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1  Introduction

Image acquired by the camera is always degraded by noise. 
Often the scene is not illuminated properly, forcing the cam-
era to increase the sensitivity of the sensor degrades the 
image. Removal of noise is an essential step in various image 
restoration [1, 2] tasks. Considering noise as independent 
of the image gives us a simple model I = S + �, where I is 
a noisy image, S is a noiseless ground truth image and η is 
noise with standard deviation σ. Noisy images with additive 
white Gaussian noise (AWGN) [3] can be modeled as the 
sum of ground truth image and noise (η) (Eq. 1)

where I(x, y) is resultant noisy image pixel when S(x, y) is 
corrupted image with noise (�).

Image denoising is often ill-posed. This ill-posedness 
can be solved with maximum-a-posteriori (MAP) principle 
[4]. Solving this problem with MAP requires modeling the 
image with random variables that follow a prior distribution. 
The corrupted image is then reconstructed with the priors 
using maximum-a-posteriori principle. The objective is to 
maximize the conditional probability of the reconstructed 
image when a corrupted image is given.

Image denoising methods can be broadly classified into 
two categories, model-based methods and discrimina-
tive methods. Model based methods use a generic prior 
model and an optimization algorithm. Model based meth-
ods include Block Matching and 3D Filtering (BM3D) [5], 
Expected Patch Log Likelihood (EPLL) [6] and Weighted 
Nuclear Norm Minimization (WNNM) [7]. These methods 
are computationally expensive, time consuming and una-
ble to resolve the problem of spatially variant noise. Dis-
criminative methods model an appropriate image prior, this 

(1)I(x, y) = S(x, y) + �(x, y)
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approach of learning the prior employ Multi-Layer Percep-
tron (MLP) [8], DnCNN [2], and Trainable nonlinear reac-
tion diffusion (TNRD) [9]. The major difference between 
model based and discriminative methods is that the model-
based methods have flexibility to handle several tasks. 
Whereas the discriminative methods are solely dependent 
on the type of dataset used and thus are very specific in 
nature and can only solve problems they are designed for. 
For example, a single model-based method NCSR [10] can 
solve for image denoising, deblurring and super-resolution, 
whereas three different discriminative methods MLP [8], 
SRCNN [11], and DCNN [12] are designed for image 
deblurring, super-resolution and denoising.

Despite having the flexibility of handling multiple tasks, 
model-based methods are time consuming and need to be 
optimized with appropriate priors. On the other hand, dis-
criminative methods offer fast speed and promising perfor-
mance. So far, the most promising results have been pro-
vided by discriminative methods. Discriminative methods 
include usage of convolutional neural network (CNN) [11] 
and MLP [8] based deep learning techniques [13–15]. The 
aim of this paper is to obtain an estimate of the ground truth 
image and a thorough evaluation of different receptive field 
sizes. Mapping function can be referred by F(I) = Ŝ , for this 
mapping a deep learning approach is employed.

A major part of deep learning is based on CNNs. These 
networks perform very well as compared to traditional 
algorithms and produce state of the art results. CNNs were 
originally developed for image recognition [14] and classi-
fication [16, 17] tasks. Using a CNN for these types of tasks 
progressively reduces the image resolution. A straightfor-
ward approach to increase resolution would be to remove 
subsampling or strides from the layers. This does increase 
the resolution but at the same time severely affects the recep-
tive field. So, removing subsampling improves the loss in 
resolution but on the other hand, it reduces the receptive 
field [18] in the same proportion as it had improved resolu-
tion. Reduction in the receptive field cannot be compromised 
in any way. A brief introduction of receptive field is given 
below that explains the variation in the size of the receptive 
field with a set of equations.

1.1 � Receptive field

In a Neural Network each node of a layer is connected with 
node of the next layer, this way of connection to trans-
fer information requires an extremely large number of 
parameters. CNN uses a slightly different approach where 
only a few nodes participate in the connection to the next 
layer. Since this transfer of the information resembles the 
response of neurons to stimuli only in certain regions of 
the visual field, the region is called the receptive field in 
the visual system. With this analogy it can be stated that 

CNN uses a receptive field like layout [19], where the sub-
set of the nodes of the previous layer connected to the next 
layer is the receptive field of the next layer. Figure 1 shows 
the receptive field in neural network layers and CNN.

1.2 � Size of receptive field

A large receptive field means the network can perceive 
more information to predict an accurate image. So, the 
receptive field has to be enlarged to broaden the view of 
the input to capture wider contextual information. The 
receptive field can be enlarged either by increasing the 
size of the kernel or by increasing the depth of the net-
work. Inflating the size of the kernel increases the number 
of parameters thus makes this approach a computational 
burden. A larger number of layers makes the network 
architecture deep thus introduces more operations. A 
solution to this problem is to replace convolutional layers 
with dilation layers. It helps in increasing the size of the 
receptive field.

The dilation layer method increases the effective kernel 
size by inserting blank spaces between them. Dilated ker-
nel reduces the computation as it uses a smaller number 
of parameters. Also, it helps in detection of minute details 
with improved resolution. Dilated convolution is applied 
in various domains like image super-resolution [11, 21] 
Text-to-speech [22] solution and language translation [23].

1.3 � Equation of receptive field

Convolution and dilated convolution-based model [20] can 
be defined with Eqs. (2) and (3) respectively–

Let F ∶ Z2 →  R be a discrete function. Let 
Ωr = [−r, r]2 ∩ Z2 and let k ∶ Ωr → R be a discrete filter of 
size(2r + 1)2 . The discrete convolution operator * is defined 
as (Eqs. 2 and 3)

(2)(F ∗ k)(p) =
∑

s+t=p

F(s)k(t)

Layer n                Layer  n+1                 Layer n                Layer  n+1    

(a)                                                           (b)

Fig. 1   a Feature transfer in traditional neural network in a multi-
channel input layer n and n + 1 b. Feature transfer in a CNN. Only a 
certain region participates i.e. the receptive field
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Let l be a dilation factor and let ∗l be defined as

When l = 1 refers discrete convolution and l > 1 refers 
dilated convolution. Same can be applied on 2-Dimen-
sional dilated convolution and given by Eq. 4:

where y(m, n) is the output of dilated convolution for input 
x(m, n) and a filter w(i, j) with length and the width of m and 
n respectively.

