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1 Introduction

Nowadays, LoRa technology is present in many Inter-
net of Things (IoT) applications which use wireless sen-
sor networks [1, 2]. Compared to other technologies such 
as Wi-Fi, Zigbee, GSM or Bluetooth, LoRa has a longer 
range, lower energy consumption and can be used in unli-
censed frequency bands. Nonetheless, due to its low bitrate, 
it is restricted to telemetry applications [3, 4]. It cannot be 
employed in monitoring systems with greater capabilities, 
such as those which transmit more information in short time 
bursts via images [5]. In this context, the proposed image 
encoder is designed to be used in low bitrate transmission 
modules such that they can handle digital image transmis-
sion, thus enhancing their monitoring capabilities. This 
work presents a use case in which the proposed encoder, 
implemented in a single-board computer, transmits images 
of hydrometric rulers. These are measuring tools to indicate 
relevant water levels in remote regions. Quick visualization 
of rulers’ images aid monitoring centers in remote regions 
with flooding hazards due to seasonal El Niño events. The 
proposed encoder achieves this feature by using a progres-
sive transmission, where lower-resolution images are quickly 
visualized first in the receiver and the visualization is stead-
ily improved in subsequent moments. Thus, the encoder 
design and chosen transmission mode aim for a minimum 
latency in the image transmission when compared to other 
encoders such as the JPEG2000 while maintaining the qual-
ity of the reconstructed image.

2  Related work

This section presents two groups of selected articles 
which focus on image transmission in low bandwidth 
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communications systems. On one hand, Table 1 describes 
the first group, which contains proposals that use low band-
width IoT modules. On the other hand, Table 2 presents the 
second group, which has articles that seek to improve infor-
mation transmission efficiency considering a wider range of 
applications and not necessarily IoT settings.

The image transmission methods in Table 1 mostly handle 
only low resolution, grayscale images. Clearly, these images 
cannot carry information otherwise available in the color 
bands. The transmission schemes in Table 2 can work with 
higher resolutions and color images efficiently, but neither 
group of proposals evaluate implementations on embedded 
devices. These devices require balancing an acceptable qual-
ity of the uncompressed image, decent image visualization 
delays and manageable computational loads.

With these considerations, the proposed encoder presents 
a successful alternative which balances the use of color 
images, high compression rates and reduced transmission 
times with progressive decoding and a low complexity. The 
encoder slightly outperforms the JPEG2000 encoder, which 
serves as a benchmark to highlight this work’s contribution.

3  Proposed methodology

The proposed encoder uses wavelet subband decomposition 
and reconstruction with multiresolution analysis, which 
gives it the unique characteristic of being able to progres-
sively reconstruct the image while each subband is transmit-
ted and decoded. Thus, it achieves comparable quality val-
ues [validated via Evaluating the peak signal-to-noise ratio 
(PSNR) at structural similarity index (SSIM) fixed compres-
sion rates] as JPEG2000 at slightly better compression rates, 
for RGB images. Moreover, it enables a rapid first, low-qual-
ity visualization of the decoded image, whose quality then 
progressively increases as the reception and decoding of the 
subsequent subbands takes place. The encoder and decoder 
were implemented in LoRa modules, where image transmis-
sion times were evaluated with and without the encoding. 
A maximum transmission time reduction of 99.09% was 
achieved. For these reasons, the proposed image encoder 
and decoder constitute the largest contribution in this work.

The following sections describe the encoding stage, data 
transmission stage and decoding stage.

3.1  Design of the proposed encoder

Figures 1 and 2 summarize the proposed image compression 
scheme, presenting the image encoder and decoder respec-
tively. This section details the encoding and decoding steps, 
which aim to balance an acceptable image quality and a low 
computational load.

The proposed encoder and decoder were implemented 
in a Raspberry Pi 3B + single-board computer [16]. Image 
acquisition was performed either via a webcam or a Rasp-
berry Pi Camera Module 2, using the RGB color format in 
both cases.

The encoding process is described below:

Step 1  Acquire the image in its primary RGB components 
and convert to YCoCg color space to separate the 
luminance and chrominance components, with a 
digital resolution of M rows and N columns. Each 
component can be expressed by IY (x, y) , ICo(x, y) 
and ICg(x, y) [17].

Step 2  The Co and Cg chrominance components where 
subsampled with the 4:2:0 color format [18]. The 
resulting subsampled chrominance components are 
ISCo(x, y) and ISCg(x, y).

