic learning sequence, another
purpose of our study is to incorporate domain/business
knowledge into the neural network. These aspects require
a novel neural representation that goes beyond the tensor

(1)r =
n
�∑

XY
�
− (

∑
X)(

∑
Y)

�
[n
∑

X2 − (
∑

X)
2
[n
∑

Y2 − (
∑

Y)
2
]

representation and can satisfy the requirements. The neural
representation must combine relevant parameters such as
neuron value, Loss, and connection weights so that loss and
connection weight are bound together to compute feature
importance through a correlation matrix [36, 37].

We have chosen Object-Oriented Modeling (OOM) for
the neural network representation as it best fits the require-
ments. OOM has implicit encapsulation and extendibility
properties, which make it convenient to combine relevant
parameters. Extendibility can play a crucial role in the effort-
less incorporation of new parameters, allowing domain/busi-
ness-specific parameters to be incorporated into the neural
network model. Therefore, we have provided a representa-
tion to combine relevant parameters and an easy plug-in to
incorporate domain/business-specific parameters into a neu-
ral network using OOM and following the design principles
of the interpreter, filter, and factory patterns [36, 37].

In backpropagation, the goal is to minimize the error or
loss by adjusting the weights in the neural network. This is
done by repeatedly computing the gradient of the loss func-
tion with respect to the weights and adjusting the weights
in the direction of the negative gradient. This process is
repeated iteratively until the loss function converges to
a minimum value, indicating that the neural network has
learned to predict the output.

Whereas, in the proposed feature importance method,
the loss is not used to minimize a function. Instead, loss is
considered in harmony with co-related parameters such as
prediction and weight, as part of a cyclic learning sequence.
This cyclic property is used to derive feature importance by
evaluating whether a particular feature is adhering to the
propagated loss or stuck in a local minimum without con-
tributing significantly to the prediction.

Fig. 3   a. Cyclic Learning Sequence, b Neurons and connection weights looses their connection when not adhered to the Loss

1307Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

To determine feature importance, the proposed method
calculates a correlation coefficient value between the loss
and connection weight using a correlation equation. By
using this correlation equation, the proposed method is able
to determine which features are important for making pre-
dictions or decisions and which features are not contributing
significantly. This allows for a more transparent and under-
standable prediction process, providing assurance over the
result of the predictions.

Furthermore, the proposed model has been expanded to
utilize its object-oriented extendibility property, making
it capable of easily integrating domain or business rules.
Another important aspect of the proposed model is that it
does not rely on conventional abstract methods like model.
fit() for training the neural network. Instead, it employs a
differential calculus-based process to derive equations that
facilitate the network’s training. This approach adds trans-
parency by identifying the key factors that contribute to the
machine learning.

5 � Proposal of an object‑oriented neural
representation model

In this section, we propose a model for the
proposed methodology.

We inspect neural networks from an object-oriented per-
spective to provide an enhanced representation. The neural
network is an arrangement of nodes and layers. Each layer
consists of nodes, and the nodes from a layer are connected
to the successive layer. From a conceptual background, the
Node is the most primitive encapsulation that binds value,
Loss, and connection weights to the successive layer. We
have modeled Node with these highly cohesive attributes.
Connections from one Node to other nodes are established
through a Map: a key-value pair [Map < Node, Weight-
Pair >]. Designing the Node class with highly relevant and
cohesive parameters is essential to find feature importance
through loss and connection weight correlation. The layer
is a composition of a list of nodes, and a list of layers con-
stitutes a baseline neural network, as depicted in the class
diagram in Fig. 4 [38–40].

In addition to the baseline neural network model, we uti-
lize the extensibility property of object-oriented program-
ming to incorporate a business or domain-specific rules into
the baseline representation. We have derived supplemental
classes from the baseline ANN: “ExtendedNodeFunction”
and “ExtendedLayerFunction” are inherited from the base
Node and Layer classes. “ExtendedNodeFunction” inherits
the node class and contains objects to assert the result with
the business rules. Thus, the derived class provides composi-
tion to embed business or domain rules along with primitive

neural network properties, as depicted in the class diagram
in Fig. 5. The incorporated business rules are specific to
output layers and nodes [38–40].

Business or domain rules are unique and specific to a
particular problem. However, we tried to provide a standard
template flexible to any problem domain by adopting the
standard design principles from interpreter, filter, and fac-
tory patterns [38–40].

From the Business Rule template, as shown in Fig. 6, the
business rule is a public interface with an assert method.
All the concrete classes implementing the base template or

Fig. 4   Class diagram for baseline Artificial Neural Network

Fig. 5   Base classes are extended for domain/business rules

1308	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

“BusinessRules” interface have to provide a specific imple-
mentation in the assert method. “SpecificRule” classes
use sub-rule classes to reach their objective. Each neural
network output node is associated with the specific rule to
assert with the business rule, which is “SpecificRule” from
the business template [38–40].

