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Abbreviations
MACO  Metaheuristic ant colony optimization
PR  Path relinking
SK  Structure knowledge
ACO  Ant colony optimization
RMSD  Root mean square deviation
CASP  Critical assessment of protein structure 

prediction
PDB  Protein data bank
CREF  Central-residue-fragment based technique
ABC  Artificial bee colony
PIO  Pigeon inspired optimization
TS  Tabu search
SVM  Support vector machine
NN  Neural network

1 Introduction

Proteins show an essential role in the biological processes 
of all living organisms. They are the essential building 
blocks of all living organisms and play a significant role 
in cell development. The constancy of proteins depends 
on the analysis factor of protein structure prediction. Later 
this information is used to generate protein secondary and 
tertiary structures. They play a significant role in oxygen 
conveyance in blood vessels.

Structural bioinformatics is a study of different types of 
problems associated with different biological systems like 
protein secondary structure prediction, tertiary structure 
prediction, etc., and they are the most significant problem 
statement in structural bioinformatics [1, 2]. Subsequently, 
it results in the development of the latest scientific and com-
putational methods.
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The identification of protein function depends upon 
how accurate the tertiary structure fold occurs for a given 
protein. A misfold tertiary structure will affect drug 
design, energy drink, and vaccination design [3, 4], etc. 
The creation of the protein tertiary structure depends upon 
the chemical and physical properties of the amino acid 
sequence and its polypeptide. All these properties are inte-
grated within the building blocks of proteins. If certain 
protein performs incorrect folding, it leads to the protein 
breakdown and incorrect structure prediction, later called 
misfolding. These misfolded proteins yield different types 
of diseases like diabetes, Alzheimer’s, etc. [5–7].

Protein Structure Prediction (PSP) is a challenging 
task in the bioinformatics field as the amount of amino 
acids known is more than the predicted tertiary structure. 
Although there are several experimental methods like 
X-ray and Nuclear magnetic resonance (NMR) used in 
finding Protein structure and also they can produce a more 
effective result. These techniques are more expensive and 
time-consuming as they can take months in recognizing 
the structure, which results in generating an immense gap 
between the number of amino acid sequences and identi-
fied protein 3-D structures. In order to overcome this gap, 
computational techniques must be used in protein structure 
finding [8–11].

In the past several computational approaches were pro-
posed as replacements for the PSP problem [2]. Based on 
the structural information from the protein data bank, four 
different types of computational groups can be defined: (a) 
principle approaches with database knowledge, (b) ab initio 
or principle approaches without database knowledge, (c) rel-
ative modeling approaches, (d) fold recognition approaches. 
However, these methodologies have limitations. Group (b) 
can generate the latest protein structures using the latest 
folds, but even for a small amino acid sequence, the search 
space is more complex and with a high dimension. Next, 
Group (c) can easily forecast the protein structure, which is 
alike to the know amino acid sequence of the given structure. 
Group (d) protein structure prediction is based on the avail-
able fold collection from the protein data bank. Whereas 
group (a) method performs well when the result is compared 
with the critical assessment of protein Structure Prediction 
[12]. Due to the excellent performance of group(a), the 
author has integrated Group (a) techniques with machine 
learning (ML) concepts to improve the protein structure 
method.

The rest of the paper is structured as follows: Section 
II gives a brief on protein structure representation, energy 
function, and protein templets. Next section III discusses the 
related works. Section IV gives an insight into the proposed 
work. The result and validation of the proposed model are 
discussed in section V. Finally, section VI briefs the conclu-
sion part.

2  Background

To better understand the principle of bioinformatics, this 
section illustrates the background of the protein structure, 
amino acid, energy function, and protein templates.

