
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (October 2023) 15(7):3555–3562 
https://doi.org/10.1007/s41870-023-01407-3

ORIGINAL RESEARCH 

Lightweight symmetric key encryption for text using XOR 
operation and permutation matrix

Maroti Deshmukh1 · Arjun Singh Rawat1 

Received: 18 January 2023 / Accepted: 31 July 2023 / Published online: 14 August 2023 
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2023

Abstract  Traditionally, symmetric key encryption has 
been computationally intensive, and the balance between 
security and computation costs has necessitated the use of 
systems with simpler computations and variable-sized keys. 
This paper introduces a lightweight technique for symmetric 
key encryption of text, which utilizes less complex opera-
tions such as XOR and permutation matrices. The proposed 
method encrypts and decrypts text based on the ASCII val-
ues of plain text characters, using two symmetric keys to 
provide security. The use of lightweight and computation-
ally efficient operations like XOR and permutation matrices 
ensures efficient encryption. One of the advantages of this 
approach is that it allows for the use of any key size without 
increasing computational complexity, while also enhanc-
ing security. Our statistical findings demonstrate that while 
increasing input size increases computation complexity, 
increasing key size does not affect it. Thus, any key size can 
be used for greater security. In summary, our proposed tech-
nique provides a simple, lightweight, and efficient method 
for data encryption and decryption with enhanced security 
using variable-sized keys.

Keywords  Encryption · Decryption · ASCII · Symmetric 
encryption · Plain text · Cipher text · XOR matrix · 
Permutation matrix · Variable-sized key

1  Introduction

Cryptography produces ciphers to secure communication 
between a sender and recipient, with objectives such as pri-
vacy, integrity, and access control. Encryption scrambles 
messages and decryption transforms them back to plain text. 
Cryptography algorithms are used to encrypt and decrypt 
data, with the primary objective of making it difficult to 
decode without the key. Testing each key combination is the 
most effective technique, but time-consuming. Cryptography 
algorithms are usually classified into two groups: symmetric 
key encryption and asymmetric key encryption. 

1.	 Symmetric key encryption [1] uses a single key for 
both the encryption and decryption processes, as shown 
in Fig. 1. The key is first sent via a secure channel to the 
sender and receiver, and the strength of the encryption 
depends on the length of the key (in bits). Various tech-
niques are used and researched in different fields for key 
distribution between the sender and receiver. Examples 
of symmetric key encryption algorithms include RC2, 
DES, 3DES, RC5, Blowfish, AES [2–5], and S-DES.

2.	 Asymmetric key encryption resolves the issue of key 
distribution in symmetric algorithms by using different 
keys for encryption and decryption, as shown in Fig. 2. 
This method employs two types of keys: private keys and 
public keys. The original data or plain text is encrypted 
using the public key to produce a cipher text. When the 
receiver receives this cipher text, they use their own pri-
vate key to decrypt it. A private key is also referred to 
as a secret key since only the intended recipient or an 
authorized person is aware of it. However, public keys 
can be kept in open databases where anyone can access 
them. Examples of asymmetric key encryption methods 

 *	 Maroti Deshmukh 
	 marotideshmukh@nituk.ac.in

	 Arjun Singh Rawat 
	 arjunsinghrawat005@gmail.com

1	 Department of Computer Science and Engineering, National 
Institute of Technology, Uttarakhand, Srinagar, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01407-3&domain=pdf


3556	 Int. j. inf. tecnol. (October 2023) 15(7):3555–3562

1 3

include RSA [6, 7], Digital Signatures [8], and others 
[9–17].

It is assumed that the encryption and decryption algo-
rithm of a certain cryptography system is known to every-
one. The level of security of the cipher text is determined by 
the secrecy of the key used for encryption and decryption.

The paper is structured as follows: the background work 
of symmetric and asymmetric key encryption schemes is 
discussed in Sect. 2, the proposed method is presented in 
Sect. 3, the performance of the proposed scheme is evaluated 
in Sect. 4, the security analysis of the proposed scheme is 
presented in Sect. 5, and the paper is concluded with poten-
tial future work in Sect. 6.