For our experiment, we have taken XOR and XNOR func-
tions; the business rule Module for XOR is represented in
Fig. 7.

XOR and XNOR use the subrules(ComplementRule,
AndRule, OrRule) to build their specific XOR and XNOR
Rules, respectively, as depicted in Fig. 7.

“BusinessRuleDispatcher” acts as a dispatcher for busi-
ness rules, providing the appropriate “SpecificRule” instance
to the extended node function, as shown in Fig. 7. When
there is a list of rules, the business dispatcher provides an
appropriate rule for the extended Node by examining its type
[38–40].

We designed a baseline neural network model for feature
importance and then extended base functionality for incor-
porating domain/business rules. Therefore, the complete
representation of the proposed model is an integration of
extended neural representation and business rule model, as
presented in Fig. 8.

During the training, the extended class obtains a business
rule from the dispatcher, and the result is asserted with a
business rule to obtain business loss. Obtained business loss
is combined with L2 Loss.

We have designed a neural network in such a way as to
embed appropriate business rules dynamically during the
training process and combine the asserted business loss with
the regular L2 Loss as shown in Fig. 9, [26–28]. Integrating
the business loss assists the entire learning process by giving
additional semanticity of the domain to the neural network,
apart from the general input–output mapping representation.
We will analyze the impact of the business loss in the experi-
ment section.

6 � Derivation for neural network training

To train the neural network, abstract methods such as model.
fit() are not used. Instead, formulas have been derived for
end-to-end training.

Consider a neural network learning the function
f(x) = Y. The target function is learned through a series
of hidden layers, where each layer acts as a sub-function
that maps relevant features to the target function f(x) = Y.
Successive layers learn more relevant representations by

Fig. 6   General template class diagram for Business Rules following interpreter, filter, and factory patterns

Fig. 7   Business rules template for XOR and XNOR functions

1309Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

obtaining features from the previous layer. As a result, the
neural network approximates the target function f(x) by
composing multiple functions, as shown in Fig. 10 and
Eq. (2) , [34, 41–44].

The output
∑N

i=1
Y
�
i
 from a neural network can be

approximated as a sum of the products of the node val-
ues and their connected weights, each passed through an
activation function across all the nodes in the network.
This approximation is obtained by a process called forward
propagation, which is represented in Eq. (3).

(2)g(x) = Y | = f 4(f 3(f 2(f 1

(
x,w1

)
,w2),w3)

Formally defined as,

The difference between the desired and obtained output
is the error that needs to be minimized. The Mean Square
function,[� =

1

2M

∑�

�=1
(Y � − Y)

2
] is considered for this pur-

pose. Based on the loss value, the weights [w1 − w3] are
updated to reach the target function (x). The sensitivity
or derivative of the loss function provides the magnitude
and direction in which the weights have to be changed, as
shown in Eq. (4)

E| is the derivative of the loss function along with the
derivative of the sigmoid function.

E| is back propagated through intermediate layers. Par-
tial derivative �E

|

�w4
 gives thesensitivity at which the weight

w4 has to be adjusted.
Similarly, for the other layers, partial derivatives are

given as

(3)
n∑

i=1

Y
|
i
=

n∑

l=2

(
n∑

j=1

(
�

n∑

i=2

Xl
i
×Wl

ij

))

(4)E| =

n∑

i=1

(Yi − Y
|
i
)

(
Y
|
i

(
1 − Y

|
i

))

Fig. 8   Object-oriented class diagram representing the proposed model after combining neural network and business model

Fig. 9   Total Loss = L2 + Domain/Business Loss

1310	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

From the Jacobean composition of function, the derivate
of composition (layer) is the product of the partial derivative.

Derivative of the output layer is the direct derivative of
the loss function (MSE) Therefore,

∑N

i=1
�5
i
 is obtained from

Eq. (4).
Has

∑N

i=1
�5
i
=
∑n

i=1
(Yi − Y

�
i
)

�
Y
�
i

�
1 − Y

�
i

��

For the f4 layer is composed by f5 : f5(f 4,w4)

From the Jacobean property derivative of f4 is:

Partial derivative of f4 w.r.t. connection weight �f4
�w

= x

In General, all the nodes in L4 can be represented as

Gradient descent to change the connection weight w4 is

where � is the learning rate.
Similarly, for the remaining non-output layers L4 to L1 ,

partial derivatives with respect to [w3-w1] are required to be
transferred from the successive layer, with a magnitude of
connection weight [34, 41–44].