The dilation layer can be naively called convolution 
over input with a sparsely populated filter which expands 
the size of the convolving filter. The expansion rate is con-
trolled by a hyper-parameter d, where (d − 1) blank spaces 
are inserted in the kernel. For dilation rate equal to 1, zero 
space will be added. The effective kernel size under the 
influence of dilation d with kernel size k is given by [24] as

where k′ represents the effective kernel size. Effective recep-
tive field from Eq. 5, for a kernel (k = 3) and dilation rate 
d = 1, 2 and 3 is 3 × 3, 5 × 5 and 7 × 7 (shown in Fig. 2a–c).

In addition to this, the receptive field for the depth n and 
kernel size 3 × 3 (throughout the network) can be given by 
(2d + 1)(2d + 1). The relationship between the dilation rate 
and output size o as in [24] is given by

For the input size i, padding p and stride s. Convolution 
of 3 × 3 kernel over an input of size 9 × 9, padding zero 
and dilation rate 2 (i.e., i = 9, k = 3, d = 2, s = 1 and p = 0) 
produces output of dimension 5 × 5. Figure 3 shows the 
output size 3 × 3 for i = 7. That concludes the introduction 
on receptive field.

(3)
(

F∗lk
)

(p) =
∑

s+lt=p

F(s)k(t)

(4)y(m, n) =

m
∑

i=1

n
∑

j=1

x(m + si, n + sj)w(i, j)

(5)k
�

= k + (k − 1)(d − 1)

(6)o =

[

i + 2p − k − (k − 1)(d − 1)

s

]

+ 1

In this paper we have studied the significance of recep-
tive field in image denoising in 4 study cases. Our work 
can be summarized with Fig. 4, where images of compared 
cases are shown. Cases 1–4 are described in Sect. 3. Case 
4 showcases our best result in terms of PSNR (Peak Signal 
to Noise Ratio) comparison. The rest of the paper is organ-
ized as follows. Section 2 contains a brief study on related 
methods. Section 3 explains our study cases. Sections 4 
and  5 describe the details of dataset and network structure. 
In Sect. 6 experimental results and analysis based on com-
pared PSNR values and corresponding images are shown. 
Based on the analysis in Sect. 6 another network mentioned 
as case 4 is introduced. Discussion on the results of test sets 
is in Sect. 7. Lastly, we wrap up our work with the conclu-
sion mentioned in Sect. 8 and future work in 9.

2 � Related methods

Filter based techniques are one of the initially proposed 
methods for AWGN denoising, these filters are further 
divided into spatial domain filter and transform domain fil-
ter. Mean filtering [25], denoising with local statistics [26], 
Weiner filter [27] and Bilateral Filtering [28] are some of 
the most prevalent techniques. These techniques were not 
sufficient to produce a good quality image.

The image prior is an important property in image denois-
ing. In the past decade a lot of methods were proposed based 
on image priors. Some of them are Markov Random Field 
(MRF) [20, 29], BM3D [5], NCSR [10], nonlocal self-
similarity (NSS) [31] and WNNM [7]. It is convenient to 
learn the prior model on small image patches. In EPLL [6] 
optimization is made on an entire image and image prior 
is given by the product of all patch priors. Non-local self-
similarity [6, 7, 31] based methods exploit the property of 
repetitive patterns in natural images. These similar patches 
are grouped to collaboratively estimate the final image. Out 
of the prior based methods mentioned above, BM3D [5] 
and WNNM [7] are the popular ones. They are capable of 

(a) (b) (c)

Fig. 2   Effective receptive field: (a) 3 × 3 kernel for d = 1 (b) 5 × 5 
for dilation rate 2 (d = 2), c 7 × 7 for dilation rate 3(d = 3)

(a) (b) (c)

Fig. 3   Estimation of the dimension of the output layer: where a 7 × 7 
input size is used (i = 7) with kernel size 3 × 3(k = 3) convolves with a 
filter of dilation 2(d = 2) gives the output of 3 × 3
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handling various noise levels but they cannot be directly 
used for spatially variant noise [32].

CNNs are widely used in various image processing tasks 
due to their excellent performance. Though CNN based 
methods have also been challenged against prior based meth-
ods. Jain et al. [33] compared the performance of Markov 
random field (MRF) with convolutional neural networks. 
Another comparison with BM3D is done by Burger et al. [8].

Prior based methods perform well but with some draw-
backs. They need to be optimized well, thus there is an 
increase in the computation cost, in addition to that they 
rely on manual settings and tuning. To address these prob-
lems discriminative approaches were proposed where there 
is a direct mapping from the noisy image to the ground 
truth image. In the discriminative learning approach 
DnCNN [2] is the most popular one. Here a single method 
aims to solve various image restoration (IR) tasks i.e., it 
can provide solutions for blind Gaussian denoising, single 
image super-resolution and JPEG deblocking [34]. They 
produced promising results for all the three problems. 
Another similar method [1] used HQS (Half Quadratic 
Splitting), a variable splitting technique to solve for image 
denoising, image deblurring and single image super reso-
lution utilizing deep CNN denoiser prior. Chuah et al. [35] 

provided a straightforward strategy of estimating noise 
level before removing noise. Wang et al. [36] achieved 
comparable results with reduced computational cost, 
less complicated network structure, using a larger recep-
tive field than DnCNN. A combination of a dilated layer 
with residual learning is a popular technique in resolving 
the AWG noise problem [37, 38 and 2]. All the meth-
ods described above employ a one-to-one mapping i.e., 
they require a single image as input to produce a denoised 
image. Zhang et al. [32] proposed a novel network design 
FFDNet (Fast and Flexible Denoising Convolutional Neu-
ral Network) that takes sampled input images with their 
noise level maps to produce a denoised image. In addition 
to that, recent approaches aim to deal with spatially variant 
and invariant noises, these methods worked on real world 
noisy images. Anwar et al. [38] incorporated feature atten-
tion for image denoising. A benchmark dataset of denoised 
images is created by Romano et al. [39], these images are 
captured with different cameras and under different camera 
settings. Guo et al. [40] uses the same strategy of estimat-
ing noise first before noise removal like [35]. Their work 
is denoted by its network architecture name CBDNet [40], 
which has two sub-networks one for noise estimation and 
other non-blind denoising estimation. Some of the meth-
ods used for comparison are categorized in Fig. 5.

