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computing devices in a network and then distributing tasks 
among them by using any parallel programming algorithm 
such as message passing interface (MPI) or parallel virtual 
machine (PVM). Distributed Systems are a great example 
of these networks where all of the connected devices must 
be trusted, reliable, and available all the time of execution, 
making such computing-dedicated networks difficult to 
establish, especially outside academic-oriented institutional 
laboratories.

Volunteer computing (VC), on the other hand, is a form 
of distributed systems made up of thousands of heterogene-
ous connected devices, but instead of exploiting comput-
ing resources in an intrusive manner like most distributed 
systems, VC aims to use only the underutilized computing 
power of connected devices offered by geographically dis-
tributed volunteers [5, 24].

Task scheduling is regarded as the backbone of every 
volunteer system, as it determines the sequence in which 
tasks are executed and the computing resources that will be 
used to complete each task.The most important considera-
tion when developing any task scheduling algorithm is how 
to reduce makespan and waiting time [27].

In general, there are two types of scheduling: global 
scheduling, which determines the processor that should be 
assigned a predefined-size task, and local scheduling, which 
is performed locally and determines the order in which tasks 
are executed on the same processor.

Because volunteer systems rely solely on voluntary par-
ticipation, each device has unpredictable computing power, 
making it hard to estimate the size of the task that should be 
allocated to each device in the network. As a result, there 
will be an unbalanced distribution of power consumption 
and execution time. In this paper, we propose a new global 
task scheduling approach that estimates the appropriate 
amount of work that any computing device in a VC network 
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can handle at any given time. This approach is expected to 
work properly in peer-to-peer networks (P2P), where numer-
ous peers can act as servers and perform the global schedul-
ing for their sub-peers rather than performing the scheduling 
on a single main server.

We have coined the term Accumulated Computing Power 
to describe how the available computing power of the a 
super-peer gradually increases as more sub-peers join. This 
theoretical concept allows each super-peer’s scheduler to 
estimate the size of work that can be handled in each sub-
peer in such a way that all sub-peers exhibit the a level of 
effort that is commensurate with its computing capability.

We used the simulation tool SimGrid [11] to analyse and 
compare the findings in this paper.

The rest of this paper is structured as follows: Sect. 2 
includes some related works on global scheduling in existed 
volunteer systems, Sect. 3 explains the proposed approach 
in details, Secti. 4 demonstrates the network configuration, 
Sect. 5 discusses the experimental results, Sect. 6 concludes 
the paper, and Sect. 7 discusses the scope of future research.

2 � Related work

Despite the fact that there are different architectures of VC 
frameworks, their scheduling systems have the same goal of 
eventually completing all tasks by avoiding busy computing 
resources and assigning tasks to the most available ones.

Task scheduling policies in VC systems can be catego-
rized into two calsses according to Durrani and Shamsi [19, 
22]: naive and knowledge-based. 

1.	 Naive task scheduling policies: The scheduler does not 
consider the history of workers when assigning new 
jobs. The following policies are the most used in this 
scheduler:

–	 First Come First Served (FCFS): In this schedul-
ing strategy, the scheduler assigns a new job to the 
worker who requests it, regardless of whether or not 
that worker is available [13, 15, 28].

–	 Locality Scheduling (LS): Tasks are assigned in a 
preferential manner under this scheduling policy, 
with only workers who have the necessary task data 
being selected [3, 14].

–	 Random Assignment (RA): The tasks are assigned 
completely randomly, making the performance of the 
computing system fluctuates from time to time [4, 
18].

2.	 Knowledge-based task distribution policies: The sched-
uler in this model of distribution considers the history of 

workers when assigning new jobs. Here are some exam-
ples of task distribution policies based on knowledge:

–	 World Community Grid’s Policy: This scheduling 
policy is based on the average amount of time the 
workers take to complete their assigned task before 
the deadline (Turnaround time) [14, 26].

–	 Work Fetch Policy: Each worker requests a number 
of tasks to be queued locally for execution, keeping 
each worker as busy as possible until the next con-
nection with the server [6, 18].

–	 Threshold-Based Policies: For scheduling purposes, 
there are two thresholds to be considered: one is to 
determine availability, while the other is to deter-
mine reliability [13].

–	 Buffer None Policy: In the buffer-none policy, each 
worker receives one task from the server at a time, 
and when the task is completed, the worker requests 
another task from the server [26].

–	 Buffer N Days Policy: Under this scheduling 
approach, the worker is assigned various tasks to be 
stored in a buffer and performed one by one in a spe-
cific order, and when they are nearly completed, the 
worker requests the server for more set of tasks. It is 
called buffer N because the worker stores N number 
days of work [26].