�E|

�w4
,
�w4

�w3
,
�w3

�w2
,
�w2

�w1
,
�w1

�x

(5)�E

�w1
=

�E

�w4
×
�w4

�w3
×
�w3

�w2
×
�w2

�w1
×
�w1

�x

(6)
n∑

i=1

�5
i
×

�f

�w

(7)
n∑

j=1

n∑

i=1

�f4

�W4
ji

=

n∑

j=1

n∑

i=1

�5
i
× x4

j

(8)
n∑

j=1

n∑

i=1

W4

ji
=

n∑

j=1

n∑

i=1

(
W4

ji
− � ×

�

�W4

ji

)

For the nodes in L4 is obtained as

In General, for the non-output layer [�4-�2] is computed as

Equation (10) gives δ for non-output layers [�4-�2] from
this, we expand the weight update for all the layers of the
neural network [w1 − w4] [34, 41–44].

Therefore, Eqs. (7 , 8) are also extended for the non-
output layer using Eq. (10) as

(9)
n∑

j=1

�4
j
=

n∑

j=1

n∑

i=1

(
�5
i
× w4

j,i

)
× x4

j

(
1 − x4

j

)

(10)

n−2∑

l=1

n∑

j=1

�n−l
j

=

n−2∑

l=1

n∑

j=1

n∑

i=1

(
�n−l
i

× wn−l−1
j,i

)

×

(
xn−l−1
j

(
1 − xn−l−1

j

))

(11)
n−2∑

l=0

n∑

j=1

n∑

i=1

�

�Wn−l−1
ji

=

n−2∑

l=0

n∑

j=1

n∑

i=1

�n−l
i

× xn−l−1
j

(12)
n−1∑

l=1

n∑

j=1

n∑

i=1

WN−l
ji

=

n−1∑

l=1

n∑

j=1

n∑

i=1

(Wn−l

ji
− � ×

�

�Wn−l
ji

)

7 � Algorithms

7.1 � Part a—Algorithm for training the proposed model

This section provides an algorithm for training neural net-
works and recording the Loss and weight instances for
correlation analysis between Loss and weight.

Fig. 10   Layers of the neural network representing the composition of functions

1311Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

PART A- ALGORITHM 1: Algorithm for training the proposed model

INPUT : input_file, epochs , batch_size, model, use_business_loss, business_rule_type

OUTPUT :Loss and weight instances of neural networks.

A. Train for every epoch

FOR EACH epochIndex FROM epochs DO:

a. Initialize_input(model, batchIndex)

b. ForwardFlow:

LayerList⟵model.getLayers()
FOR EACH Layer IN LayerList DO:

PrevList⟵getPrevNodes(Layer)

NodeList⟵getNodes(Layer)
FOR EACH Node IN NodeList DO:

ComNodeValFromPrevNode(Node,PrevList,batchIndex)

//above line computes equation 3 from section 6

IF Layer is LastLayer THEN

FOR EACH Node IN NodeList DO:

ExtendedNode.businessLoss⟵
assetNodeWithBusinessRule(ExclusiveNode,business_rule_type)

END FOR

END IF

NNParameters⟵getInstanceOfNodeAndConnection(Node)
// above line of code stores loss and weight for feature importance

END FOR

END FOR

c. BackwardFlow :

ExtendedNodeList⟵getLastLayer(LayerList)
FOR EACH enode IN ExtendedNodeList DO:

actualOutput⟵ extractOutputFromFile(Input_file, batchIndex)

L2_Loss⟵computeRegressionLoss(enode,actualOutput)
//Computes derivative at the output layer which is equation 4 from section 6

IF use_businessLoss IS true THEN

enode.delta⟵ L2_Loss + enode.BusinessLoss
// above line combines business loss L2 computed in ForwardPass with

ELSE

enode.delta⟵ L2_Loss // line computes only L2 loss
END IF

END FOR

//Transfers the computed derivative to other layers in reverse order

FOR EACH Layer IN LayerList TRAVERSE -IN REVERSE-ORDER :

NodeList⟵getNodes(Layer)`
FOR EACH Node IN NodeList DO:

ComputePropagatedLoss(Node,Conn⟵ Node.Map)
// above line computes equations 11 from section 6

END FOR

END FOR

B. Updating with new weights at end of each epoch

FOR EACH Layer IN LayerList DO:

NodeList⟵getNodes (Layer)
FOR EACH Node IN NodeList DO:

updateWeights(Conn ⟵ Node.Map)
//above line computes equation 12 from section 6.

END FOR

END FOR

END FOR

1312	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

PART B - Algorithm 2 : ALGORITHM COMPUTES CO-RELATION CO-EFFICIENT BETWEEN

LOSS AND WEIGHT DISTRIBUTION FOR FEATURE IMPORTANCE

// The algorithm computes the correlation coefficient between Loss and weight distribution

INPUT :NNparameters - a Map containing neural network instances computed in Algo 1.