Noisy Image                           case 1                                   case 2                                    case 3                                    case 4

Fig. 4   Predicted denoised images were compared with their PSNR and SSIM, inset image is also shown to compare the results visually. Here a 
input noisy image σ = 25. b Result with case 1. c Result with case 2. d Result with case 3 and e Result with case 4

Fig. 5   Categorization of image 
denoising methods
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3 � Our method

The present research has studied three cases, that are as 
follows:

Case 1: A dilated convolutional network is utilized here. 
The network structure is similar to Zhang et al. [1] and Peng 
et al. [37], here a 7 layered dilated network with a receptive 
field of the network of size 33 × 33 is used. Zhang et al. [1] 
and [37] used a residual learning formulation i.e., F(I) = � . 
i.e., noise is separated by subtracting the predicted noise 
from noisy input image. We have used F(I) = Ŝ , a direct 
mapping from noisy image to noiseless image. No interme-
diate step is required.

Case 2: In this case plain CNN network with the same 
configuration and same receptive field of size 33 × 33 is 
used. Same receptive field can be ensured either by using 
larger sized filters or increasing the depth of the network. 
We have used larger sized filters.

Case 3: To verify the efficacy of dilated layers in image 
denoising process, receptive field size is reduced. All dilated 
layers are replaced with plain CNN layers that reduces the 
size of the receptive field to 15 × 15. This way performance 
can be compared with the above two cases. The figure below 
represents the three cases (Fig. 6).

Receptive field of each layer for all three cases are shown 
in Table 1, all the cases have seven layers. We have used the 
term rcpi which is the receptive field of the network up to i 
layers, where i = 1, 2,… , 7 . All these cases mentioned above 
are essential steps in verifying the effectiveness of recep-
tive field size in image denoising. Three cases are compared 
qualitatively and visually.

4 � Datasets

We have used COCO dataset [41], which is available as an 
open-source online dataset and contains 5000 images in its 
val2016 set. After preprocessing this data, an augmented 

set of 10,000 images was developed. It is observed that 
increasing the size of the dataset beyond this does not lead 
to significant improvement. Images are then separated into 
training and validation sets in the ratio of 7:3. These images 
are then cropped to 256 × 256 pixels. To produce synthetic 
noisy images, an additive white Gaussian noise (AWGN) is 
added to the images.

For blind denoising, noise levels (σ) are randomly 
selected from the range [0, 75] to create the dataset. Test 
sets BSD68 [30], Set 12 [2], RNI15 [42], NC12 [42] and 
Nam [43] datasets are used. BSD68 [30] and Set 12 [2] 
contain classic images in the field of image processing i.e., 
these images have been extensively used for the evaluation 
of numerous methods. RNI15 [42] set is a real-world noisy 
image set having 15 images, these images contain spatially 
variant noise too. NC12 is a set of 12 noisy images, there 
are no ground truth images in RNI15 [42], NC12 [42] so the 
images will be compared visually for this set.

5 � Network structure

The architecture of the network used to remove Gaussian 
noise is shown in Fig. 7, where it takes an image degraded 
with a certain level of AWGN as input. This image is con-
volved with dilated kernels. Each layer has these kinds of 
filters with dimension defined by their dilation rate, which 
will then be trained to appropriate values during the back-
propagation algorithm. No pooling is used here due to the 
requirement of same dimensions of input and output images. 
Zero padding is used to avoid boundary artifacts. Filters of 
dimension 3 × 3 × 32 are used where the third channel refers 
to the number of filters. ReLu (Rectified Linear Unit) [44] is 
also placed between two consecutive convolution layers to 
introduce non-linearity in the network. For adaptive learning 
Adam [45] is used as an optimizer with learning rate 0.001. 
Loss function here is MSE (mean squared Error) shown in 
Eq. (7).

Fig. 6   Illustration of the three 
cases in the proposed work

Table 1   Receptive field of the 
network used in case 1, 3 and 
case 3

rcp1 rcp2 rcp3 rcp4 rcp5 rcp6 rcp7

Case1 3 × 3 7 × 7 13 × 13 21 × 21 27 × 27 31 × 31 33 × 33
Case2 3 × 3 7 × 7 13 × 13 21 × 21 27 × 27 31 × 31 33 × 33
Case3 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15
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where S and Ŝ are ground truth and predicted denoised 
images. The final layer gives out the output i.e., an image 
with reduced noise.

Table 2 shows the parameters and the size of the effec-
tive kernel in each layer. Here the receptive field (effective 
kernel size) of each layer denoted by r1, r2,… , r7 is 3, 5, 
7, 9, 7, 5, 3 in 1–7 layers respectively assuming r0 = 1 . In 
calculating the receptive field of a network.

6 � Experimental results and analysis

Proposed method is a plain discriminative method, since it 
is feasible to train a deep network with minimal number of 
layers. Though residual learning framework is not utilized 
here, equivalent results are achieved. All our models are 
trained on Nvidia Tesla K80 GPU.

PSNR and SSIM measurements are utilized to compare 
the performance of the cases mentioned in Sect. 3. Includ-
ing SSIM for comparison ensures the quality of image for 
human perception. It estimates the correlation between two 
normalized images.