2.1  Protein’s structure and its amino acid residual

The computed tertiary structure does not only depend on the 
amino acid sequence but also on various other parameters. 
Solvent, temperature, and many other biological parameters 
define the relation among amino acid sequences. These fea-
tures help in identifying the natural protein structure, and 
more the features quantity high will be the accuracy. The 
dihedral angle [13] can be used to define the tertiary struc-
ture of the given sequence. This method uses bond length, as 
the length of the peptide chain is almost constant.

Protein is a collection of subsequently linked amino acid 
residues with associated peptide bonds. Every amino is 
made up of a carboxyl set, a link to carbon bonds, and a 
successively linked side chain with detailed physicochemi-
cal properties. When a carboxyl set of residue interacts with 
an amino set of the peptide bond is generated, later a water 
particle is released. A torsion angles [14] phi (ϕ) and psi (ψ) 
of amino acid can be used to define polypeptide and protein 
backbone. These torsion angles of a protein structure can 
be represented by the Ramachandran plot [15]. Meanwhile, 
steric hindrance defines the value of rotational round the ϕ 
and ψ angles. A side chain of polypeptide must have dihe-
dral angles (Chi angles-χ).

2.2  Energy function

To decrease an energy function, the protein structure pre-
diction method must change the orientation of the protein 
structure atoms [16]. To assess the quality of the predicted 
structure different energy functions can be used. Here the 
author has incorporated the Rosetta energy function [17]. 
The Rosetta scoring function contains more than eighteen 
energy terms, some are inter-atomic interaction, hydrogen 
bond, Newtonian physics, knowledge built potential, etc. 
According to the critical assessment of protein Structure 
Prediction (CASP), Rosetta energy-function based methods 
performs better when compared with other energy functions 
[18].

2.3  Protein templates

A Protein template from a protein data bank (PDB) can 
be used to decrease the high dimensionality and also the 
difficulty of the search space formed during the ab-ini-
tio process, later this knowledge can be used to design 
conformations. In the proposed work author has used 
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Central-Residue-Fragment based technique (CREF) for 
extraction of protein templet from PDB. The CREF [19, 20] 
predicts the protein templet based on the phi (ϕ), psi (ψ), 
and torsion angles of the amino acid chain acquired from the 
PDB. These PSP techniques can work on small fragments 
well. The cluster method is incorporated in the identification 
of templates, next, each cluster is labeled against the confor-
mational state specified by the sections in the Ramachandran 
graph. Finally, the clustering result is used in the develop-
ment of conformation using the mapping function.

3  Related work

Li et al. [21] proposed a bio-inspired algorithm called arti-
ficial bee colony (ABC) with pigeon-inspired optimiza-
tion (PIO). Here the computation of protein 3D structure 
is performed by integrating two hybrid algorithms namely 
an ABC and PIO. Thereafter Cauchy perturbation is used to 
improve the local fitness. This experiment is performed on 
ten short-length protein sequences. Whereas Backtracking 
Search Optimization (BSO) and Tabu Search (TS) algorithm 
[22] perform prediction of protein 3D structure using BSO 
and TS. They used TS to overcome the generated local opti-
mum. The prediction can be further increased by incorporat-
ing a path linking strategy. In [23] authors showed that their 
model ResNet is able to predict twenty-six protein folds out 
of thirty-two targeted values whereas when they have not 
incorporated ResNet they are able to predict only eighteen 
protein folds. The prediction can be further increased by 
incorporating a path linking strategy.

In [24] author has used Mod- artificial bee colony (ABC) 
with PDB structure knowledge for the prediction of protein 
tertiary structure. The predicted solution is further com-
puted under a crossover operation between two target solu-
tions. Later, RMSD, distance, and energy functions are used 
in the analysis of all eight protein sequences. In [25] the 
author has used a memetic algorithm with structure knowl-
edge for the prediction of protein 3D structure from amino 
acid sequences. Further, during computation search space is 
reduced by including an angle probability list. The accuracy 
can be further improved by integrating ML techniques with 
a PR strategy.