2 � Background work

Symmetric key encryption has been an important technique 
for ensuring data security for a long time. Traditional sym-
metric encryption algorithms such as AES, DES, and 3DES 
have been widely used, performance of these algorithms 
discussed by Patel et al. [18]. However, these techniques 
are computationally intensive and have certain limitations 

in terms of the key size and complexity. Researchers have 
developed various lightweight and efficient symmetric 
encryption schemes to address these limitations. One of the 
common approaches to achieving lightweight encryption 
is to use simple operations such as XOR and permutation 
matrices, which are computationally efficient. For example, 
the Lightweight Block Cipher family (LBlock, LEA, and 
Piccolo) are lightweight ciphers that use simple operations 
such as bitwise XOR and permutation. These ciphers have 
shown good performance in terms of security and efficiency, 
making them suitable for resource-constrained devices. 
Another approach to lightweight symmetric encryption is 
to use variable-sized keys. The RC5 algorithm is an example 
of a symmetric encryption scheme that allows for variable 
key sizes. This technique enhances the security of the cipher 
by allowing for the use of larger key sizes while keeping 
computational complexity low. Table 1 shows the variety of 
symmetric key encryption with their advantages, disadvan-
tages, or limitations.

The proposed technique of symmetric key encryption 
using lightweight operations such as XOR and permutation 
matrices, and the use of variable-sized keys is a promising 
approach for achieving efficient and secure data encryption. 
The use of ASCII values for encryption and decryption is an 
added advantage, making it suitable for resource-constrained 
devices. Various other techniques such as LBlock, LEA, and 
RC5 have also shown good performance in terms of secu-
rity and efficiency, making them suitable for use in different 
applications.

3 � Proposed model

The proposed approach begins by transforming characters 
into their ASCII values before encrypting the plaintext into 
ciphertext through a series of steps. It utilizes two keys, k1 
and k2, as symmetric keys for both encryption and decryp-
tion. Although there is no limit on key length, a larger value 
is preferred for improved security. This algorithm covers the 
entire ASCII character set. The encryption and decryption 
methods of the proposed algorithm are discussed in detail in 
the subsequent steps of the algorithm. The detailed steps for 
plain text encryption are discussed in Algorithm 1 in the fol-
lowing sections. In Algorithm 1(i), the ASCII characters of a 
plain text encoded representation are shown. First, the plain 
text characters PT1,PT2,… ,PTl are converted into ASCII 
decimal values. Next, the encoded numbers N1,N2,… ,Nl 
are generated by adding the value 1000 to these converted 

Fig. 1   Symmetric key encryption

Fig. 2   Asymmetric key encryption



3557Int. j. inf. tecnol. (October 2023) 15(7):3555–3562	

1 3

ASCII decimal values. To create the combined number CN,  
all the encoded numbers undergo a string concatenation 
operation. In Algorithm 1(ii), the combined number CN is 
used as a row matrix along with the encryption key K1 to 
generate the encoded ASCII matrix �. Here, k1 defines the 
number of columns in each row. The number of rows in 
the � matrix is equal to len(CN) mod K1, where len(CN) 
represents the length of CN. Any unfilled columns are filled 
with bogus values. In Algorithm 1(iii), the � matrix is gen-
erated with the help of the private key pair K1,K2. In Algo-
rithm 1(iv), the XOR operation is performed between the � 
and � matrices, and the resulting matrix is added with the 
value 1000 to generate the � matrix. In Algorithm 1(v), row-
wise permutation is performed on the � matrix using the � 

matrix, which generates the �r matrix. The � matrix contains 
the row permutation sequences for the row-wise permuta-
tion operation on the � matrix. In Algorithm 1(vi), column-
wise permutation is performed on the �r matrix using the �′ 
matrix, which generates the �c matrix. The �′ matrix contains 
the column permutation sequences for the column-wise per-
mutation operation on the �r matrix. In Algorithm 1(vii), the 
ciphertext is generated by first subtracting the value 1000 
from each element of the �c matrix. The resulting values are 
then converted into equivalent ASCII characters, which are 
assigned to ciphers C1,C2,… ,Cp−1,Cp, where p represents 
the number of rows in the �c matrix and q = K1 represents the 
number of columns. Finally, all the ciphers are concatenated 
to generate the ciphertext CT.