Step 3  The luminance component is processed by 3-level 
deep tree, while the chrominance components are 
processed by a 4-level deep tree [19]. Evaluating 
PSNR and SSIM of the different subbands between 
the original and reconstructed images, the approx-
imation subband IY ,3,1(x, y) , the horizontal detail 
subband IY ,3,2(x, y) and the vertical detail subband 
IY ,3,3(x, y) are chosen for the luminance component. 
The rest of the subbands are never encoded nor 
transmitted.

  For both chrominance subbands, only the approxi-
mation subbands ( ISCo,4,1(x, y) and ISCg,4,1(x, y) ) are 
chosen and the rest subbands are neither encoded 
nor transmitted. The different subbands will sub-
sequently be expressed as Isubband(x, y) . This nota-
tion will be employed in the rest of the article.

  Different families of wavelets were analyzed and 
compared to choose low-pass and high-pass filters 
[20]. A total of 35 hydrometric ruler images were 
used in the evaluation process, which considered 
computational loads and PSNR and SSIM met-
rics [21]. Table 3 shows the comparison of the 
filters’ impulse response length in each family. 
This parameter is directly related to the computa-
tional load of the convolutions performed during 
the subband decomposition and reconstruction.

  The biorthogonal family has the best trade-off 
between quality and computational load, result-
ing in choosing the bior3.9 wavelet family for this 
encoder.

Step 4  A uniform scale factor quantizer is used which is 
expressed in Eq. (1) [22]. Each quantizer’s resolu-
tion was chosen considering the human visual toler-
ance to distortion, through testing and comparison 
of subjective quality, average PSNR and SSIM of 
diverse images. Finally, luminance subbands were 
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quantized with r = 5 bits per sample and chromi-
nance subbands, with r = 4 bits per sample.

where  I
�

subband
(x, y) = Isubband(x, y) − Iminsubband  which 

ensures that the subbands only have positive values.
  Every scale factor and minimum scaling value for 

each luminance and chrominance subband must 
also be quantized and encoded. These numbers 
were quantized with 24 bits to avoid hindering 
the obtained image quality. On the other hand, 
the minimum scaling values in every subband are 
always negative, so that quantization is done to the 
absolute value. The scaling factor and minimum 
scaling value are expressed in Eqs. (2) and (3) 
respectively.

Step 5  The quantized subbands are further coded with 
a Huffman entropy coder [23]. Static codebooks 
were generated from the subbands evaluated in 
100 images. Two types of distributions were pre-
dominantly obtained: those with occurrences at all 
numerical values for a given bit quantization depth; 
and distributions with missing values. The second 
type of distribution generated codebooks with an 
average of 5% higher coding gain. The total num-
ber of codebooks is 44, so a 6-bit number ("Num-
ber codebook") is transmitted in the packet header 
to indicate which codebook encodes a particular 
subband.

Before Huffman coding is applied to a subband, an algo-
rithm determines which option occupies the least number 
of bits in the transmission packet. Whether or not Huffman 
coding has been used is indicated in the packet header by the 
2-bit number "Huffman Enable". If it is "00", it indicates that 
no coding has been used; if it is "11", it means that Huffman 
coding has been applied. Finally, every Huffman encoded 
subband will subsequently be denoted by IQH

subband
(x, y).

3.2  Data transmission and reception

The images and encoded data are transmitted in the LoRa 
packet payload (see Fig. 3), which contains a maximum of 
146 bytes. The explicit packet type is used which allows pay-
loads of variable size [24]. The "Data type identifier" field 
(1 byte) indicates whether the packet transmits header data 
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or a coded subband. The "Counter" field (1 byte) contains 
the count of packets sent, and the "Information" field (up 
to 144 bytes) contains the header or coded subband data. 
When transmitting header data, the "Data type identifier" 
has a value of 0; when transmitting a coded subband, it has 
a value of 255.

Header data is sent three times in three consecutive LoRa 
packets. This redundancy aids in avoiding reception errors 
for header data, which could have a large negative impact on 

Fig. 1  Block diagram of the 
proposed encoder
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Fig. 2  Block diagram of the 
proposed decoder
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Table 3  Evaluation of wavelet filters on hydrometric ruler images

Wavelet filter Number of coef-
ficients

PSNR (dB) SSIM

Daubechies 40 80 25.2 0.71
Symlet 20 40 25.3 0.74
Coiflet 5 30 25.2 0.74
Biorthogonal 3.9 20 25.2 0.75

Fig. 3  Explicit LoRa packet 
format and data structure car-
ried in the payload
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image reconstruction. Figure 4 shows the header data frame 
sent in the “Information” field.