–	 Weighted Round-Robin: Implementing round-robin 
scheduling approach among projects on various serv-
ers and allocating weights based on resource share 
[18].

–	 Priority Round-Robin: Workers with similar com-
puting resources are clustered together to ensure the 
accuracy of findings and, as a result, to shorten over-
all task’s execution time. A priority queue is used to 
sort all workers according to their computing time, 
and workers with the highest priority are chosen first 
to complete unfinished tasks [21].

Several real-world VC systems have employed some of the 
aforementioned scheduling policies for task distribution:

Some java-based volunteer frameworks such as Bayani-
han [25] and Charlotte [8] use Eager Scheduling [12]. It is 
based on buffer-none policy where packets of the task to 
be executed are stored in a pool on the server, and when-
ever there is a client available, it receives new packets when 
requested. In this case, the fastest clients get more work 
because they always finish earlier.

Networks of Workstations (NOW) [10] and ATLAS [7] 
use Work Stealing [9] as a global scheduling approach that 
is based on the idea of acquiring jobs from other nodes when 
they are busy. It employs a scheduling strategy similar to the 
buffer n days, in which each node has its own work queue 
where task items are placed, but when a sub-node runs out 
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of task items, it hunts for other uncompleted task items in 
other work queues and steals them.

Neary and Cappello proposed in [20] a combination 
of eager scheduling and work stealing in one scheduler 
to improve load balance and achieve fault tolerance and 
scalability.

XtremWeb [16] is a global computing framework that 
was designed to bring two new aspects to the VC systems: 
high performance that is based on efficient scheduling, and 
multi-applications that allows institutions to build their own 
computing systems. The scheduler is divided into two parts: 
the dispatcher, which selects a collection of tasks and deliv-
ers them to the scheduler; and the scheduler, which is in 
charge of assigning tasks to workers as they request them 
by implementing buffer-none policy.

GridMP [1] is also a commercial distributed comput-
ing platform that uses buffer-none policy. Many projects, 
primarily linked to cancer research and analyzing human 
protein folding, have been launched using the GridMP 
framework.

Most of the volunteer projects that are currently in opera-
tion are based on an open source framework called Berkeley 
Open Infrastructure for Network Computing (BOINC) [5, 
24].

On the server side of BOINC, job scheduling is based 
on job runtime estimation because it is used to calculate 
the number of jobs required to fulfill the client’s request 
and to estimate the turnaround time to ensure that the job 
deadline is not exceeded. This number of jobs that the client 
can request is determined not only by the estimated runtime 
but also by the platform that the client uses, as well as the 
hardware and software description.

Table 1 compares all of the VC frameworks previously 
mentioned in terms of scheduling policy and network 
architecture.

In comparison to our proposed scheduling approach, our 
golabal scheduler seeks to balance power consumption and 
execution time among all nodes rather than having the fastest 
node perform the left task’s packets. We want the scheduler 
to distribute packets evenly over all network nodes, and if 
any packets remain to be done, the super-node will wait until 

all of its sub-nodes have completed their execution before 
redistributing these packets to them. To do so, all sub-nodes 
must provide their super-node with all of the essential per-
formance metrics, which allow the scheduler to determine 
how much work each sub-node can perform.

Furthermore, all of the aforementioned schedulers and 
policies have only been implemented in client-server volun-
teer networks where only one server operates the scheduler, 
and because no previous study has addressed task schedul-
ing in P2P volunteer networks, this paper will be the first in 
this field.

3 � Proposed method

As previously stated, the network is P2P, meaning that any 
peer can operate as a client and server at the same time, and 
it uses shared tables to store addresses and performance data 
of all nodes.

In the practical implementation, we need two shared 
tables: Network Tree and Computing Tree, where stored data 
is expressed as a collection of two tuples of the form < Key 
: Value-1, Value-2, Value-3,...>.

In Network Tree, we store the IP address of a super-node 
as a key, and in the values field we store the IP addresses 
of all connected sub-nodes. Computing Tree, on the other 
hand, has a structure identical to Network Tree, except that 
we store the computing capability of connected sub-nodes 
in the values field.

Any node can access these two tables at any time, and any 
updates to the configuration, such as changes in available 
computing power or nodes joining and leaving the network, 
will be reflected in these two tables instantly.

Rather than considering each node in terms of the com-
puting power it provides [floating point operations per sec-
ond (FLOPS)], we define Accumulated Computing Power as 
the summation of the super-node’s computing power with all 
of the connected sub-nodes’ computing power.

It is accumulated because the overall computing power 
may be updated gradually as sub-nodes join or leave the 
network, or the available computing power of any connected 
node may change over time. This concept is solely used to 
make it easier for the scheduler in each super-node to prop-
erly distribute the task among all of the sub-nodes based on 
the accumulated computing power available.