Table 1   Literature survey of symmetric key encryption schemes

Year Scheme Advantages Disadvantages/limitations

1977 DES [19] Strong security
Widely adopted
Efficient implementation

Key size too small
Vulnerable to brute force attacks
Outdated algorithm

1999 AES [20] Strong security
Efficient implementation
Large key sizes
Used by US government

Can be vulnerable to side channel attacks
Possible weak key attacks
Vulnerable to brute force attacks with small key sizes
Limited block sizes

2005 Blowfish [21] Strong security
Simple implementation
Fast encryption and decryption
Large key sizes

Vulnerable to side channel attacks
No longer widely adopted
Limited block sizes

1998 Twofish [22] Strong security
Large key sizes
High flexibility

Slow in software implementation
Limited block sizes

1998 Serpent [23] Strong security
High flexibility
No known attacks

Slow in software implementation
Limited block sizes
Not widely adopted

2011 LBlock [24] High performance in hardware implementation Not widely adopted in software implementation
2014 LEA [25] High security with good performance Limited block size
2014 Piccolo [26] High performance with low resource utilization Limited key size
2005 RC5 [27] Variable block and key size

Efficient implementation
Strong security
Suitable for low-resource environments

No longer widely adopted
Limited support for hardware acceleration
Vulnerable to related key attacks



3558	 Int. j. inf. tecnol. (October 2023) 15(7):3555–3562

1 3

Algorithm 1: Encryption Process:
(i) ASCII Characters Encoded Representation::
Input: Plain Text PT
Output: Combined Number CN
N1 ← ASCIIV al(PT1) + 1000
N2 ← ASCIIV al(PT2) + 1000

...
Nl−1 ← ASCIIV al(PTl−1) + 1000
Nl ← ASCIIV al(PTl) + 1000
CN ← Concat(N1, N2, ..., Nl−1, Nl)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(ii) Encoded ASCII Matrix Generation::
Input: Combined Number CN , Encryption Key pair (K1,K2)
Output: Encoded ASCII Matrix α

α :=





CN1 CN2 CN3 − − − CNk1
CNk1 + 1 CNk1 + 2 CNk1 + 3 − − − CN2k1

− − − − − − −
CNl−1 CNl B1 − − − Bk1





−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(iii) Keys Encoded Matrix Generation::
Input: Encryption Key pair (K1,K2)
Output: Keys Encoded Matrix β
β(aij) ← (((i× j + i+ j)K2 ) mod K2) mod 256
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(iv) XOR operation::
Input: Matrics α and β
Output: XOR Matrix γ
γ ← (α⊕ β) + 1000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(v) Row-Wise Permutation::
Input: XOR Matrix γ, ROW Matrix θ
Output: Row-Wise Permuted XOR Matrix γr
γr ← RP (γ, θ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(vi) Column-Wise Permutation::
Input: Row-Wise Permuted XOR Matrix γr, Column Matrix θ

′

Output: Column-Wise Permuted Matrix γc
γc ← CP (γr, θ

′
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(vii) Cipher Text Generation::
Input: Column-Wise Permuted Matrix γc
Output: Cipher Text CT
CT1 ← ASCIIChar(γc1,1 − 1000)
CT2 ← ASCIIChar(γc1,2 − 1000)

...
CTp ← ASCIIChar(γcp,q − 1000)
CT ← Concat(CT1, CT2, ..., CTp,q)

