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1 Introduction

ECG classification is a multi-domain task that requires effi-
cient signal processing blocks, although optimization of 
ECG signal acquisition and filtering processes have been 
achieved with the advancement in signal acquisition tech-
nology, and integration of on board digital signal processing 
(DSP) elements. Typical ECG classification system wherein 
the QRS feature is used to classify ECG signals into nor-
mal and arrhythmia signals. Each ECG wave is necessarily 
made up of following signals, P-Wave, the initial wave of 
the ECG signal [1]. It is a low amplitude, and short time 
period wave that has a typical interval of 0.12–0.22 s for 
regular heart beat patterns. QRS wave, also known as the 
heart beat pulse, is a spike-like wave with a typical duration 
of less than 0.12 s [1]. Difference between ‘R’ intervals for 
consecutive ECG signals is termed as ‘RR’ interval, and is 
used for identification of arrhythmic heart signals. ST seg-
ment used for measuring depression in exercise stress testing 
[2]. The Q duration is also known as the duration of a beat 
QT that represents the condition of heart. If there is a varia-
tions in these measures from the normal value they indicate 
the irregular rhythm called Arrhythmia [3].

All these waveforms are used for feature extraction for 
ECG signal. Once the features are extracted, they are fed to 
a feature selection unit. Some features are passed for clas-
sification purpose while others are removed based on their 
feature variance. These selected features with maximum 
variance are given to a classification block, like neural net-
works, SVM, RF, CNN, etc. To differentiate between signals 
belonging to different categories. The results of this clas-
sification are given to a post-processing block, that helps to 
analyse the changes in patterns of those signals, and evaluate 
future health risks for patients. A survey of the most recently 
proposed algorithms for ECG signal classification has been 
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mentioned in next section i.e. overview of the literature. This 
section will help the researchers to evaluate nuances, advan-
tages, and drawbacks of these systems. The section is fol-
lowed by design of the proposed ensemble learning classifier 
that uses a combination of CNN with bio-inspired & linear 
classification algorithms like random forest, kNN & SVC.

Summary of proposed paper is given as,

1. Design of a customized CNN model which is inspired by 
VGGNet-16 (visual geometry group network) classifier 
method.

2. Design of the ensemble classification model that com-
bines multiple classifiers to form effective classifier sys-
tem.

The suggested algorithm as well as a comparison of that 
algorithm to a number of high-efficiency models that have 
been studied before for ECG classification. Additionally, it 
suggests carrying out additional studies in this area so as to 
further enhance the functioning of the system as a whole.

2  Overview of related literature

Review of several works based on deep learning and 
machine learning

Ref. No Method used/Feature 
extraction technique

Description

[4] Morphological and dynamic 
features

An SVM classifier was used 
to classify distinct types of 
heartbeats using morpho-
logical and dynamic data

[5] Optimal orthogonal wavelet 
filters

It was shown that wavelet 
decomposition with an 
orthogonal filter bank 
decreased stop-band energy 
and fuzzy entropy charac-
teristics

[6] Neural network (Predictive 
Coefficients and Proba-
bilistic)

ECG wavelet analysis 
revealed an R peak. RNN 
and SVM classifiers use 
QRS linear predictive coef-
ficients

[7] Dual tree complex wavelet 
based features

Was done using the discrete 
wavelet transform and 
dual-tree complex wavelet 
transform

[8] Feature methods with 
long short-term memory 
(LSTM) network model

An LSTM model was used 
to divide the MIT-BIH 
arrhythmia datasets into 
five types of arrhythmia 
beats based on these charac-
teristics

Ref. No Method used/Feature 
extraction technique

Description

[9] DNN (Deep Neural 
Network) with Unsuper-
vised Feature Extraction 
Technique

Pre-training and fine-tuning 
were done using deep auto-
encoders and deep neural 
networks, respectively

[10] DNN and engineered 
features

On the 2017 PhysioNet/
Computing in Cardiology 
challenge database, the 
ensemble technique does 
a better job of identifying 
arrhythmia than individual 
classifiers