(7)MSE =
1

n

∑n

i=1
(Si − Ŝi)

2

where �S , �S2 and �
Ŝ
 , �

Ŝ
2  the local mean and variance of 

the ground truth image and predicted image. �
SŜ

 denotes the 
local covariance of ground truth and predicted image.

6.1 � Comparison of case 1, case 2, case 3 and case 4

Our cases are compared with three prior based methods 
BM3D [5], WNNM [8], EPLL [7] and two discriminative 
methods TNRD [9] and DnCNN [2] as shown in Table 3. 
Comparison is based on the PSNR values obtained for Set 
12 Images [2].

All the simulations are done for a sigma set in the range 
of σ ∈ [0–75], where a single model is used to denoise an 
image. Images have a range of [0–255]. These models are 
referred to as case 1, case 2 and case 3. This type of denois-
ing may also be referred to as blind denoising. Here a single 
model can handle a series of σ ∈ [0–75]. Comparison of each 
is shown below:

•	 Case 1 and case 2

It is observed from Table 3 that these two cases produce 
approximately the same result for both σ = 15 and 25. Since 
these cases have the same receptive field, they produce simi-
lar results. Also, these results verify the significance of the 
receptive field. Case 1 and 2 differ in terms of convergence 
rate, since case 2 has CNNs with large sized filters; its con-
vergence rate is slower than case 1.

•	 Case 1 and case 3

Case 3 shows slightly less PSNR values than case 1. The 
difference increases when noise level (σ) increases from 15 
to 25. This difference proves the need for a larger recep-
tive field in image denoising. Case 1 has fastest convergence 
compared to the rest of the cases.

(8)PSNR = 10
(255)2

MSE

(9)SSIM =
(2�S�Ŝ

+ C1)(2�SŜ + C2)

(�S
2 + �

Ŝ
2 + C1)(�S

2 + �
Ŝ
2 + C2)

Fig. 7   Network architecture used in simulation. Where 1D, 2D… refers to the dilation rate

Table 2   Network structure used in of case 1

Layer Operation Dilation rate Receptive 
field of 
layers

Input layer (350 × 350 ×  3)
1 Dilation layer, ReLu 1 r1 = 3
2 Dilation layer, ReLu 2 r2 = 5
3 Dilation layer, ReLu 3 r3 = 7
4 Dilation layer, ReLu 4 r4 = 9
5 Dilation layer, ReLu 3 r5 = 7
6 Dilation layer, ReLu 2 r6 = 5
7 Dilation layer, ReLu 1 r7 = 3
Output layer (350 × 350 × 3)
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•	 Case 2 and case 3

Case 2 outperforms case 3 significantly when noise is 
high (σ = 25), although it maintains comparable PSNR val-
ues when noise levels are less (σ < 20). It is visible in Table 3 

that as the noise (σ) goes above 30 all these cases fail to beat 
the state-of-the-art methods.

These comparisons lead this work in the direction of 
case 1. A slight modification is done in case 1 i.e., use of a 
dilation layer with a larger receptive field. Further, previous 

Table 3   PSNR results of various methods on Set 12 dataset, maximum PSNR values are highlighted as bold characters

Image Monarch Lena Barbara Parrot House Couple Pepper Airplane C.man Boat Man Starfish

� = 15

BM3D [5] 31.85 34.26 33.10 31.37 34.93 32.10 32.69 31.07 31.91 32.13 31.92 31.14
WNNM [8] 32.71 34.27 33.60 31.37 35.13 32.10 32.99 31.39 32.17 32.27 32.11 31.82
EPLL [7] 32.10 33.92 31.38 31.42 34.17 31.93 32.64 31.19 31.85 31.93 32.00 31.13
TNRD [9] 32.56 34.24 32.13 31.63 34.53 31.11 33.04 31.46 32.19 32.14 32.23 31.75
DnCNN [2] 33.09 34.62 32.64 31.83 34.97 32.47 33.30 31.70 32.61 32.42 32.46 32.20
DnCNNB [2] 32.94 34.56 32.09 31.63 34.93 32.41 33.15 31.56 32.10 32.35 32.41 32.02
FFDNet [32] 32.77 34.63 32.50 31.77 35.01 32.45 33.10 31.58 32.42 32.35 32.40 32.02
Case 1 34.10 33.02 27.46 31.75 36.51 30.61 36.51 32.48 31.59 30.74 30.32 34.65
Case 2 34.10 32.66 27.15 31.04 35.72 30.13 34.36 31.70 31.25 30.19 30.19 32.04
Case 3 33.2 31.68 27.02 31.57 35.61 29.34 33.66 32.14 31.64 29.71 29.46 31.82
Case 4 32.08 34.61 30.93 30.98 34.52 32.72 31.34 30.44 30.8 33.01 33.08 31.96
� = 25

BM3D [5] 29.25 32.07 30.71 28.93 32.85 29.71 30.16 28.42 29.45 29.90 29.61 28.56
WNNM [7] 29.84 32.24 31.24 29.15 33.22 29.82 30.42 28.69 29.64 30.03 29.76 29.03
EPLL [6] 29.39 31.73 28.61 28.95 32.17 29.53 30.17 28.61 29.26 29.74 29.66 28.51
MLP [8] 29.61 32.25 29.54 29.25 32.56 29.73 30.30 28.82 29.61 29.97 29.88 28.82
TNRD [9] 29.85 32.00 29.41 29.18 32.53 29.71 30.57 28.88 29.72 29.91 29.87 29.02
DnCNN [2] 30.28 32.44 30.00 29.43 33.06 30.12 30.87 29.13 30.18 30.21 30.10 29.41
DnCNNB [2] 30.25 32.42 29.69 29.35 33.05 30.10 30.84 29.09 29.94 30.20 30.09 29.34
FFDNet [32] 30.14 32.59 29.98 29.43 33.27 30.18 30.79 29.05 30.06 30.23 30.10 29.33
Case 1 30.3 29.71 25.69 27.45 32.77 27.77 30.64 27.79 29.08 27.79 27.79 28.47
Case 2 30.98 30.3 26.24 29.25 32.29 28.3 31.35 28.49 29.89 28.39 28.51 29.59
Case 3 28.2 27.49 24.61 26.77 29.54 25.88 28.51 25.72 28.14 26.17 25.97 26.36
Case 4 30.67 32.67 29.46 29.65 33.16 30.73 30.31 29.38 29.61 31.02 31.03 30.25
� = 35