The 8-bit “Number padding bits” field indicates the num-
ber of bits added to a field that contains an encoded sub-
band to always have an integer number of bytes. The 8-bit 
“Subband identifier” field indicates which subband is being 
encoded. Each of the 5 encoded subbands has a unique 8-bit 
identifier code. The “M” and “N” 8-bit fields correspond to 
the number of rows and columns of the matrix that repre-
sents the subband. The 8-bit feQ corresponds to the quan-
tized scalefactor. The 24-bit IminQ is the minimum scaling 
value used during subband quantization. The 2-bit “Huffman 
Enable” indicates whether Huffman encoding was applied. 
The 16-bit “Subband Size in bits” store the number of bits 
that are used to store the codified subband. Finally, the 6 bit 
“Codebook number” field indicates the codebook used for 
Huffman encoding, if applicable.

Figure 5 shows the data frame of the encoded subband 
data, sent in the “Information” field in Fig. 3. “Padding bits” 
holds the 0-valued bits required so that the frame has an 
integer number of bytes. Finally, IQH

subband
(x, y) or IQ

subband
(x, y) 

represent the subband, encoded with or without Huffman 
respectively.

For the reception process, the binary data is recon-
structed from the header and the received subband frames. 
Figure 6 shows a flowchart of this process. The frames 
contain coded subbands, the data is concatenated until a 
complete subband is obtained. If a subband packet is lost, 

Fig. 5  Encoded subband data 
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zeros are concatenated to the subband so that the image 
can still be reconstructed.

3.3  Image reconstruction and restoration

The header data serves to reconstruct the 2-D matrices in 
each decoded subband, and with these to progressively 
reconstruct the image. Figure 7 illustrates the flowchart of 
the employed decoding [23] and de-quantization process 
[22]. This process may or may not utilize Huffman binary 
decoding, according to the header data. The process is 
described below:

Step 1  The de-quantization process is executed. Equa-
tions (4)–(6) describe the de-quantization, scale-
factor feD

subband
 decoding and IminD

subband
 value com-

putation for each subband, respectively.

Step 2  The components of the YCoCg color model are 
reconstructed from the subbands using the wavelet 
family and reconstruction trees described in the 
Sect. 3.1 [19]. The reconstruction trees employ the 
inverse wavelet transform, where the subbands that 
were neither encoded nor sent are set to 0 during 
the reconstruction. The resulting components of the 
reconstruction are ID

Y
(x, y) , ID

SCo
(x, y) and ID

SCg
(x, y).

Step 3  This last stage restores the image from the recon-
structed components, YCoCg. First, it is necessary 
to interpolate the chrominance components, since 
they were undersampled with a 4:2:0 scheme in the 
encoder. Due to their computational burden, 
zero-order interpolation was applied [25]. The 
resulting chrominance components are ID�

Y
(x, y) , 

ID
�

SCo
(x, y) and ID�

SCg
(x, y).

(4)ID
subband

(x, y) =

(
I
Q

subband
(x, y)

2r − 1
.feD

subband

)

− IminD
subband

(5)feD
subband

=
fe

Q

subband

105

(6)IminD
subband

=
Imin

Q

subband

105

With the recovered chrominance components, the YCoCg 
image is converted to the RGB primary color space [17], 
where the numerical values are rounded and scaled to a 
range from 0 to 255. Finally, the reconstructed RGB primary 
components I�

R
(x, y) , I�

G
(x, y) and I�

B
(x, y) are shaped into a 

3D array for displaying in any graphical user interface. The 
complete process is summarized in Fig. 8.

4  Experimental results and discussion

The PSNR (Peak Signal-to-noise Ratio) and SSIM (struc-
tural similarity index) metrics were used to validate the 
proposed encoder [21]. Both metrics are always related to 
the obtained compression factor, such that different image 
encoders can be compared at similar compression levels. 
Firstly, the PSNR measures the ratio of the maximum signal 
power to average encoding noise, in dB (decibels), and is 
useful for low-frequency, uniform image regions [26]. It is 
computed as:

where

(7)PSNR(dB) = 10log10

(
2552

MSE

)

(8)MSE =
1

3 ×M × N

(
M−1∑

i=0

N−1∑

j=0

[
I�
R
(x, y) − IR(x, y)