[11] Auto-encoders (stacked 
sparse) and softmax 
regression

An ECG arrhythmia clas-
sification algorithm based 
on softmax regression was 
reported.In-depth features 
were extracted from the 
MIT-BIH arrhythmia data 
set using stacked sparse 
auto-encoders

[12] Deep CNN with long dura-
tion ECG signals

There are 17 kinds of 
arrhythmia beats in the 1-D 
CNN model. The MIT-
BIH arrhythmia database 
was used to look at 10-s 
long-duration ECG signal 
fragments from one lead of 
45 patients

[13] CNN, LSTM The model handled variable-
length data with 98.10 per-
cent accuracy using ten-fold 
cross-validation

[14] LSTM-Based Auto-Encoder The auto-encoder decoder 
model received the recon-
structed ECG signals with 
high-level characteristics 
using the LSTM model

[15] convolutional encoded 
features with bidirectional 
LSTM memory

A convolutional encoder 
initially encoded a bidi-
rectional LSTM model to 
identify arrhythmias from 
ECG data

[16] Multi layer NN (Neural 
Network) and metaheuris-
tic algorithm approach

Automatic ECG arrhyth-
mia classification using 
multilayer perceptron 
neural networks (MLP) and 
enhanced metaheuristics 
was presented. The MLP 
classifier was trained and 
tested using particle swarm 
optimization.

[17] Combination of CNN, 
LSTM

The authors suggested a 
hybrid DL model using 
CNN and LSTM to detect 
six types of arrhythmia 
beats. To increase the 
hybrid model’s perfor-
mance, a varied number of 
people were used to train 
and test the dataset



121Int. j. inf. tecnol. (January 2023) 15(1):119–128 

1 3

Researchers have proposed several powerful algorithms 
over the past several years to optimize the performance of 
ECG signal classification. Most of these algorithms use 
neural networks and other optimization techniques in order 
to optimize classification accuracy, precision, recall and 
f-Measure values. In order to optimize the performance 
of ECG signal classification, number of decent algorithms 
approaches have been proposed by researchers over the past 
several years.

For classification some researcher used machine learn-
ing [18–24] and deep learning [25–30] algorithms. Machine 
learning classifier like, Naive Bayes [31, 32], Decision 
Tree [33], KNN [34, 35], SVM [36, 37], RF [38], Logistic 
Regression, Optimization technique [39] and others are used 
to categories the dataset. The CNNs [38, 39, 34] are often 
used by many researcher in different areas. RNN, multi-
layered feed-forward neural network (MLFFNN) [35] is a 
type of artificial neural network (ANN) [34, 40] It improves 
fixed-size input and output networks. After that, the sug-
gested model’s statistical evaluation and comparison with 
other CNN-based models are demonstrated. There are a 
few observations and research areas that academics might 
explore to enhance and adjust the recommended model.

2.1  Challenges

Selecting the appropriate feature is also essential for opti-
mal classifier performance. The standard method for clas-
sifying diseases has a significant problem when it comes to 
picking the most essential attribute. Standard deep learn-
ing suffers from high processing complexity and lengthy 
training times because of the large dimensionality of the 
data used for training. In the medical literature, there are 
several illness-decision-help systems with varying degrees 

of precision. However, the vast majority of investigations 
have not looked into missing data and feature selection in 
its entirety. The lack of data used for training leads to over-
fitting, which in turn leads to inaccurate predictions.

3  Materials and method

In order to enhance accuracy levels of ECG classification 
models, an ensemble CNN network model with bio-inspired 
and linear classifiers are designed in this section. This design 
combines VGGNet-16 inspired CNN, Discrete wavelet trans-
form (DWT), bio-inspired RF model, linear SVM, and kNN 
classifier together to reduce classification errors. Architec-
ture diagram for the proposed model can be observed from 
Fig. 1, wherein these classifiers are combined via weighted 
operations in order to achieve high accuracy, precision, 
recall, and F-measure.

3.1  Database used

The MIT-BIH arrhythmia database is a publicly available 
dataset which includes standard investigation material for 
the identification of cardiac arrhythmia. Since 1980, it has 
been utilised for the purpose of fundamental research and 
medical device development on heart rhythm and associated 
illnesses.For validating the proposed method, we have used 
ECG signals from MIT-BIH dataset [41] (see Tables 1, 2) 
(see Fig. 2).  