BM3D [5] 27.58 30.56 28.98 27.40 31.36 28.15 28.51 26.83 27.92 28.43 28.22 26.86
MLP [8] 27.97 30.82 27.62 27.72 31.18 28.24 28.54 27.22 28.08 28.53 28.47 27.12
DnCNN [2] 28.51 30.91 28.09 27.94 31.61 28.52 29.14 27.52 28.61 28.72 28.66 27.53
FFDNet [32] 28.54 31.20 28.29 28.02 31.99 28.68 29.18 27.47 28.54 28.82 28.70 27.58
Case 4 29.46 31.24 28.23 28.34 32.08 29.30 29.27 28.27 28.36 29.55 29.62 28.69
� = 50

BM3D [5] 25.82 29.05 27.22 25.90 29.69 26.46 26.68 25.10 26.13 26.78 26.81 25.04
MLP [8] 26.26 29.32 25.24 26.12 29.64 26.67 26.68 25.56 26.37 27.03 27.06 25.43
DnCNN [2] 26.78 29.39 26.22 26.48 30.00 26.90 27.32 25.87 27.03 27.20 27.24 25.70
FFDNet [32] 26.88 29.68 27.32 26.58 30.43 27.32 27.43 25.90 27.03 27.30 27.07 25.77
Case 4 27.92 29.52 26.92 26.60 30.53 27.75 27.87 26.65 26.70 27.86 28.07 27.0
� = 75

BM3D [5] 23.91 27.25 25.12 24.18 27.51 24.70 24.73 23.48 24.32 25.12 25.32 23.27
MLP [8] 24.40 27.68 23.39 24.55 27.78 25.02 24.88 23.87 24.63 25.44 25.59 23.57
DnCNN [2] 24.71 27.54 23.63 24.71 27.85 24.97 25.17 24.03 25.07 25.47 25.64 23.64
FFDNet [32] 24.99 27.97 24.24 24.94 28.43 25.49 25.39 24.18 25.29 25.75 25.29 25.82
Case 4 25.33 26.74 24.75 23.96 27.83 25.40 25.54 23.99 24.21 25.50 25.71 24.36
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methods validate the need of batch normalization so batch 
normalization layers are also added in this case 4.

•	 Case 4

This case is the same as case 1 with some variations. This 
network is designed with Batch Normalization (BN) layer 
[15], where Conv + BN + ReLu series is utilized. Utilization 
of Batch normalization slows down the process of conver-
gence due to increased number of parameters but it is essen-
tial to reduce the problem of covariance shift in a network.

Recalling the inabilities of previous network of case 1 
with 7 layers, there is a need of increasing the number of 
layers. This network with BN has 9 layers. Receptive field 
of this network comes out to be 51 × 51(Table 4). Network 
structure is shown in Fig. 8. Mean squared logarithmic error 
(MSLE) is used in this case unlike MSE in previous cases. 
As name suggests it is the (Mean Squared Error) MSE cal-
culated over logarithmic error values S and Ŝ (shown in 
Eq. (10)).

where S  and Ŝ are ground truth and predicted denoised 
images respectively and N denotes the number of samples. 
1 is added to both S and Ŝ to validate this equation math-
ematically when S , Ŝ → 0.

Comparison of case 4 with the state of the art is shown 
in Table 3, where case 4 surpasses BM3D [5], WNNM [8], 
MLP [8] and DnCNN [2] by a margin of at-least 0.4 dB 
for a range of noise level beyond (σ > 25). For noise levels 
less than (σ < 25) case 4 produces comparable results, this 
is because of the larger receptive field. Lower noise levels 
are removed better by methods having larger modeling 
capacity e.g. DnCNN [2]. Case 4 worked well for σ = 25, 
35 and 50, even for σ = 75, case 4 outperformed FFDNet 
[33] in 4 out of 12 images.

(10)L
(

S, Ŝ
)

=
1

N

∑N

i=0
(log

(

Si + 1
)

− log(Ŝi + 1))
2

Table 4   Receptive field of the 
network of case 4

rcp1 rcp2 rcp3 rcp4 rcp5 rcp6 rcp7 rcp8 rcp9

Case4 3 × 3 7 × 7 13 × 13 21 × 21 31 × 31 39 × 39 45 × 45 49 × 49 51 × 51

Fig. 8   The network architecture with Batch Normalization

15: 28.16/32.35      25: 23.87/30.05        35: 21.01/28.64       45: 19.12/27.55       55: 17.71/26.81         65: 16.41/26.08    75: 15.41/25.48

Fig. 9   Image denoising results for noise levels σ = 15, 25, 35, 45, 55, 65 and 75 (written in bold). PSNR values (Noisy/Ground Truth) of noisy 
and predicted image are shown, where upper row belongs to the noisy image set and lower row shows predicted image



145Int. j. inf. tecnol. (January 2023) 15(1):137–148	

1 3

7 � Discussion

Case 4 proved to be our best model so far according to 
Table 3, thus this will be used as a predicting model for test 
sets. Figure 9 shows predicted images by case 4 for a series 
of noise levels (σ = 15, 25, 35, 45, 55, 75). Where an image 
from CBSD68 [30] is corrupted with a series of noise levels 
to create a set of synthetic images.