]2
+

M−1∑

i=0

N−1∑

j=0

[
I�
G
(x, y) − IG(x, y)

]2
+

M−1∑

i=0
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[
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(x, y) − IB(x, y)

]2
)
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Fig. 8  Image restoration process
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Next, the SSIM is an objective evaluation metric ranging 
from 1 to 0, where 0 translates to a null similarity. The met-
ric is useful for high-frequency, highly varying image regions 
[27]. The SSIM has a better performance with respect to sub-
jective metrics such as the Mean Opinion Score (MOS). The 
SSIM computation is done between an original image, F(x, y) , 
and a reconstructed image, V(x, y) . Both images must be mon-
ochrome. The metric is computed for image blocks or regions, 
and it is then averaged to obtain the mean SSIM (MSSIM) in 
each image block l [27]:

where

(9)MSSIMFV =
1

L

L−1∑

l=0

SSIMFV ,l

(10)
SSIMFV ,l =

(
2 × �F,l × �V ,l + C1

)
×
(
2 × �FV ,l + C2

)

(
�
2

F,l
+ �

2

V ,l
+ C1

)
×

(
�
2

F,l
+ �

2

V ,l
+ C2

)

for l = 0, 1, 2,… , L − 1

(11)�F,l =

P−1∑

x=0

P−1∑

y=0

w(x, y)Fl(x, y)

(12)�V ,l =

P−1∑

x=0

P−1∑

y=0

w(x, y)Vl(x, y)

(13)�
2

F,l
=

P−1∑

x=0

P−1∑

y=0

w(x, y)
(
Fl(x, y) − �F,l

)2

Here, w(x, y) is a circular symmetry Gaussian filter of size 
7 × 7 (P = 7) [28], so that the SSIM computation is done 
over P × P blocks. The l-th image block is Fl(x, y) and the 
reconstructed block is Vl(x, y) . Following the recommen-
dations in [27], C1 = 6.5025 and C2 = 58.5225 . For color 
images, such as in the proposed encoder, the final SSIM 
value is the average of the SSIM of each color component.

Another metric of interest is the compression factor (Fc) 
which is the ratio between the number of bits in the origi-
nal image and the number of bits in the compressed image 
after the encoder. It indicates how much smaller is the com-
pressed image size with respect to the original image size. 
It is computed by:

where Nbo is the number of bits of the original image and 
Nbc is the number of bits of the encoded image.

4.1  Comparative evaluation of compression results

To evaluate the proposed encoder, PSNR and SSIM metrics 
were first calculated for different image compression fac-
tors. They were calculated for both the proposed encoder 

(14)�
2

V ,l
=

P−1∑

x=0

P−1∑

y=0

w(x, y)
(
Vl(x, y) − �V ,l

)2
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x=0
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w(x, y)
(
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)(
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)

(16)Fc =
Nbo

Nbc

Fig. 9  Images of “Lena”, “Monument” and hydrometric rulers 1 and 2 ordered from left to right
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and the JPEG2000 encoder. The following test images were 
used: "Lena" [28] and "Monument" [29]. As mentioned in 
the introduction, other tests were performed using images 
of hydrometric rulers which measure water levels in remote 
areas. Figure 9 shows these images. The acquired images 
were encoded and transmitted to a monitoring station with 
LoRa transceivers. The numbers on the rulers could not be 
distorted by the encoder, to avoid errors in the determination 
of water levels.

Table 4 shows the results for the "Lena", "Monument" 
images and the hydrometric rulers. In all cases, the PSNR 
and SSIM quality metrics for JPEG2000 and the proposed 
encoder are very similar, but the proposed encoder achieves 
a slightly better compression factor and can be adaptable to 
different situation.

4.2  Evaluation of progressive transmission results

Transmission timing tests were done with hydrometric ruler 
images, using the SX1272 LoRa transceptor [24]. Testing 
was done with a total of 20 images of size 248 × 1504 pixels. 
Table 5 show the obtained results. There are time measure-
ments for each received subband and additional time meas-
urements for the header frames. The transmission distances 
of the links were 2068, 4848 and 16,150 m. The maximum 
test distance required a minimum transmission time of 3 min 
and 33 s.

The subband decomposition and reconstruction technique 
allows a progressive display of the image and the quality of 
the reconstruction improves as the subbands are decoded at 
the receiver. The first decoded subband is the approximation 
subband, which gives a general idea of the characteristics of 
the transmitted image.