The CNN is trained using sparse categorical cross-
entropy (SCCE) loss function, and is optimized for accu-
racy. The CNN model has high accuracy, but is not able to 
differentiate between some Cardiovascular disease (CVD) 

Fig. 1  Methodology adopted
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classes via feature convolutions. The hyperparameters used 
for these convolutions are depicted in Table 3 as follows,

Thereby, the same dataset is given to a discrete wavelet 
transformation engine to evaluate wavelet features. These 
features are evaluated using Eqs. 1 and 2 as follows,

‘x’ is the ECG waveform trials, ‘ �(k) ’ is the wavelet func-
tion, ‘a’ is wavelet constant, ‘N’ is the number of samples in 
the ECG waveform and the output wavelet features. Using 
these features, kNN, SVM and Random forest classifiers are 
trained. After this training, all the test set values are given 
to each of these classifiers, and the following Eq. 3 is used 
to find the final class,

where, ‘w’ are the weight factors, and ‘C’ are the class out-
puts given by the classifier. Weight factors are evaluated 
from historical accuracy values obtained by these classi-
fiers in the literature, and it is observed that the follow-
ing values of weight are most optimum for the proposed 
model, wcnn = 0.6,wknn = 0.2, & wsvm = 0.1 and wrf = 0.1 
etc., Thereby, the final class for the given ECG waveform 
is evaluated and stored for further performance comparison 
In order to evaluate performance of the proposed model, the 
next section uses entire MIT-BIH dataset, and divides it into 
equal parts for evaluation of accuracy, precision, recall and 
f-Measure values. These values are compared using state-
of-the-art methodologies.

3.2  Performance parameter

Precision measures the quality of a model’s positive pre-
diction and is used to evaluate model performance. Preci-
sion is the ratio of true positives to valid forecasts. Precision 
measures how many of the positively anticipated samples 
are meaningful.

(1)Fdwt =

N−1
∑

i=0

x(i) ∗ �(i − N)

(2)�(k) =
1

ak
∗ �

(

N

ak

)

(3)
Cout = wcnn ∗ Ccnn + wknn ∗ Cknn + wsvm ∗ Csvm + wrf ∗ Crf

Where, TP, is True positive (TP), and false positive (FP). 
False negative (FN), True negative (TN) etc.

The recall rate is the percentage of accurate positive sam-
ples to total positive samples. measures the model’s ability 
to identify positive samples. Higher recall means more posi-
tive samples. recall, or sensitivity. It measures how many 
positive samples are expected to be positive.

The accuracy of a machine learning model determines 
which model is better at discovering correlations and pat-
terns in a dataset based on training data. Accuracy is the 
ratio of correct to total classifications.

The F-measure uses the harmonic mean of accuracy and 
recall, weighing each variable equally. It allows a model’s 
performance to be discussed and compared using a single 
score that combines accuracy and recall. The F-Measure 
combines accuracy and recall.

4  Results and comparative analysis

A total of 109,446 sample records were collected for this 
research from MIT-BIH. Each of these records is catego-
rized into 5 different CVD classes: Premature ventricular 
contraction, Fusion of ventricular and normal beat, Ventricu-
lar escape beat, Paced beat, and Normal. The performance 
parameters like accuracy, precision, recall, and f-Measure 
values compared for CVD classification the proposed model 
and models defined in [7, 42–46]. Table 4 indicates the accu-
racy performance of the proposed model w.r.t. number of 
ECG entries used for testing. The dataset was divided into 
70:30, wherein ~ 77 k records were used to train the model, 
while the remaining ~ 33 k records were used to test the 
model and evaluate its performance. Thus, overfitting has 
been taken care of by dividing the set into training & testing 
samples, and then evaluating testing set performance param-
eters. The following Table 4 showcases the test accuracy 
(TA) performance of all the models.