The detailed steps for decrypting the ciphertext are dis-
cussed in Algorithm 2 in the following sections. In Algo-
rithm 2(i), the ASCII characters of the decoded ciphertext 
representation are shown. Here, the ciphertext characters 
CT1,CT2,… ,CTl are first converted into ASCII decimal 
values. The resulting numbers CTN1,CTN2,… ,CTNl are 
generated by adding the value 1000 to these converted 
ASCII decimal values. To create the combined ciphertext 
number CCN,  all the encoded numbers undergo a string 
concatenation operation. In Algorithm 2(ii), the com-
bined number CCN is used as a row matrix along with 
the encryption key K1 to reconstruct the decoded ASCII 

matrix �r. Here, K1 defines the number of columns in each 
row. The number of rows are equal to len(CCN) mod K1, 
where len(CCN) represents the length of the CCN. In 
Algorithm 2(iii), column-wise permutation is performed 
on the �r matrix using �′ matrix, which reconstructs the 
�c matrix. The �′ matrix contains the column permutation 
sequences for the column-wise permutation operation on 
the �r matrix. In Algorithm 2(iv), row-wise permutation is 
performed on the �c matrix using � matrix, which recon-
structs the plaintext matrix. The � matrix contains the row 
permutation sequences for the row-wise permutation oper-
ation on the �c matrix. In Algorithm 2(v), the private key 



3559Int. j. inf. tecnol. (October 2023) 15(7):3555–3562	

1 3

pair K1 and K2 are used to generate the � matrix. In Algo-
rithm 2(vi), the XOR operation is performed between the 
plaintext matrix and the � matrix, and the resulting matrix 
is subtracted by the value 1000 to reconstruct the � matrix. 
In Algorithm 2(vii), the combined number CN,  which is a 
row matrix, is reconstructed by concatenating the elements 
of the � matrix in a row-wise sequence. After that, for 
each group of combined numbers, the first four elements 
are concatenated and subtracted by the value 1000. The 
resulting values are then converted into ASCII character 

values and stored in variables PT1,PT2,… ,PTp−1,PTp. 
Finally, a concatenation operation is performed to recon-
struct the plaintext value. Furthermore, the ciphertext is 
generated by first subtracting the value 1000 from each 
element of the plaintext matrix �c. The resulting values are 
then converted into equivalent ASCII characters, which are 
assigned to ciphers C1,C2,… ,Cp−1,Cp, where p represents 
the number of rows in the plaintext matrix and q = K1 rep-
resents the number of columns. Finally, all the ciphers are 
concatenated to generate the ciphertext CT.

Algorithm 2: Decryption Process:
(i) ASCII value Decoding Representation::
Input: Cipther Text CT
Output: Combined Cipther Text Number CCN
CTN1 ← ASCIIV al(CT1) + 1000
CTN2 ← ASCIIV al(CT2) + 1000

...
CTNl−1 ← ASCIIV al(CTl−1) + 1000
CTNl ← ASCIIV al(CTl) + 1000
CCN ← Concat(CTN1, CTN2, ..., CTNl−1, CTNl)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(ii) Decoding ASCII Matrix Generation::
Input: Cipher Text Combined Number CCN , Encryption Key pair (K1,K2)
Output: Encoded ASCII Matrix γr

γr :=





CCN1 CCN2 CCN3 − − − CCNk1
CCNk1 + 1 CCNk1 + 2 CCNk1 + 3 − − − CCN2k1

− − − − − − −
CCNl − k1 CCNl − k1 − 1 CCNl − k1 − 2 − − − CCNl





−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(iii) Column-Wise Permutation::
Input: Matrix γr, Column Matrix θ

′

Output: Permuted Matrix γc
γc ← CP (γr, θ

′
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(iv) Row-Wise Permutation::
Input: XOR Matrix γc, ROW Matrix θ
Output: Matrix γ
γ ← RP (γc, θ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(v) Keys Encoded Matrix Generation::
Input: Encryption Key pair (K1,K2)
Output: Keys Encoded Matrix β
β(aij) ← (((i× j + i+ j)K2 ) mod K2) mod 256
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(vi) XOR operation::
Input: Matrics γ and β
Output: Matrix α
α ← (γ ⊕ β)− 1000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(vii) Plain Text Reconsturction::
Input: Matrix α
Output: Cipher Text PT
CN ← ConCat(α(ij))
PT1 ← ASCIIChar(ConCat(CN1, CN2, CN3, CN4)− 1000)
PT2 ← ASCIIChar(ConCat(CN5, CN6, CN7, CN8)− 1000)