Yousef et al. used a hybrid model [26] for tertiary struc-
ture prediction, they combined the genetic algorithm with 
energy function. However, during the crossover process, the 
computed structure can be different due to steric hindrance, 
this can be validated by energy minimization. Results show 
that the hybrid models botched to computing the sidechain 
torsional angles. The prediction can be further improved by 
including PyRosetta with structure knowledge.

RMSD plays an essential role in protein structure predic-
tion. The author [27] proposed a method to decrease RMSD 

error by incorporating a feed-forward neural network and an 
adaptive neuro-fuzzy approach. Subsequently, the computed 
result is used in structure prediction. The prediction result 
can be further increased by altering the number of linguistic 
variables.

In this work [28], the authors combined a neural network 
and particle swarm optimization algorithms for protein 
3D structure prediction from amino acid sequences. They 
extracted protein sequences using three different hydropho-
bic, composition, and Frequency amino acids. The result 
shows that system is able to classify only alpha and beta 
trends, whereas it failed to classify alpha + beta and alpha/
beta values. To overcome this, drawback authors suggested 
building a tree classifier at the initial stage.

4  Materials and methods

This section describes the proposed MACO-PR Algo-
rithm implementation. The steps followed in the proposed 
approach to predict protein tertiary structure is as follows:

Step 1: Extraction of amino acid sequences from PDB.
The above given steps in shown in Fig. 1. Here amino 

acid sequences are extracted from PDB [29]. Next, the 
extracted amino acid and template are supplied as input to 
the proposed MACO-PR model. Finally, the protein tertiary 
structure is validated using RMSD.

In this work, author developed an enhanced MACO for 
the protein tertiary structure prediction. Here MACO [30] 
is integrated with PR [31] strategy and SK. As MACO can 
generate local minima of torsion angle author has integrated 
PR with MACO named a MACO-PR. To validate the pro-
posed model MACO-PR author tested them on six differ-
ent protein sequences and with basic ACO, Support Vector 
Machine (SVM) [32] and Neural Network (NN) [33]. The 
ACO mainly goes through three stages: Construction Stage, 
Local Search Stage, and Pheromone Update Stage.

• Construction stage: Each labor ant starts at a random 
amino sequence position, and subsequently building a 
conformation of the given sequence by deploying a can-
didate solution.

• Local search stage: During this stage further Optimiza-
tion of conformations folds occurs.

• Pheromone update Stage: based on the conformation 
energy and search stage each labor ant will start updat-
ing the pheromone matrix.

A generic ACO algorithm [30] working steps is illustrated 
below:

Step 1 Initialize pheromone trails value to Nil.
Step 2 Generate candidate confirmation.
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Step 3 Initialize labor ant search.
Step 4 Update pheromone values.
Step 5 Compute the best path.

During the path construction stage of the proposed model 
MACO-PR, each labor ant starts at a random position within 
certain amino acid sequences. Later each residual will get 
added when the sequence fold occurs in both directions either 
left or right. Subsequently for each labor ant path generation 
occur, resulting in protein conformation. Based on the phero-
mone values and direction, sequence position updating occurs 
for given position ‘i’. Here the total count of ants will be less 
than or equal to the number of nodes. Each labor ant will start 
from a random position [34] in search of the final node(ni) 
with the resource (Rj). The computation will be carried out 
as shown in Eq. (1).

Here, ‘Tij’ denotes the pheromone values corresponding 
to node  (ni) and resource  (Rj). ‘H’ is used to define the given 
heuristic value. Subsequently, ‘α’ value and ‘β’ denotes the 
identified pheromone and heuristic values.

PR [35] is a method used in the identification of trajecto-
ries linked leading to the best solution generated by heuristic 
methods. It can be considered as an enhanced version of scatter 
search. PR takes two or more efficient solutions generated by 
the original search and creates a path between them and also 
uses beyond the certain solutions in the given space.