OUTPUT : A correlation coefficient matrix between Loss and weight distribution

Row ⟵ 0 // Initialize to 0
FOR EACH delta IN deltaList FROM NNparameters EXCEPT inputLayer DO:

// in the above line delta is a propagated loss
conectionList⟵getConnection(delta) //return list of connected weight

Colum_num⟵ 0 // Initialize to 0
FOR EACH connection IN conectionList DO:

Corr⟵ComputeCorrelationCofficient(delta,connection)
// above line computes eqn(1) from section 4

CorrMatrix[Row][Colum_num]⟵Corr

Colum_num⟵Colum_num+ 1
END FOR

Row ⟵ Row + 1
END FOR

Return CorrMatrix

8 � Implementation

We have implemented the proposed object-oriented neural
network representation in Java using the Eclipse IDE. We
designed the proposed model to be scalable and flexible,
allowing us to add or remove layers and nodes as required.
For graphical plots, we utilized the XChart open-source tool.

9 � Experiment

We have utilized an ANN feed-forward neural network that
learns XOR and XNOR functions with three layers to experi-
ment with the proposed feature importance technique. We
followed the naming convention of prefixing with “N” and
including the column and row numbers. For instance, “ N1,1 ”
represents the first Node in the first layer. Generally, “ Nx,y ”
represents the node in layer “x” and position “y,” as depicted
in the feed-forward neural network in Fig. 11.

The experiment was carried out for 3000 epochs, using
a learning rate of 0.1 and a batch size of 04 for the input

combinations (0,0), (0,1), (1,0), and (1,1). The Loss and
weight distributions were analyzed to determine the feature
importance through Loss and weight correlation based on
the cyclic learning principle.

We took the neurons and their corresponding connection
weight distribution from the training and analyzed their cor-
relation on a graph for two different circumstances: when
the model fit the training set with the least RMSE error, and
when the model did not fit the training set with consider-
able RMSE error. In the properly fit model, the neuron and
connection weights adhered to the propagated Loss, as we
discussed in Sect. 4. Therefore, we observed a clear spike or
dip in the loss distribution, and the distribution of the cor-
responding weights learned by moving towards a converging
point for most of the neurons and connection weights, as
shown in Fig. 12a, b. Similarly, for the underfit model, most
of the neuron and connection weights did not adhere to the
propagated Loss. Therefore, a clear spike or dip in the loss
distribution was unseen, the Loss never decreased through-
out the learning, and the weight distribution was barely a
straight line (unlearned), as shown in Fig. 12c, d.

Fig. 11   A neural network
trained to perform XOR and
XNOR functions

1313Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

Note: In the Fig. 12, blue curve represents loss distri-
bution, while the other curves, such as green, yellow, and
purple, represent the weight distributions. Furthermore, to
measure the correlation between all the connection weights
and the propagated Loss, we used the correlation coefficient
as discussed in the methodology section, which is calculated
using Eq. (1).

To determine feature importance, we measured the corre-
lation coefficient of all the connection weights in the neural
network across multiple trials.

Table 1 describes the feature importance derived from
the correlation between Loss and weight distribution. Since
the loss curve can either be a dip or a spike, the correlation
values can be either positive or negative. We found that the
correlation coefficient for all the connection weights was
maximum across multiple trials, indicating that this is the
optimal neural network configuration for learning the XOR
and XNOR functions. To obtain varying levels of feature

importance, we added an additional layer to the neural net-
work, as shown in Fig. 11.

The additional layer neural network configuration (N4,2
and N4,1), as depicted in Table 2, shows a drop in the cor-
relation coefficient for the connection weights N3,1—N4,2,
N3,2—N4,1, and N3,1—N4,1, as well as negligible connec-
tion weights for the connections N3,2—N4,2 and N3,3—
N2,1. Furthermore, other connections contribute the most to
the prediction. We have also tabulated the correlation coef-
ficient for the underfit or non-convergence case in Table 3.

For the underfit or non-convergence case, we can see that
most connection weights provide either less or least con-
tribution, or it is strange to find a strong contribution, as
depicted in Table 3.

For the next part of our experiment, we have designed an
output layer and nodes with extended functionality to incor-
porate business rules in neural network training, as discussed
in Section. 5. The extended output node obtains its relevant

Fig. 12   a Neurons and connection weight that follow Loss (apparent
spike), b Neurons and connection weight that follow Loss (apparent
Dip), c Neurons and connection weight that does not adhere to Loss

(misses clear spike), Fig. 12 d. Neurons and connection weight that
does not adhere to Loss (misses clear dip)

1314	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

business rule from the business model for each epoch of
the training. The result is asserted with the corresponding
rule, and the asserted Loss is then combined with regular L2
Loss. We have conducted an ablation study to determine the
impact of business loss.