Figure 10 shows predicted PSNR results on popular test 
images from BSD68 [30] and CBSD68 [30], used by previ-
ous methods. Ours (Case4) performs best on BSD68 [30] 
than CBSD68 [30]. For color images FFDNet works best 
among others. Average of the predicted PSNR values com-
puted on 68 images of BSD68 [30] and CBSD68 [30] data-
set is shown in Table 5, DnCNN [2] and FFDNet [33] are 
used for comparison. where bolded values specify the maxi-
mum values among the comparing methods, ours work best 
on BSD68 [30] and RIDNet [39] performs best on CBSD68 
[30]. Results on Real world dataset (RNI15) [42] were com-
pared (Fig. 11) with DnCNN [2], FFDNet [33] and RIDNet 
[39], these images contain spatially variant noise. Given the 
fact that our method is not specifically designed for this type 

of noise, it performs surprisingly well. Here in these images, 
it can be clearly seen that for the Flower image it outper-
forms [39]. Result on Pattern 3 image is also shown, no 
doubt that overall noise reduction is better done by RIDNet 
but by analyzing these images carefully one can conclude 
that an important piece of data is missing in RIDNet’s [39] 
output. The inset image shown in the bottom illustrates the 
loss in image quality with RIDNet and FFDNet. Quality of 
the images are better compared with zoomed out versions 
of resultant images. Overall performance of our model on 
these datasets validates the broad spectrum of our method.

8 � Conclusion

The presented paper incorporates a detailed study on recep-
tive fields. It includes significance of receptive field in image 
denoising [46, 47] problem and calculation of receptive field 
of a network as well as its layers. To achieve this goal several 
comparison techniques were utilized in network design and 
training. Performances on different sizes of receptive fields 
were compared. Our work not only provides a comparative 

Fig. 10   Image denoising results on BSD68 (grey) and CBSD68 (color) dataset for sigma value 15, 25 and 50

Table 5   Average PSNR result comparison

Method DnCNN [2] FFDNet [33] RIDNet [39] DSNet [37] Ours

BSD68 CBSD68 BSD68 CBSD68 BSD68 CBSD68 BSD68 CBSD68 BSD68 CBSD68

σ = 15 PSNR 31.77 33.92 31.57 33.97 31.81 34.01 31.69 33.91 33.21 32.93
σ = 25 PSNR 29.32 31.29 29.35 31.32 29.34 31.37 29.22 31.28 30.77 30.61
σ = 50 PSNR 26.33 28.01 26.41 28.07 26.40 28.14 26.29 28.05 27.70 27.61
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study but also solves the problem of image denoising. With 
these variations we were able to produce results that are 
competitive to the state of the art. Previous methods articu-
lated the crucial need of residual learning whereas present 
work is able to perform without residual learning. Proposed 
work is an end-to-end approach that only requires a noisy 
image. A single network can work well for a wide range 
of sigma (σ) values of grayscale and colored images. The 
results on real noisy images further demonstrated that our 
work can deliver perceptually appealing denoised results 
when compared with BM3D [5], WNNM [8], EPLL [7], 
TNRD [9] and DnCNN [2]. Though this work did not con-
cern spatially variant noise in its methodology, it can com-
pete with the method RIDNet [39] designed specifically for 
spatially variant noise.

9 � Future scope

There is a continuous effort on image enhancement [48, 49] 
and restoration [50] in various fields, despite that perfor-
mance on real images is still lacking. This is due the fact that 
any simulated noise is much simpler than the real noise. In 
real life components as illumination, camera shaking and 
sensors are accountable for degrading the image. Thus, a 
further powerful noise modeling is required that can handle 
a variety of noise.

Funding  The corresponding author has not received any funding.

Data availability  All the data used in this work is available online.

Declarations 

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

References

	 1.	 Zhang K, Zuo W, Gu S, Zhang L (2017) Learning deep CNN 
denoiser prior for image restoration. In: 2017 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Honolulu, 
HI, pp 2808–2817. https://​doi.​org/​10.​1109/​CVPR.​2017.​300

	 2.	 Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond 
a Gaussian denoiser: residual learning of deep CNN for image 
denoising. IEEE Trans Image Process 26(7):3142–3155. https://​
doi.​org/​10.​1109/​TIP.​2017.​26622​06

	 3.	 Liu W, Lin W (2013) Additive white Gaussian noise level esti-
mation in svd domain for images. IEEE Trans Image Process 
22(3):872–883. https://​doi.​org/​10.​1109/​TIP.​2012.​22195​44

	 4.	 Mihcak KM, Kozintsev I, Ramchandran K, Moulin P (1999) 
Low-complexity image denoising based on statistical modeling 
of wavelet coefficients. IEEE Signal Process Lett 6(12):300–303. 
https://​doi.​org/​10.​1109/​97.​803428

	 5.	 Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denois-
ing by sparse 3-d transform-domain collaborative filtering. IEEE 

              Input                            DnCNN [2]                        FFDNet [33]                      RIDNet [39]                          Ours

Fig. 11   Test Results on RNI15 and NC12 dataset

https://doi.org/10.1109/CVPR.2017.300
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2012.2219544
https://doi.org/10.1109/97.803428


147Int. j. inf. tecnol. (January 2023) 15(1):137–148	

1 3

Trans Image Process 16(8):2080–2095. https://​doi.​org/​10.​1109/​
TIP.​2007.​901238

	 6.	 Zoran D, Weiss Y (2011) Learning models of natural image 
patches to whole image restoration. In: 2011 International Con-
ference on Computer Vision, Barcelona, pp 479–486. https://​doi.​
org/​10.​1109/​ICCV.​2011.​61262​78

	 7.	 Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm 
minimization with application to image denoising. In: 2014 IEEE 
Conference on Computer Vision and Pattern Recognition, Colum-
bus, OH, pp 2862–2869. https://​doi.​org/​10.​1109/​CVPR.​2014.​366

	 8.	 Burger CH, Schuler JC, Harmeling S (2012) Image denoising: can 
plain neural networks compete with BM3D? In: 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition, Providence, 
RI, pp 2392–2399. https://​doi.​org/​10.​1109/​CVPR.​2012.​62479​52

	 9.	 Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a 
flexible framework for fast and effective image restoration. IEEE 
Trans Pattern Anal Mach Intell 39(6):1256–1272. https://​doi.​org/​
10.​1109/​TPAMI.​2016.​25967​43