Table 4  Results of comparison 
between JPEG2000 encoder and 
the proposed encoder

Encoded Compression factor PSNR SSIM Compressed 
size (bytes)

Dimensions (pixels)

Lena JPEG2000 111.298 27.069 0.7365 7066 512 × 512
Proposed 116.027 26.384 0.7263 6778

Monument JPEG2000 139.918 27.596 0.7509 8431 512 × 768
Proposed 139.951 27.039 0.7563 8429

Ruler 1 JPEG2000 135.404 22.341 0.5974 8264 248 × 1504
Proposed 139.558 21.708 0.6141 8018

Ruler 2 JPEG2000 135.305 21.889 0.5603 8270 248 × 1504
Proposed 139.541 21.511 0.5917 8019

Table 5  Transmission time test results for three distances using the proposed encoder

Distance
(m)

Module settings Total 
pack-
ages

Progressive subband transmission Time 
header 
(s)

Total time (s)

Spreading 
factor (SF)

Power (dBm) Fc First band (s) Second 
band (s)

Third band (s) Fourth 
band (s)

Fifth 
band 
(s)

2068 7 14 139 59 34 28 24 3 3 19 110
4848 8 16 139 59 45 37 32 4 4 27 148
16,150 11 18 139 59 66 55 47 6 6 36 216

Fig. 10  Progressive reconstruction stages, where each image (a–e) 
corresponds to the sequential reception of each subband. Left to right: 
first to fifth subband
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The proposed encoder can achieve a low-quality image 
transmission in 34 s for a 2069-m link, and in 66 s for a 
16,150-m link. Yet, the quality will improve as the rest of 
subbands reach the decoder. Figure 10 illustrates this pro-
gressive quality improvement.

4.3  Comparative evaluation of encoded and non‑coded 
transmissions

Table 6 presents the results of encoded and un-encoded 
image transmission tests. Clearly, there is a significant 
improvement in the transmission time of the encoded 
images compared to the un-encoded ones. For a link of 
2068 m and using the same transceiver configuration as 
for coded images, there is a 99.07% reduction in transmis-
sion time compared to the time required to transmit coded 
images; for a 16,150-m link, the reduction is of 99.09%. 
Therefore, the benefit of using the proposed encoder is evi-
dent: there is a faster transmission time and, consequently, 
a lower energy usage and a longer autonomy of the device.

5  Conclusions and future scope

When compared to the standard JPEG2000 image encoder, 
the proposed encoder achieved similar quality levels, meas-
ured by the PSNR and SSIM. Yet, the proposal in this work 
did this with a higher compression level, while JPEG2000 
has compression limits. This is summarized in Table 4, 
where the proposal results in similar PSNR and SSIM than 
JPEG2000 but with slightly higher compression rates.

Moreover, the proposed encoder obtained a reduction in 
transmission times of up to 99.09% with regards to transmit-
ting un-encoded images. Increasing the transmission dis-
tances did not have a significant impact on this time reduc-
tion, which could translate into lower energy consumption 
and a greater device autonomy when the device is powered 
by batteries. Furthermore, the largest transmission distance 
was of 16,150-m, and it could be increased by using the 
maximum capacity of the LoRa transceptor.

As another concluding remark, this work demonstrates 
that the proposed encoder firstly achieves an acceptable 
quality image visualization with the reconstruction of the 

first received subband (approximation subband). Then, this 
quality progressively improves as the rest of the subbands 
are received and decoded. This progressive transmission, 
reception and decoding accommodates the encoder to the 
limitations of LoRa technology. Hence, there is a signifi-
cant reduction in transmission and visualization times of the 
information of interest.

Finally, a particular application for this encoder was 
explored, transmitting images of hydrometric rulers installed 
in water sources, as part of a project where the environ-
mental parameters and level of these sources was remotely 
monitored. This application, where water overflows after El 
Niño events can severely harm the surrounding population, 
requires the complementary information which these images 
bring to the information transmitted by the water level sen-
sors. Moreover, these sensors are prone to failure. Hence, 
the complementary information brought by the hydrometric 
ruler images is even more impactful. The proposed image 
encoder enables adding these redundancies in low-connec-
tivity regions via LoRa networks.

Future works could improve the performance of the 
encoder using artificial intelligence and machine learning 
in combination with the subband decomposition technique, 
while maintaining a low computational load in the overall 
algorithm. It is important to state that the encoder could be 
also implemented in other single-board computers, such as 
Toradex, Jetson Nano, Orange Pi or others.
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