...
PTp ← ASCIIChar(ConCat(CNl−3, CNl−2, CNl−1, CNl)− 1000)
PT ← Concat(PT1, PT2, ..., PTp−1, PTp)



3560	 Int. j. inf. tecnol. (October 2023) 15(7):3555–3562

1 3

4 � Performance analysis

In performance analysis, we observed the computation 
complexity varying with different parameters and system 
specifications: The processor is an AMD A8-7410 APU 
(2.20 GHz), with 8.00 GB (6.91 GB usable) of DDR3 RAM, 
and a 64-bit Operating System (Windows 10 Pro), x64 based 
processor. The evaluation of the execution time includes the 
total time taken for encryption and decryption, as well as 
the time elapsed for file read and write operations in Java.

Table 2 shows the performance analysis based on sizes of 
the text file, by keeping the keys k1 and k2 fixed, total execu-
tion time (including both encryption and decryption) based 
on given parameter in below.

–	 A plain text file is encrypted and then decrypted.
–	 k1 = 120 and k2 = 71.

Figure 3 demonstrates that the line graph depicts the 
execution time of a proposed scheme based on the size of 
the text file (KB). Increasing the text file’s (KB) size results 
in a increased execution time.

Table 3 shows the performance analysis based on key 
size, by Keeping the key k1 fixed and applying the algorithm 

Table 2   Computational complexity based on sizes of the text file

Size of the text file (KB) Execution time (s)

4.91 2.2
17.1 10.7
34.5 47.9
63.7 158.7
254 1672.7

Fig. 3   Computational complexity based on sizes of the text file using 
line graph

Table 3   Computational 
complexity based on key (k1) 
length

k1 Execu-
tion time 
(s)

3 47.8
7 40.8
19 47.8
37 46.4
71 47.9

Fig. 4   Computational complexity based on key (k1) length using line 
graph

Table 4   Computational 
complexity based on key (k2) 
length

k2 Execu-
tion time 
(s)

120 46.7
250 44.4
500 45.9
750 44.8
1000 45.7

Fig. 5   Computational complexity based on key (k1) length using line 
graph



3561Int. j. inf. tecnol. (October 2023) 15(7):3555–3562	

1 3

on the same file, variation of execution time with key k1 
based on given parameter in below.

–	 Size of the plain text file is 34.5 KB.
–	 k1 = 120.

Figure 4 shows how a proposed scheme’s execution time 
is represented by a line graph based on the length of the key 
(k1), where increasing the length of the key has no effect 
whatsoever on the execution time.

Table 4 shows the performance analysis based on key 
size, by Keeping the key k2 fixed and applying the algorithm 
on the same file, variation of execution time with key k2 
based on given parameter in below.

–	 Size of the plain text file is 34.5 KB.
–	 k2 = 23.

Figure 5 shows how a proposed scheme’s execution time 
is represented by a line graph based on the length of the key 
(k2), where increasing the length of the key has no effect 
whatsoever on the execution time.

Table 5 displays execution times for different key lengths 
of a particular encryption scheme, and the figure shows 
that the proposed scheme’s execution time is independent 
of key length. This is a significant advantage compared to 
other encryption schemes, which often experience longer 

execution times with longer key lengths. Moreover, the com-
parison table demonstrates limitations in block size, vulner-
ability to side-channel attacks, and limited adoption of some 
encryption schemes. As a result, the proposed scheme may 
offer better performance and security than these schemes.

5 � Security analysis

The proposed algorithm provides high level of security as 
an attacker would need to know both keys (k1 and k2) to 
decrypt the ciphertext and test all possible combinations. 
The length of keys is not limited, making it computation-
ally infeasible for an attacker to attempt 10170 times even 
for large key values like 1050 and 10120. Using k2 as an 
exponent in both encryption and decryption procedures 
may increase the computing cost, but even for smaller val-
ues of keys, larger files will take significantly more time 
to execute. For optimal security, it is recommended to use 
keys with large values.