The combined business loss performs exceptionally well
compared to L2 Loss alone, as shown in Fig. 13. There is
a faster decline in Loss with a few epochs, and improved
predictions from the RMSE and R2 metrics in Table 5. As
seen from the result comparison in Fig. 14, the solid lines for
all four combinations closely overlap and move towards the
targeted results, i.e., either 0 or 1 for the combined business
loss, followed by the dotted line for L2 Loss alone.

10 � Results and discussion

In this section, we compare the proposed feature importance
technique, Feature Importance through the Cyclic Learning
Sequence (FICLS), with various XAI evaluation parameters,
and then analyze the impact of business loss from an ablation
study.

FICLS computes feature importance for the entire neural
network, starting from the input to output layers, and there-
fore provides a global explanation as represented in Table 4.
For implementation level and model dependency, FICLS falls
under post-hoc and model-agnostic explanation. Since FICLS
infers the feature importance from the post-trained Loss and
weight distribution and measures feature importance for gen-
eralized ANN, it is relevant for other types of neural networks.
From an interpretation perspective, proposed method provides
improved interpretation as the cyclic learning sequence is
straightforward and can be easily understood with minimal
understanding of neural network training, compared to sur-
rogating, gradient importance, and other techniques.

Moreover, the correlation coefficient matrix gives the
end-user additional assurance for the decision. As part of
the interpretation from developers’ and researchers’ perspec-
tives, FICLS explains the feature importance of each connec-
tion with discrete measures. The developer and researcher
can gain insights by determining which connection weight
plays a significant role. Also, feature importance values are
discrete, with positive and negative values, therefore adapt-
able to Parallel Coordinate Plots (PCP) for visual analytics.

We have done a time complexity analysis for the proposed
technique:

Let us consider ANN with,
L Number of layers,
N Number of nodes in each layer,

Let E be the number of epochs for training.
(13)

The number of connections in a layer is C = (N × N) + N

Ta
bl

e 
1  

T
he

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

C
C

) w
ith

 m
ul

tip
le

 tr
ia

ls

Re
fe

r F
ig

. 1
1

fo
r n

eu
ra

l n
et

w
or

k
co

nn
ec

tio
n

re
fe

re
nc

e
B

ol
d

va
lu

es
 re

pr
es

en
tin

g
th

e
Si

gn
ifi

ca
nc

e
of

 S
tro

ng
 p

ar
tic

ip
at

io
n

fro
m

 a
ll

th
e

co
nn

ec
tio

n
w

ei
gh

t

C
on

ne
ct

io
n

w
ei

gh
ts

Tr
ia

ls
1

C
C

Tr
ia

ls
2

C
C

Tr
ia

ls
3

C
C

Tr
ia

ls
4

C
C

Tr
ia

ls
5

C
C

Tr
ia

ls
6

C
C

Tr
ia

ls
7

C
C

Tr
ia

ls
8

C
C

Tr
ia

ls
9

C
C

Tr
ia

ls
10

 C
C

N
2,

3
to

 N
3,

2
1

1
1

1
1

1
1

1
1

1
N

2,
2

to
 N

3,
2

1
0.

99
−

 1
0.

99
0.

99
0.

99
−

 1
0.

99
0.

99
1

N
2,

2
to

 N
3,

2
1

−
 1

−
 1

−
 1

−
 1

−
 1

−
 1

−
 1

−
 1

−
 1

N
2,

3
to

 N
3,

1
1

1
1

1
1

1
1

1
1

1
N

2,
2

to
 N

3,
1

−
 0

.9
9

0.
99

−
 1

0.
99

0.
99

0.
99

−
 1

1
0.

99
1

N
2,

1
to

 N
3,

1
−

 0
.9

9
−

 1
−

 1
−

 1
−

 1
−

 1
−

 1
−

 1
−

 1
−

 1
N

1,
3

to
 N

2,
3

−
 0

.9
4

−
 0

.9
5

0.
99

0.
96

0.
96

0.
96

0.
99

0.
99

−
 0

.9
5

0.
99

N
1,

2
to

 N
2,

3
0.

95
0.

95
0.

99
0.

96
0.

96
0.

96
−

 0
.9

9
0.

99
−

 0
.9

5
−

 0
.9

9
N

1,
1

to
 N

2,
3

−
 0

.8
8

0.
93

−
 0

.9
9

−
 0

.9
5

−
 0

.9
5

−
 0

.9
5

−
 0

.9
9

−
 0

.9
9

0.
97

0.
99

N
1,

3
to

 N
2,

2
0.

99
−

 0
.9

9
−

 0
.9

9
1

1
1

−
 0

.9
8

0.
99

−
 0

.9
9

0.
99

N
1,

2
to

 N
2,

2
−

 0
.9

9
0.

99
−

 0
.9

9
1

1
1

0.
98

0.
98

−
 1

−
 0

.9
9

N
1,

1
to

 N
2,

2
−

 1
−

 0
.9

9
0.