From Fig.  3a, it is observed that, Average accuracy 
is around better when compared to existing models 
wherein these accuracy values are plotted, while its ROC 

(4)Precision (P) =
TP

TP + FP

(5)Recall (R) =
TP

TP + FN

(6)Accuracy (A) =
TP + TN

TP + TN + FP + FN

(7)F −Measure(F) = 2 ×
Precision × Recall

Precision + Recall

Table 1  Dataset information

No. of sample 109,446
No. of Categories 05
Sampling Frequency 125 Hz
Type ECG
Dataset type ECG Heartbeat 

Categorization 
Dataset
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Table 2  Proposed CNN model and its layer-wise purpose

Layer No Design Purpose

1 1D Convolutional layer with 16 × 1 size and 5 × 1 kernel size 
with ReLU activation

This layer is used to extract 16 features per stride of the ECG 
waveform. The stride is moved via a 5 × 1 window for effective 
feature extraction

2 1D Convolutional layer with 16 × 1 size and 5 × 1 kernel size 
with ReLU activation

This layer is used to extract 16 features per stride of the ECG 
waveform. The stride is moved via a 5 × 1 window for effective 
feature extraction

3 Maximum pooling layer with pool size of 2 × 1 Maximum value of feature variance is extracted from the extracted 
features, and features are reduced by a factor of 2. Which means 
that the number of features is halved in this process

4 Drop out layer with dropout rate of 0.1 Approximately 10% of features are removed for optimization of 
feature selection process

5 1D Convolutional layer with 32 × 1 size and 3 × 1 kernel size 
with ReLU activation

This layer is used to extract 32 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

6 1D Convolutional layer with 32 × 1 size and 3 × 1 kernel size 
with ReLU activation

This layer is used to extract 32 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

7 Maximum pooling layer with pool size of 2 × 1 Maximum value of feature variance is extracted from the extracted 
features, and features are reduced by a factor of 2. Which means 
that the number of features is halved in this process

8 Drop out layer with dropout rate of 0.1 Approximately 10% of features are removed for optimization of 
feature selection process

9 1D Convolutional layer with 32 × 1 size and 3 × 1 kernel size 
with ReLU activation

This layer is used to extract 32 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

10 1D Convolutional layer with 32 × 1 size and 3 × 1 kernel size 
with ReLU activation

This layer is used to extract 32 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

11 Maximum pooling layer with pool size of 2 × 1 Maximum value of feature variance is extracted from the extracted 
features, and features are reduced by a factor of 2. Which means 
that the number of features is halved in this process

12 Drop out layer with dropout rate of 0.1 Approximately 10% of features are removed for optimization of 
feature selection process

13 1D Convolutional layer with 256 size and 3 × 1 kernel size with 
ReLU activation

This layer is used to extract 256 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

14 1D Convolutional layer with 256 size and 3 × 1 kernel size with 
ReLU activation

This layer is used to extract 256 features per stride of the ECG 
waveform. The stride is moved via a 3 × 1 window for effective 
feature extraction

15 Maximum pooling layer with pool size of 2 × 1 Maximum value of feature variance is extracted from the extracted 
features, and features are reduced by a factor of 2. Which means 
that the number of features is halved in this process

16 Drop out layer with dropout rate of 0.2 Approximately 20% of features are removed for optimization of 
feature selection process

17 Dense layer with 64 × 1 size and ReLU activation Feature reduction via dense layers, such that in each stride 64 
features are combined to form a single feature value

18 Dense layer with 64 × 1 size and ReLU activation Feature reduction via dense layers, such that in each stride 64 
features are combined to form a single feature value

19 Dense layer with Nx1 size and Softmax activation This is a fully connected layer for final classification into 1 of ‘N’ 
classes
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performance can be observed from Fig. 3b, wherein its 
performance can be observed. Based on this performance, 
the confusion matrix is evaluated, and can be observed as 
follows,

Confusion matrix
[[18025 93 0 0 0 0]
[0 556 0 0 0 0]
[0 0 144 4 0 0]
[0 0 0 162 0 0]
[0 0 0 0 1605 3]
[0 0 0 0 0 0]]

From this matrix, it can be observed that almost all the 
entries are properly classified, while some entries from class 
1, and class 4 are not categorized into the required ECG 
class.

Table 5 showcases the test precision (TP) performance 
of all the models. From the test precision values, it can be 
observed that the proposed model is highly efficient and 
as better performance when compared to decent classifi-
cation models. Average precision is around 99.47% when 
compared to existing models.