	10.	 Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized 
sparse representation for image restoration. IEEE Trans Image 
Process 22:1620–1630. https://​doi.​org/​10.​1109/​TIP.​2012.​22358​
47

	11.	 Dong C, Loy CC, He K, Tang X (2016) Image super-resolution 
using deep convolutional networks. IEEE Trans Pattern Anal 
Mach Intell 38(2):295–307. https://​doi.​org/​10.​1109/​TPAMI.​2015.​
24392​81

	12.	 Xu L, Ren JS, Liu C, Jia J (2016) Deep convolutional neural 
network for image deconvolution. Adv Neural Info Process Syst 
1:1790–1798

	13.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov 
R (2014) Dropout: a simple way to prevent neural networks from 
overfitting. J Mach Learn Res 15:1929–1958

	14.	 Kaiming H, Zhang X, Ren S, Sun J (2016) Deep residual learning 
for image recognition. In: 2016 IEEE Conference on Computer 
Vision and Pattern Recognition, Las Vegas, NV, pp 770–778. 
https://​doi.​org/​10.​1109/​CVPR.​2016.​90

	15.	 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep 
network training by reducing internal covariate shift. In: Proc. of 
the 32nd International Conference on International Conference on 
Machine Learning, Lille, France, 37:448–456. arXiv:​1502.​03167​
v3

	16.	 Krizhevsky A, Sutskever I, Hinton EG (2015) ImageNet classifi-
cation with deep convolutional neural networks. Assoc Comput 
Mach 60:89–90. https://​doi.​org/​10.​1145/​30653​86

	17.	 Szegedy C et al (2015) Going deeper with convolutions. In: 2015 
IEEE Conference on Computer Vision and Pattern Recognition, 
Boston, MA, pp 1–9. https://​doi.​org/​10.​1109/​CVPR.​2015.​72985​
94

	18.	 Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effec-
tive receptive field, in Deep Convolutional Neural Networks. In: 
Advances in Neural Information Processing Systems, Barcelona, 
pp 4898–4906. arXiv:​1701.​04128

	19.	 Yu F, Koltun V (2016), Multi-scale context aggregation by dilated 
convolutions.In: International Conference on Learning Represen-
tations (ICLR), San Juan, Puerto Rico. arXiv:​1511.​07122​v3

	20.	 Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: 3rd International 
Conference for Learning Representations (ICLR), San Diego, pp 
1404–1556. arXiv:​1409.​1556v6

	21.	 Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. 
In: IEEE Conference on Computer Vision and Pattern Recognition 
(CPVR), Honolulu, HI, pp 636–644. arXiv:​1705.​09914​v1

	22.	 Oord et al (2016) WaveNet: a generative model for raw audio, pp 
1–15. arxiv.org/abs/1609.03499

	23.	 Kalchbrenner N, Espeholt L, Simonyan K, Oord DVA, Graves A, 
Kavukcuoglu K (2016) Neural machine translation in linear time. 
arXiv:​1610.​10099​v2

	24.	 Dumoulin V, Visin F (2016) A guide to convolution arithmetic for 
deep learning, arXiv:​1603.​07285​v2

	25.	 Chandel R, Gupta G (2013) Image filtering algorithms and tech-
niques: a review. Int J Adv Res Comput Sci Softw Eng 3:198–202

	26.	 Sen-Jong L (1960) Digital Image enhancement and noise filtering 
by use of local statistics. IEEE Trans Pattern Analysis Machine 
Intell 2:165–168. https://​doi.​org/​10.​1109/​TPAMI.​1980.​47669​94

	27.	 Chen J, Benesty J, Huang Y, Doclo S (2006) New insights into the 
noise reduction Wiener filter. IEEE Trans Audio Speech Lang Pro-
cess 14(4):1218–1234. https://​doi.​org/​10.​1109/​TSA.​2005.​860851

	28.	 Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color 
images, In: 6th International Conference on Computer Vision, 
Bombay, India, pp 839–846. https://​doi.​org/​10.​1109/​ICCV.​1998.​
710815

	29.	 Lan X, Roth S, Huttenlocher D, Black JM (2006) Efficient belief 
propagation with learned higher-order Markov random fields. In: 
Proc. of the European Conference on Computer Vision (ECCV), 
Springer, LNCS; 3952:269–282. https://​doi.​org/​10.​1007/​11744​
047_​21

	30.	 Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human 
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics, Pro-
ceedings Eighth IEEE International Conference on Computer 
Vision, vol 2, pp 416–423. https://​doi.​org/​10.​1109/​ICCV.​2001.​
937655

	31.	 Buades A, Coll B, Morel JM (2005) A non-local algorithm for 
image denoising, In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, San Diego, CA, USA, 
2:60–65. https://​doi.​org/​10.​1109/​CVPR.​2005.​38

	32.	 Zhang K, Zuo W, Zhang L (2018) FFDNet: toward a fast and flex-
ible solution for CNN-based image denoising. IEEE Trans Image 
Process 27:4608–4622. https://​doi.​org/​10.​1109/​TIP.​2018.​28398​
91

	33.	 Jain V, Seung S (2009) Natural image denoising with convolu-
tional networks. Adv Neural Info Process Syst. https://​doi.​org/​10.​
5555/​29817​80.​29818​76

	34.	 Xiong Z, Orchard TM, Zhang Y (1997) A deblocking algorithm 
for JPEG compressed images using over complete wavelet repre-
sentations. IEEE Trans Circuits Syst Video Technol 7:433–437. 
https://​doi.​org/​10.​1109/​76.​564123

	35.	 Chuah HJ, Khaw YH, Soon CF, Chow C (2017) Detection of 
Gaussian noise and its level using deep convolutional neural 
network. In: TENCON IEEE Region 10 Conference, Penang, pp 
2447–2450. https://​doi.​org/​10.​1109/​TENCON.​2017.​82282​72

	36.	 Wang T, Sun M, Hu K (2017) Dilated deep residual network for 
image denoising. In: IEEE 29th International Conference on Tools 
with Artificial Intelligence (ICTAI), Boston, MA, pp 1272–1279. 
arXiv:​1708.​05473​v3