99
−

 1
−

 1
−

 1
−

 0
.9

8
−

 1
1

−
 0

.9
8

A
bs

ol
ut

e
av

er
ag

e
co

rr
el

a-
tio

n
co

effi
ci

en
t

0.
97

0.
98

0.
99

0.
98

0.
98

0.
98

0.
99

0.
99

0.
98

0.
99

1315Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

Table 2   Correlation coefficient with an additional layer

Bolded values represent a lesser contribution from the connection weight

N3,3 N3,2 N3,1

N4,2 1 − 0.17 0.40
N4,1 1 − 0.21 0.36

N2,3 N2,2 N2,1

N3,3 − 0.74 0.84 − 0.05
N3,2 0.98 − 0.95 − 0.99

N1,3 N1,2 N1,1

N2,3 − 0.88 − 0.89 0.89
N2,2 0.98 0.99 − 0.95

Table 3   The correlation coefficient forunderfit or non-convergence training

Bolded values represent a lesser contribution from the connection weight

N2,1 N2,2 N2,3

N3,2 − 0.64 − 0.32 1
N3,1 − 0.38 − 0.38 1

N1,1 N1,2 N1,3

N2,3 − 0.52 0.29 0.30
N2,2 0.05 0.45 0.46

Fig. 13   Loss Comparison: L2 + business Loss with L2 alone

1316	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

The time complexity (TC) to compute the correlation
coefficient for a layer is.

For all the layers

(14)TC For single layer = E × C
The time complexity (TC) for FICLS is the same as train-

ing the neural network, which is optimistic.
Business loss plays a crucial part by giving progress in

the training, which proved to decline the mean Loss faster
and close to 0 as shown in Fig. 13. The performance of the
model improved when the business loss was combined with
L2 Loss by a significant decrease in the RMSE Loss and an
improved prediction by a substantial increase in R2 metrics,
as represented in Table 5. Therefore, apart from the mapping
learned from the dataset, the known rules and predicates

(15)TC = (L − 1) × (E × C)

Fig. 14   XOR function approximation with L2 + business loss and L2 Loss alone

Table 4   Comparison of Feature Importance methods with XAI evolution parameter

XAI Methods Explanation
level

Implementation
Level

Model
Dependency

Interpretation
Level

Computation
Level

Global Local Intrinsic
Explanation

Post-Hoc
Explana-
tion

Model- specific Model-
Agnostic

Low Mid high Low Mid high

Anchors ✓ ✓ ✓ ✓ ✓ ✓
Bayesian Rule Lists ✓ ✓ ✓ ✓ ✓
Distillation ✓ ✓ ✓ ✓ ✓
Grad-CAM ✓ ✓ ✓ ✓ ✓
Integrated Gradients(IG) ✓ ✓ ✓ ✓ ✓
LIME ✓ ✓ ✓ ✓ ✓
SHAP ✓ ✓ ✓ ✓ ✓
FICLS(Proposed
method)

✓ ✓ ✓ ✓ ✓

Table 5   Ablation study for the combined domain/business loss

Experiments L2 Loss business
Loss + L2

RMSE R
2

L2 Loss ✓ 0.1693 ↓ 0.73 ↑
L2 + Business Loss ✓ ✓ 0.0070 ↓ 0.99 ↑

1317Int. j. inf. tecnol. (March 2024) 16(3):1303–1318	

1 3

can substantially ease the effort required to extract features
for prediction by giving early convergence and improving
performance for the appropriately designed and combined
conceptual part into the general neural network structure.

11 � Conclusions

We have introduced a feature importance technique through
Cyclic Learning Sequence (CLS) by analyzing the learning
integrity of prediction, Loss, and Weight. We designed a
neural network representation for CLS using Object Ori-
ented Programming (OOP) and extended the representation
to embed domain/business rules from the researcher’s and
expert’s perspectives. The designed proposed model is effec-
tive enough to draw feature importance from the association
between Loss and Weight for different learning conditions
with optimal time complexity. CLS gives the degree of par-
ticipation of each connection weight for the decision with
discrete measures. The discrete measure assists end users
and AI developers/researchers with insight from the training.
Moreover, the correlation coefficient matrix adds assurance
to the decision. AI developers/researchers can mitigate the
black box nature by inspecting the feature importance of
connection weight for different inputs and their correspond-
ing decision. Further to the baseline representation, we have
extended the representation to embed domain/business rules
using standard design principles, which is effective in the
dynamic embedding of business rules and showed a posi-
tive impact on performance in terms of early convergence,
RMSE, and R2 metrics. Therefore, the integration of busi-
ness loss adds additional semantics to the neural network.