(1)PFij =
�
(Tij)�(Hij)�

�
∕�∑ (Tij)�(Hij)�

�

Algorithm 1: Proposed MACO-PR Algorithm for protein tertiary structure prediction

1. Input: Amino acid sequences and energy function

2. Output: Optimized solution 

3. begin
4. Initialize pheno_path = null

5. Initialize opt_path = null

6. Define set X & Y

7. while ant_no.: {1..n} do
8. Find best path from set X

9. Find best path from set Y

10. OPn = compute (path)

11. Apply equation 1

12. if (OPn <= OPn+1)

13. APn+1 = APn

14. Update opt_path 

15. endif
16. Apply pathrelinking (OPi, OPi+1)

17. end while
18. return opt_path

19. end

Algorithm 1 illustrates the proposed MACO-PR predic-
tion procedure. Initially, amino acid sequence and energy 
function are supplied as input to the proposed model. Sub-
sequently, pheromone path and optimal path value have been 
assigned to Null as shown in line number 4 and 5. Line 6 
defines the sets X and Y which contain the optimal paths. 
Next line numbers 7–11 compute the best path using Eq. 
(1), for sets X and Y. Line numbers 12–15 deal with the 
computation and comparison of the best path, meanwhile 
the best path is stored in ‘opt_path’ variable. Next, apply 
path-relinking method to compare the best path as shown 
in line number 16. The path-relinking process is applied 

Fig. 1  Proposed MACO-PR 
Architecture for Protein Tertiary 
Structure Prediction
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seeing that the latest result  OPi  andOPi+1 from Y is randomly 
selected. It starts with OPi value i = 1.n and at each stage  OPi 
values is substituted by  OPi+1. Later all solutions should be 
visited through this process. Finally, line number 18 returns 
the best path. Here path-relinked is used to reduce local 
minima ensues during torsion angle adjustment as shown 
in line number 16.

5  Results

The proposed work was used to predict the protein tertiary 
structure. Here six different protein sequences have been 
used in the identification of protein structure. The six used 
protein sequences are 2P5K, 1AIL, 1AB1, 1L2Y, 2MTW, 
and 1WQC. The author has enhanced the ACO algorithm 
by incorporating path-relinking strategies for the effective 
retrieval of protein tertiary structure. Later lowest potential 
energy was used in structural analysis. Furthermore, Root 
Mean Square Deviation (RMSD) values were computed 
using PyRosetta [36], as shown in Eq. (2).

here rxi and ryi are the values representing the location of 
atom vectors representing the positions of the given atom. 
Tables 1 and 2 show the computed average energy and 
RMSD values for the proposed MACO-PR algorithm and 
normal ACO algorithm, here x-axis represents the PDB ID 
while y-axis represents computed average energy (negative 
values) or RMSD values (positive values) as displayed in 
Figs. 2 and 3.

For each six-protein sequence, minimum energy is com-
puted using the proposed MACO-PR algorithm, and subse-
quently generated result is analyzed using ACO and RMSD 
methods. 2MTW protein ID generates the lowest energy 
− 17.45 kcal/mol− 1 using MACO-PR whereas − 16.83 kcal/
mol− 1 by ACO method. Next 2P5K & 1AIL PDB ID’s pro-
duces − 14.5 kcal/mol− 1 and − 13.0 kcal/mol− 1 energy when 

(2)RMSD(x, y) =

�
�n

i=1

‖rxi − ryi‖2

n

computed using MACO-PR while − −12.01 kcal/mol− 1 and 
−12.55 kcal/mol− 1 using ACO. Similarly, 1AB1 generates 
the average energy of −16.5 kcal/mol− 1 and − 14.22 kcal/
mol− 1 by incorporating MACO-PR and ACO methods. The 
result shows that out of six protein ID four protein ID gen-
erate the lowest energy when computed using the proposed 
model MACO-PR whereas the remaining two protein ID 
produces the lowest energy using ACO as shown in Fig. 2.