6 � Conclusion and future scope

The proposed approach is a lightweight symmetric key 
encryption technique that uses permutation matrices and 

Table 5   Comparison of symmetric encryption schemes

Scheme Key size Block size Advantages Disadvantages/limitations

DES [19] 56 bits 64 bits 1. Strong security 1. Key size too small
AES [20] 1. 128 bits

2. 192 bits
3. 256 bits

128 bits 1. Strong security
2. Large key sizes
3. Efficient implementation

1. Weak key attacks
2. Limited block sizes

Blowfish [21] 32–448 bits 64 bits 1. Strong security
2. Simple implementation
3. Large key sizes

1. Vulnerable to side channel attacks
2. Limited block sizes

Twofish [22] 1. 128 bits
2. 192 bits
3. 256 bits

128 bits 1. Strong security
2. High flexibility
3. No known attacks

1. Slow in software implementation
2. Limited block sizes
3. Not widely adopted

LBlock [24] 80 bits 64 bits 1. Performance in hardware implementation 1. Widely adopted in software implementation
LEA [25] 1. 128 bits

2. 192 bits
3. 256 bits

64 bits 1. High security with good performance 1. Limited block size

Piccolo [26] 1. 80 bits
2. 128 bits
3. 192 bits

64 bits 1. High performance
2. Low resource utilization

1. Limited key size

RC5 [27] Up to 2040 bits Up to 2040 bits 1. Variable block and key size
2. Efficient implementation
3. Strong security
4. Suitable for low-resource environments

1. No longer widely adopted
2. Limited support for hardware acceleration
3. Vulnerable to related key attacks

Proposed Variable Variable 1. Strong security
1. Large key sizes
1. Utilizes entire ASCII character set

1. Brute-force attacks for small key size



3562	 Int. j. inf. tecnol. (October 2023) 15(7):3555–3562

1 3

XOR operations for encryption and decryption with any 
key size, without increasing the computation complexity. 
The performance analysis demonstrated that larger key 
sizes provide higher security and that the size of the keys 
is completely independent of the execution time. However, 
the size of the file affects the execution time, meaning that 
as the text file size increases, so does the execution time.

The future work of the proposed algorithm includes 
modifying the functions used to generate the XOR matrix 
and permutation matrix to enhance the algorithm’s secu-
rity. Additionally, optimizations can be implemented to 
improve the speed of encryption and decryption of larger 
text files. Overall, the approach provides a secure and 
lightweight encryption technique for textual data and has 
potential for further enhancements to improve its perfor-
mance and security.

Funding  This research received no specific grant from any funding 
agency in the public, commercial, or not-for-profit sectors.

Availability of data and material (data transparency):  Data avail-
able on request from the authors.

Code availability (software application or custom code)  Code 
available on request from the authors.

Declarations 

 Conflict of interest  The authors declare that they have no conflict 
of interest.

References

	 1.	 Bokhari MU, Shallal QM (2016) A review on symmetric key 
encryption techniques in cryptography. Int J Comput Appl 
147(10):43–48

	 2.	 Abdullah AM (2017) Advanced encryption standard (AES) algo-
rithm to encrypt and decrypt data. Cryptogr Netw Secur 16:1–11

	 3.	 Han S-J, Oh H-S, Park J (1996) The improved data encryption 
standard (DES) algorithm. In: Proceedings of ISSSTA’95 inter-
national symposium on spread spectrum techniques and applica-
tions, vol 3. IEEE, Mainz, Germany, pp 1310–1314

	 4.	 Knudsen LR et al (1998) On the design and security of RC2. In: 
International workshop on fast software encryption. Springer, 
Berlin

	 5.	 Noura M et al (2018) S-DES: an efficient and secure DES vari-
ant. In: IEEE middle east and north Africa communications 
conference (MENACOMM), IEEE, Jounieh, Lebanon, pp 1–6

	 6.	 Milanov E (2009) The RSA algorithm. RSA Laboratories, pp 
1–11. https://​sites.​math.​washi​ngton.​edu/​~morrow/​336_​09/​
papers/​Yevge​ny.​pdf