Modern technological evolution has uncovered many
exceptional aspects of natural phenomena that were previ-
ously inscrutable. One such aspect is the ability of crea-
tures to learn and reason, which has been better understood
through progress in machine learning (ML) and neural
networks (NN), leading to a better realization of biologi-
cal neural networks from artificial neural networks [45]. In
order to avoid abstract "magic" functions, we must delve
into the depth and length of neural network derivation, from
which we can answer the most transformative question of
this decade: “from how machines work to how they learn?”
The optimization techniques from differential calculus, data
organization, and restless computation play crucial roles
in discerning patterns from data. This transformation has
indeed provided a glimpse of natural phenomena from bio-
logical neural networks. However, understanding and ensur-
ing the decisions made by a “mindless” machine is more
challenging. Explainable AI (XAI) is a new and evolving
field, but XAI methods and their advanced derivatives have

tremendous potential to mitigate this challenge and enhance
the reliability of the decision.

Declarations 

Conflict of interest  The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

	 1.	 Patil S, Patil KR, Patil CR, Patil SS (2020) Performance overview
of an artificial intelligence in biomedics: a systematic approach.
Int J Inf Technol 12(3):963–973

	 2.	 Singh N, Panda SP (2022) Artificial Neural Network on Graphical
Processing Unit and its emphasis on ground water level prediction.
Int J Inf Technol 14(7):3659–3666

	 3.	 Gupta S, Saini AK (2021) An artificial intelligence based
approach for managing risk of IT systems in adopting cloud. Int
J Inf Technol 13:2515–2523

	 4.	 Tavakoli A, Honjani Z, Sajedi H (2023) Convolutional neural
network-based image watermarking using discrete wavelet trans-
form. Int J Inf Technol 15(4):2021–2029

	 5.	 Mahajan A, Singh HP, Sukavanam N (2017) An unsupervised
learning based neural network approach for a robotic manipulator.
Int J Inf Technol 9:1–6

	 6.	 Hospedales T, Antoniou A, Micaelli P, Storkey A (2021) Meta-
learning in neural networks: a survey. IEEE Trans Pattern Anal
Mach Intell 44(9):5149–5169

	 7.	 Kratsios A (2021) The universal approximation property. Annals
Mathematics Artificial Intelligence 89(5):435–469

	 8.	 Speith, T. (2022) A review of taxonomies of explainable artificial
intelligence (XAI) methods. In 2022 ACM Conference on Fair-
ness, Accountability, and Transparency (pp. 2239–2250).

	 9.	 Creel KA (2020) Transparency in complex computational sys-
tems. Philosophy of Science 87(4):568–589

	10.	 Arulprakash E, Aruldoss M (2022) A study on generic object
detection with emphasis on future research directions. J King Saud
University-Computer Inform Sci 34(9):7347–7365

	11.	 Arulprakash E, Martin A, Lakshmi TM (2022) A study on indirect
performance parameters of object detection. SN Computer Sci-
ence 3(5):1–11

	12.	 Jiang P, Suzuki H, Obi T (2023) XAI-based cross-ensemble fea-
ture ranking methodology for machine learning models. Int J Inf
Technol 15(4):1759–1768

	13.	 Alicioglu G, Sun B (2022) A survey of visual analytics for explain-
able artificial intelligence methods. Comput Graph 102:502–520

	14.	 Šefčík, F., Benesova, W., (2023) Improving a neural network
model by explanation-guided training for glioma classification
based on MRI data. International Journal of Information Technol-
ogy, 1–9.

	15.	 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin.
(2016) “Why should I trust you?"Explaining the predictions of
any classifier."In Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pp.
1135–1144.

	16.	 Lundberg, Scott M., and Su-In Lee. (2017) “A unified approach to
interpreting model predictions." Advances in neural information
processing systems 30 .

	17.	 Alwadi M, Chetty G, Yamin M (2023) A framework for vehicle
quality evaluation based on interpretable machine learning. Int J
Inform Tech 15(1):129–136

1318	 Int. j. inf. tecnol. (March 2024) 16(3):1303–1318

1 3

	18.	 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. (2018)
“Anchors: High-precision model-agnostic explanations.” In Pro-
ceedings of the AAAI conference on artificial intelligence, 32 (1).

	19.	 Zhou, Bolei, AdityaKhosla, AgataLapedriza, AudeOliva, and
Antonio Torralba. 2016 “Learning deep features for discriminative
localization.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929.

	20.	 Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and DhruvBatra. 2017
“Grad-cam: Visual explanations from deep networks via gradi-
ent-based localization.” In Proceedings of the IEEE international
conference on computer vision, pp. 618–626.

	21.	 Shrikumar, A., Greenside, P. and Kundaje, A., 2017. Learning
important features through propagating activation differences.
In International conference on machine learning (pp. 3145–3153).
PMLR.