Figure 3, presents the calculated RMSD values using 
MACO-PR, ACO, SVM[32] and NN[33]. Here 2MTW 
PDB ID produces the lowest RMSD value of 4.16 using 
proposed MACO-PR while 5.61 using ACO and 6.5 using 
SVM. Similarly, 1L2Y generates a 5.16 RMSD values when 
computed using MACO-PR whereas 6.51 and 6.1 use ACO 
and SVM. Further 2P5K and 1AIL generate RMSD values 
of 6.81 and 6.85 when computed using MACO-PR whereas 
8.55 and 6.85 using ACO and 8.2 and 7 using SVM. Finally, 
1WQC produces an RMSD value of 5.84 when computed 
using MACO-PR and 8.00 using ACO. The result exempli-
fies that out of six different PDB ID’s 2P5K, 1AIL, 1L2Y, 
2MTW and 1WQC perform well when computed using the 
proposed model MACO-PR while ACO generate good result 
only for 1AB1 ID, similar case with SVM.

6  Conclusion and future scope

The study of protein and its structure is one of the key 
research areas in Computational Bioinformatics [1, 
37, 38]. In this work, the author presents two different 
versions of the ACO method for protein tertiary structure 
prediction. In the first version, basic ACO, SVM and NN is 
used, whereas in the second version author has integrated 
MACO with PR strategy and SK. In the proposed work, 
Amino acid sequences are extracted from PDB. Next, the 
extracted amino acid and template are supplied as input 
to the proposed MACO-PR model. Here PR is used in 

Table 1  Average energy (Kcal /  mol− 1) values computed through 
proposed MACO-PR algorithm and ACO algorithm

PDB ID Avg. Energy with path- 
relinking (MACO-PR)

Avg. Energy without 
path- relinking (ACO)

2P5K -14.5 -12.01
1AIL -13.0 -12.55
1AB1 -16.5 -14.22
1L2Y -14.29 -15.11
2MTW -17.45 -16.83
1WQC -15.06 -15.70

Fig. 2  Average energy (Kcal /  mol− 1) values computed through pro-
posed MACO-PR algorithm and ACO algorithm
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overcoming the local minima of torsion angle generated 
during structure computation; however, SK is incorporated 
to handle the search space complexity.

The average energy measured using proposed model 
MACO-PR for 2P5K is −14.5 Kcal/Mol− 1, 1AB1 is -16.5 
Kcal/Mol− 1, 1A1L is 13.0 Kcal/Mol− 1, and 2MTW is 
−17.45 Kcal/Mol− 1 PDB ID while − 12.01 Kcal/Mol− 1, 
14.22 Kcal/Mol− 1, 12.55 Kcal/Mol− 1, −16.83 Kcal/Mol− 1 
using basic ACO. Similarly, RMSD values computed using 
the proposed model MACO-PR for PDB ID’s 2P5K is 
6.81 Å, 1A1L 6.85Å , 1L2Y is 5.16 Å, 2MTW 4.16 Å and 
1WQC is 5.84 Å, whereas using ACO 2P5K is 8.55 Å, 
1A1L 6.85 Å, 1L2Y is 6.51 Å, 2MTW 5.61 Å and 1WQC 
is 8.00 Å.

The above average energy value indicates that the pro-
posed model MACO-PR performs well for 2P5K, 1AB1, 
1A1L, & 2MTW PDB ID’s but failed to do well for 1AB1 
PDB ID. Also, MACO-PR performs well for RMSD val-
ues for 2P5K, 1A1L, 1L2Y, 2MTW & 1WQC PDB ID’s 
whereas failed to predict 1AB1 PDB ID. Overall all results 
illustrate that MACO-PR outperforms when compared with 
basic ACO, SVM and NN concerning average energy and 
RMSD measures. As a part of future work, the model can 
incorporate deep learning techniques for more timely and 
accurate prediction.
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