	37.	 Peng Y et al (2018) Dilated Residual networks with symmetric 
skip connection for image denoising. Neurocomputing 345:67–76. 
https://​doi.​org/​10.​1016/j.​neucom.​2018.​12.​075

	38.	 Anwar S, Barnes N (2019) Real image denoising with feature 
attention. In: The IEEE International Conference on Computer 
Vision (ICCV), Seoul, Korea, pp 3155–3164. arXiv:​1904.​07396​
v1

	39.	 Romano Y, Elad M, Milanfar P (2017) The little engine that could: 
Regularization by denoising (red). SIAM J Imaging Sci. arXiv:​
1611.​02862​v3

	40.	 Guo S, Yan Z, Zhang K, Zuo W, Zhang L (2018) Toward convo-
lutional blind denoising of real photographs. arXiv:​1807.​04686

https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/ICCV.2011.6126278
https://doi.org/10.1109/ICCV.2011.6126278
https://doi.org/10.1109/CVPR.2014.366
https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1109/TPAMI.2016.2596743
https://doi.org/10.1109/TPAMI.2016.2596743
https://doi.org/10.1109/TIP.2012.2235847
https://doi.org/10.1109/TIP.2012.2235847
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1502.03167v3
http://arxiv.org/abs/1502.03167v3
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1701.04128
http://arxiv.org/abs/1511.07122v3
http://arxiv.org/abs/1409.1556v6
http://arxiv.org/abs/1705.09914v1
http://arxiv.org/abs/1610.10099v2
http://arxiv.org/abs/1603.07285v2
https://doi.org/10.1109/TPAMI.1980.4766994
https://doi.org/10.1109/TSA.2005.860851
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1007/11744047_21
https://doi.org/10.1007/11744047_21
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.5555/2981780.2981876
https://doi.org/10.5555/2981780.2981876
https://doi.org/10.1109/76.564123
https://doi.org/10.1109/TENCON.2017.8228272
http://arxiv.org/abs/1708.05473v3
https://doi.org/10.1016/j.neucom.2018.12.075
http://arxiv.org/abs/1904.07396v1
http://arxiv.org/abs/1904.07396v1
http://arxiv.org/abs/1611.02862v3
http://arxiv.org/abs/1611.02862v3
http://arxiv.org/abs/1807.04686


148	 Int. j. inf. tecnol. (January 2023) 15(1):137–148

1 3

	41.	 Fleet D et al (2014) Microsoft COCO: common objects in context, 
In: Computer Vision – European Conference on Computer Vision 
(ECCV), LNCS, Springer, Cham, vol 8693

	42.	 Lebrun M, Colom M, Morel J-M (2015) The noise clinic: a blind 
image denoising algorithm. Image Processing On Line 5:1–54. 
https://​doi.​org/​10.​5201/​ipol.​2015.​125

	43.	 Nam S, Hwang Y, Matsushita Y, Kim SJ (2016) A holistic 
approach to cross-channel image noise modeling and its applica-
tion to image denoising. In: 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), pp 1683–1691. https://​
doi.​org/​10.​1109/​CVPR.​2016.​186

	44.	 Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities 
improve neural network acoustic models, In: Proc. International 
Conference on Machine Learning (ICML) 30(1): 3. arXiv:​1804.​
02763​v1

	45.	 Kingma DP, Ba JL (2015) Adam: a method for stochastic optimi-
zation, International Conference. Learning. Representation, pp 
1–41. arXiv:​1412.​6980v9

	46.	 Hussain J (2022) Vanlalruata Image denoising to enhance charac-
ter recognition using deep learning. Int J Inf Tecnol. https://​doi.​
org/​10.​1007/​s41870-​022-​00931-y

	47.	 Dhanushree M, Priyadharsini R, Sree Sharmila T (2019) Acoustic 
image denoising using various spatial filtering techniques. Int J Inf 
Tecnol 11:659–665. https://​doi.​org/​10.​1007/​s41870-​018-​0272-3

	48.	 Kumar M (2019) Priyanka Various image enhancement and 
matching techniques used for fingerprint recognition sys-
tem. Int J Inf Tecnol 11:767–772. https://​doi.​org/​10.​1007/​
s41870-​017-​0061-4

	49.	 Gupta S, Gupta R, Singla C (2017) Analysis of image enhance-
ment techniques for astrocytoma MRI images. Int J Inf Tecnol 
9:311–319. https://​doi.​org/​10.​1007/​s41870-​017-​0033-8

	50.	 Nair RS, Domnic S (2022) Deep-learning with context sensitive 
quantization and interpolation for underwater image compression 
and quality image restoration. Int J Inf Tecnol. https://​doi.​org/​10.​
1007/​s41870-​022-​01020-w

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.5201/ipol.2015.125
https://doi.org/10.1109/CVPR.2016.186
https://doi.org/10.1109/CVPR.2016.186
http://arxiv.org/abs/1804.02763v1
http://arxiv.org/abs/1804.02763v1
http://arxiv.org/abs/1412.6980v9
https://doi.org/10.1007/s41870-022-00931-y
https://doi.org/10.1007/s41870-022-00931-y
https://doi.org/10.1007/s41870-018-0272-3
https://doi.org/10.1007/s41870-017-0061-4
https://doi.org/10.1007/s41870-017-0061-4
https://doi.org/10.1007/s41870-017-0033-8
https://doi.org/10.1007/s41870-022-01020-w
https://doi.org/10.1007/s41870-022-01020-w

	Deep dilated CNN based image denoising
	Abstract 
	1 Introduction
	1.1 Receptive field
	1.2 Size of receptive field
	1.3 Equation of receptive field

	2 Related methods
	3 Our method
	4 Datasets
	5 Network structure
	6 Experimental results and analysis
	6.1 Comparison of case 1, case 2, case 3 and case 4

	7 Discussion
	8 Conclusion
	9 Future scope
	References