	22.	 Bach S, Binder A, GrégoireMontavon FK, Müller K-R, Wojciech-
Samek. (2015) On pixel-wise explanations for nonlinear classi-
fier decisions by layer-wise relevance propagation. PLoS ONE
10(7):e0130140

	23.	 Caruana, Rich, Yin Lou, Johannes Gehrke, Paul Koch, Marc
Sturm, and NoemieElhadad. 2015 “Intelligible models for health-
care: Predicting pneumonia risk and hospital 30-day readmission.”
In Proceedings of the 21th ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pp. 1721–1730.

	24.	 Breiman L. Manual on setting up, using, and understanding ran-
dom forests 125 v3. Tech Rep 2002;4 (1):29, https://​www.​stat.​
berke​ley.​edu/​~breim​an/​Using_ 126 random_forests_V3.1.pdf.
[Accessed 26 Dec 2022].

	25.	 Pasricha, Sahil. 2020 Visually Explaining the Weight Distribution
of Neural Networks over Time.

	26.	 Confalonieri R, LudovikCoba BW, Besold TR (2021) A historical
perspective of explainable artificial intelligence. Wiley Interdisci-
plinary Rev: Data Mining Knowledge Discovery 11(1):e1391

	27.	 Dikmen M, Burns C (2022) The effects of domain knowledge on
trust in explainable AI and task performance: A case of peer-to-
peer lending. Int J Hum Comput Stud 162:102792

	28.	 Islam, Sheikh Rabiul, William Eberle, Sheikh K. Ghafoor, Amba-
reenSiraj, and Mike Rogers. (2019) “Domain knowledge aided
explainable artificial intelligence for intrusion detection and
response.” arXiv preprint arXiv:​1911.​09853 .

	29.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Machine Learn Res 15(1):1929–1958

	30.	 Slack D, Hilgard A, Singh S, Lakkaraju H (2021) Reliable post
hoc explanations: Modeling uncertainty in explainability. Adv
Neural Inf Process Syst 34:9391–9404

	31.	 zmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson,
AG., (2018). Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:​1803.​05407.

	32.	 Smith, L. N. (2017) Cyclical learning rates for training neural
networks. In 2017 IEEE winter conference on applications of
computer vision (WACV) (pp. 464–472). IEEE.

	33.	 Bengio, Y. (2012) Practical recommendations for gradient-based
training of deep architectures. In Neural Networks: Tricks of
the Trade: Second Edition (pp. 437–478). Berlin, Heidelberg:
Springer Berlin Heidelberg.

	34.	 Goodfellow, I., Bengio, Y., Courville, A. 2016. Deep learning.
MIT press.

	35.	 Schober P, Boer C, Schwarte LA (2018) Correlation coef-
ficients: appropriate use and interpretation. Anesth Analg
126(5):1763–1768

	36.	 Alam M (2020) Object oriented software security: goal questions
metrics approach. Int J Inf Technol 12(1):175–179

	37.	 Black AP (2013) Object-oriented programming: Some history,
and challenges for the next fifty years. Inf Comput 231:3–20

	38.	 Blaha, Michael R., and James R. Rumbaugh. 2020 “Object Ori-
ented Modeling and Design with UML.”

	39.	 Edwin, NjeruMwendi. 2014 “Software frameworks, architec-
tural and design patterns.” Journal of Software Engineering and
Applications.

	40.	 Mu, Huaxin, and ShuaiJiang.2011 “Design patterns in software
development.” In 2011 IEEE 2nd International Conference on
Software Engineering and Service Science, pp. 322–325. IEEE,.

	41.	 P.K. Biswas 2019 . “Deep Learning IIT KGP: Back Propagation
Learning”, NPTEL course.

	42.	 Galatolo FA, Cimino MGCA, Vaglini G (2021) Formal deriva-
tion of mesh neural networks with their forward-only gradient
propagation. Neural Process Lett 53(3):1963–1978

	43.	 Kim D, June-HaakEe CY, Lee J (2021) Derivation of Jacobian
formula with Dirac delta function. Eur J Phys 42(3):035006

	44.	 Magnus, Jan R., and Heinz Neudecker. (2019) Matrix differential
calculus with applications in statistics and econometrics.John
Wiley and Sons.

	45.	 Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G (2020)
Backpropagation and the brain. Nat Rev Neurosci 21(6):335–346

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://www.stat.berkeley.edu/~breiman/Using_
https://www.stat.berkeley.edu/~breiman/Using_
http://arxiv.org/abs/1911.09853
http://arxiv.org/abs/1803.05407

	An object-oriented neural representation and its implication towards explainable AI
	Abstract
	1 Introduction
	2 Previous work
	3 Literature review
	4 Significance of the method (methodology)
	5 Proposal of an object-oriented neural representation model
	6 Derivation for neural network training
	7 Algorithms
	7.1 Part a—Algorithm for training the proposed model

	8 Implementation
	9 Experiment
	10 Results and discussion
	11 Conclusions
	References