To estimate how many FLOPS each node’s processor i 
can perform per second, we use Eq. (1):

Where a is the processor availability given as a float number 
between 0 and 1, FLOPSPeak is the peak processor speed per 
core, and c is the number of cores.

(1)FLOPSLocal
i

= FLOPSPeak
i

× ai × ci.

Table 1   Volunteer frameworks and task scheduling policies

Volunteer framework Schedulingpolicy Network structure

Bayanihan Buffer none Client–server
Charlotte Buffer none Client–server
NOW Buffer n days Client–server
ATLAS Buffer n days Client–server
BOINC Buffer none/buffer n days Client–server
GridMP Buffer none Client–server
Xtremweb Buffer none Client–server
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The accumulated available FLOPS of a given super-node 
i with n sub-nodes can be calculated as follows :

Now, for a super-node i with a task t that has an estimated 
number of FLOPS est_flop_count we can calculate the work-
load FLOPS that can be allocated to each node (super-node 
and sub-nodes) by using Eq. (3):

Equation (3) is only applied if all nodes have one core per 
processor with availability 100%, but since each node i pro-
vides different performance depending on the availability a 
and the number of cores c, we will use Eq. (4) to calculate 
the workload FLOPS that can be allocated to a node i :

Equation (4) can be easily written in the following form.:

In real-world applications, the programmer must estimate 
the actual est_flop_count of his algorithm, which necessi-
tates the consideration of a number of additional factors that 
are outside the scope of this paper.

The proposed algorithm’s pseudocode is as follows:

There are three main loops: the first loop starts at line 2 
and computes FLOPSLocal for each node in the network N, 
the second loop starts at line 8 and computes FLOPSTotal 
for the super-node, and the third loop starts at line 12 and 

(2)FLOPSTotal
i

= FLOPSLocal
i

+

n
∑

j=1

FLOPSLocal
j

(3)FLOPSLoad
�

= est_flop_counti,t∕FLOPS
Total
i

(4)FLOPSLoad
i

= FLOPSLoad
�

× FLOPSPeak
i

× ai × ci

(5)FLOPSLoad
i

= FLOPSLoad
�

× FLOPSLocal
i

computes the workload that should be assigned to each node 
in the network (including the super-node).

The pseudocode only applies if we have a single super-
node and its associated sub-nodes. However, in a P2P net-
work with multiple super-nodes that could be sub-nodes to 
other super-nodes, we apply the algorithm in each super-
node separately beginning first with low level super-nodes.

4 � Network configuration

To conduct the simulation, we constructed a P2P computing 
network consists of 1500 virtual computing nodes, with each 
node representing a volunteer’s device in the real world. We 
described the specifications of each node and the type of 
connection that exists between them in an external xml file.

We used the dataset GWA-T-13 Materna [2] to get the 
availability files for all of the network’s connected nodes. 
It contains performance data described as trace files of 
over 1500 VMs of the distributed Materna Data Centers in 
Dortmund-Germany.

Figure 1 shows the available computing power percentage 
of three randomly chosen processors from the dataset. We 
can see that each processor has an unique availability over 
time, which will have an impact on the available FLOPSLocal

i
 

calculated from Eq. (1).
We have also set a threshold (50%) which the CPU pause 

executing the allocated job if its available percentage falls 
below this threshold to avoid using the host’s CPU in an 
intrusive manner and to limit CPU heat.

As we can see in Table 2, all nodes are divided into 
groups based on their number of cores. Each group has 
its power consumption model that has four parameters as 
follows: 

1.	 Idle: Wattage when the node is up, but without perform-
ing anything.

2.	 Epsilon: Wattage when all cores are not performing the 
allotted work, but they are not in idle state.

3.	 Allcores: Wattage when all cores of the node are per-
forming the allotted work.

4.	 Off: Wattage when the node is turned off.

Any node’s power consumption in the network can be 
represented as a sum of two parts: the static part describes 
power usage while the node is turned on or off, and the 
dynamic part describes power consumption while the CPU is 
operating. The static part is easy to observe, but the dynamic 
part is proportional to the CPU load [23].

SimGrid comes with a plug-in called plugin_host_energy 
[17] that calculates the amount of power consumed by each 
node in the network by adding the static and dynamic parts 
of the consumed power. The plugin uses Eq. (6) to calculate 
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the total power consumption for a given processor i that has 
the frequency f, the workload w and the usage percentage u.