	 7.	 Imam R, Anwer F, Nadeem M (2022) An effective and enhanced 
RSA based public key encryption scheme (XRSA). Int J Inf 
Technol 14(5):2645–2656

	 8.	 Merkle RC (1990) A certified digital signature. In: Conference 
on the theory and application of cryptology. Springer, New York

	 9.	 Yassein MB et al (2017) Comprehensive study of symmetric 
key and asymmetric key encryption algorithms. In: International 

conference on engineering and technology (ICET), IEEE, 
Antalya, Turkey, pp 1–7

	10.	 Hellman ME (2002) An overview of public key cryptography. 
IEEE Commun Mag 40(5):42–49

	11.	 Rawat AS, Deshmukh M (2019) Efficient extended Diffie–
Hellman key exchange protocol. In: 2019 International con-
ference on computing, power and communication technologies 
(GUCON). IEEE, pp 447–451

	12.	 Rawat A, Deshmukh M (2020) Tree and elliptic curve based 
efficient and secure group key agreement protocol. J Inf Secur 
Appl 55:102599

	13.	 Rawat AS, Deshmukh M (2020) Communication efficient Mer-
kle-Tree based authentication scheme for smart grid. In: 2020 
IEEE 5th international conference on computing communica-
tion and automation (ICCCA). IEEE, pp 693–698

	14.	 Rawat AS, Deshmukh M (2021) Computation and communica-
tion efficient Chinese remainder theorem based multi-party key 
generation using modified RSA. In: Security and privacy, vol 
25–32. Springer, Singapore

	15.	 Rawat AS, Deshmukh M (2021) Computation and communication 
efficient secure group key exchange protocol for low configuration 
system. Int J Inf Technol 13(3):839–843

	16.	 Sharma P, Purushothama BR (2023) Cryptanalysis of a secure and 
efficient Diffie–Hellman based key agreement scheme. Int J Inf 
Technol 15:1–9

	17.	 Bhat R, Sunitha NR, Iyengar SS (2022) A probabilistic public key 
encryption switching scheme for secure cloud storage. Int J Inf 
Technol 15(2):1–16

	18.	 Patel K (2019) Performance analysis of AES, DES and Blowfish 
cryptographic algorithms on small and large data files. Int J Inf 
Technol 11:813–819

	19.	 Standard, Data Encryption (1977) Federal information processing 
standards publication 46, vol 23. National Bureau of Standards, 
US Department of Commerce, pp 1–18

	20.	 Daemen J, Rijmen V (1999) AES proposal: Rijndael
	21.	 Schneier B (2005) Description of a new variable-length key, 64-bit 

block cipher (Blowfish). In: Fast software encryption: Cambridge 
security workshop, Cambridge, UK, December 9–11, 1993 pro-
ceedings, pp 191–204

	22.	 Schneier B et al (1998) Twofish: a 128-bit block cipher. NIST AES 
Propos 15(1):23–91

	23.	 Anderson R, Biham E, Knudsen L (1998) Serpent: a proposal for 
the advanced encryption standard. NIST AES Propos 174:1–23

	24.	 Wu W, Zhang L (2011) LBlock: a lightweight block cipher. In: 
Applied cryptography and network security: 9th international con-
ference, pp 327–344

	25.	 Hong D et al (2014) LEA: a 128-bit block cipher for fast encryp-
tion on common processors. In: Information security applications: 
14th international workshop, pp 3–27

	26.	 Vasiliadis G et al (2014) PixelVault: using GPUs for securing 
cryptographic operations. In: Proceedings of the 2014 ACM SIG-
SAC conference on computer and communications security, pp 
1131–1142

	27.	 Rivest RL (2005) The RC5 encryption algorithm. In: Fast software 
encryption: second international workshop Leuven, pp 86–96

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf

	Lightweight symmetric key encryption for text using XOR operation and permutation matrix
	Abstract 
	1 Introduction
	2 Background work
	3 Proposed model
	4 Performance analysis
	5 Security analysis
	6 Conclusion and future scope
	References