5 � Simulation results

To conduct experiments and evaluate our approach, we 
considered various experiments in which we distributed 
different sizes of tasks given in FLOPS, which are: one 
TeraFLOPS, ten TeraFLOPS, one hundred TeraFLOPS, one 
PetaFLOPS, ten PetaFLOPS, and one hundred PetaFLOPS. 
In each experiment, we measured the execution time and 
the power consumption of each node, as well as the relative 
standard deviation to determine how evenly the tasks were 
distributed.

Bars in Fig. 2 represent the execution time in each node 
when we use the proposed scheduling approach to distribute 
a 100 PetaFLOPS task to all of the participating nodes. We 
can see that the values are relatively close, with the excep-
tion of a few nodes where the processor suspended execu-
tion because the available computing power fell below the 
predefined threshold, causing other nodes in the same net-
work zone to spend extra time completing the left job. On 

(6)Pi,f ,w = Pstatic
i,f

+ P
dynamic

i,f ,w
× u.

the other hand, the observed consuming energy values are 
depicted in Fig. 3. We can see that even though each node 
has its own energy specifications that vary depending on 
the workload and the number of working cores, the values 
are quite close to each other. We evaluate the relative stand-
ard deviation (RSD) for each experiment in our simulation, 
which measures how far the observed samples deviate from 
the mean value of a given population. We seek the smallest 
value of RSD in each experiment, and the higher the value 
we get, the further the samples are from the mean value.

For a population that has � as standard deviation and � as 
mean, RSD is calculated as follows.

For each of the experiment tested, the RSD percentage 
of the execution time is shown in Fig. 4. We can see that 
RSD values are negligible in all cases except for the experi-
ments of distributing 10 PetaFLOPS and 100 PetaFLOPS 
among all nodes, where RSD values are also too small (2.3% 
and 5% respectively), illustrating that the execution times 
of all nodes are strongly clustered around the mean in all 
experiments.

Figure 5 shows RDS values of the power consumption 
for each experiment. Similarly, despite the relative increase 
in RSD values reaching approximately 1.2% when we 

(7)CV =
�

�

Fig. 1   A one-day sample of the availability of three random processors
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distribute 100 PetaFLOPS, RSD values indicate low per-
centages, showing that nodes consume power equally.

6 � Conclusion

In this paper, we proposed a new approach for global 
scheduling in P2P volunteer networks. We introduced the 
term Accumulated Computing Power to describe how the 

current super-node’s available computing power gradu-
ally increases as more sub-nodes join, allowing the global 
scheduler at each super-node to adapt the heterogenous 
architecture of its sub-nodes and estimate the proper size 
of the task that can be handled in each sub-node, while 
ensuring that all sub-nodes exhibit the same level of 
effort in terms of power consumption and execution time. 
According to the experimental simulation results, the main 

Table 2   Specification of nodes 
based on the number of cores

 No.cores/node  No.nodes  Peak GFLOPS/
core

Power consumption parameters (Watt)

Idle Allcores Epsilon Off

One-core CPU 202 5 100 140 120 10
Two-core CPU 953 5 100 160 120 10
Four-core CPU 242 5 100 200 120 10
Six-core CPU 39 5 100 240 120 10
Eight-core CPU 64 5 100 280 120 10

Fig. 2   The execution time when using the proposed scheduling approach

Fig. 3   The power consumption when using the proposed scheduling approach
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task was distributed in such a way that each node received 
a work that is proportional to its computing capability, 
resulting in a very low values of the relative standard devi-
ation for both the execution time and the power consump-
tion (Figs. 4 and 5).

7 � Future scope

This study aims to develop a new global scheduling tech-
nique for P2P VC systems. Each node in the network 
receives amount of work proportional to its available 
computing power. However, the suggested method can be 

Fig. 4   RSD of the execution time for each experiment

Fig. 5   RSD of the power consumption for each experiment



246	 Int. j. inf. tecnol. (January 2023) 15(1):239–247

1 3

extended to give more efficient performance and there is 
always some possibility of improving our approach to a more 
sophisticated version.

As a result of the present approach, some ideas for the 
feature have been introduced:

–	 Availability prediction: Every time the server initiates the 
scheduling procedure, it must first investigate the perfor-
mance metrics of all its sub-nodes, which increases the 
overall task execution time. We believe that employing 
prediction algorithms to estimate the availability of these 
nodes ahead of time will save time that would otherwise 
be spent enquiring about performance metrics.

	   Using prediction algorithms necessitates using the 
history of all computing devices to train the prediction 
model prior to initiate our approach.

–	 Computational Complexity: The entire proposed algo-
rithm relies on the size of the task to be executed. 
SimGrid simulation tool allows us to pass the task size 
in number of floating operations. In the real implementa-
tion of our approach, it is a big challenge that necessitates 
calculating the computing complexity of the task before 
launching our scheduling algorithm.
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