The following Table 6 showcases the test recall (TR) 
performance of all the models. From the test recall, it can 
be observed that the proposed model is highly efficient, 
and as better performance when compared to decent clas-
sification models.

Average recall is around better when compared to 
decent models. The following Table 7 showcases all the 
models’ test f-Measure (TF) performance. From the test 
f-Measure, it can be observed that the proposed model is 
highly efficient, and as better performance when compared 
to other decent classification models. Average f-Measure 
is around 99.60% when compared to existing models. It 
can be observed that the proposed algorithm is superior in 
terms of all the performance parameters when compared 
on different datasets with different existing model. The 
accuracy of this model is saturated, and thus can only be 
improved infinitesimally by using superior deep learning 
models for the same datasets.

Fig. 2  Proposed CNN Layer 
architecture for ECG Classifica-
tion System

Table 3  Hyperparameters of the VGGNet-16 model

Parameter Value

Epochs 50
Batch Size 64
Optimizer & Learning Rate Adam delta, 0.001
Error Function Sparse Cat-

egorical Cross 
Entropy

Input Size 1 × 187
Pooling Average
Pre-trained Weights None

Table 4  Comparative study 
of proposed method ensemble 
CNN network model with other 
literature of MIT BIH database

The bold value indicates that the proposed method achieve better result.

Refs Year Database Classifier/Approach TA %

[42] 2018 MIT BIH Arrithmia Naïve Bayes 99.7%
[43] 2019 MIT BIH Arrithmia Feature extraction approach 94.3%
[47] 2020 MIT BIH Arrithmia CNN 93.75%
[48] 2021 MIT-BIH arrhythmia database Continuous Wavelet

Transform (CWT), CNN
99.27%

Proposed 2022 MIT-BIH CNN, SVM,RF, KNN 99.98%
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The execution of our proposed model which gives an 
accuracy of 99.98%. This accuracy was validated via the 
following process,

1. The model was initially evaluated with a training & test-
ing ratio of 70:30, wherein standard deviation of sam-
ples was considered to divide the input datasets.

2. This process was repeated for N = 10 iterations, with 
different sets of training & testing samples.

3. Average accuracy from these iterations was used to 
obtain the final performance metrics.

These metrics assisted in evaluation of the final accuracy 
on given dataset. To further validate this process, the fol-
lowing Table 8 indicate training progress in every epoch.

Based on these runs (10 runs with different training & 
testing sets), standard deviation of error for the model was 
evaluated and can be observed from Table 9 as follows,

Upon observing the standard deviation, it can be con-
cluded that the model has low error, and thus can be used for 
a wide variety of real-time clinical applications.

5  Conclusion and future scope

In this research, a novel model are use to classify five heart-
beat classes, namely N, S, V, F, and Q, with MIT-BIH Heart-
beat Database. The proposed model network model are learn 
and generalise fast set-up, collective, easy execution, and 
better accuracy. All performance parameter values are better 
when compared with the recently decent algorithms. The 
performance of this model is confirmed on MIT-BIH stand-
ard dataset, which makes the system applicable for real-time 
use cases. The proposed ensemble classification model of 
CNN with random forest, SVM, and kNN out perform as 
compare to other existing models for MIT BIH heartbeat 
Database. The use of wavelet transforms for feature extrac-
tion, reduces the feature-length by maximizing variance 
between feature sets of different classes and improving 
overall performance. The proposed model has accuracy of 
99.98%, precision of 99.48%, recall of 99.73%, which gener-
ates a high f-Measure value of 99.6%. It is advised that the 
system must be tested for other ECG datasets, including but 
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Table 5  Test precision for combined dataset

Ref Year Database Classifier TP %

Proposed 2021 MIT-BIH CNN, SVM,RF,KNN 99.47%

Table 6  Test recall for combined dataset

Ref Year Database Classifier TR %

Proposed 2021 MIT-BIH CNN,SVM,RF,KNN 99.73%

Table 7  Test f-Measure for combined dataset

Ref Year Database Classifier TP %

[48] 2021 MIT-BIH-
Arrhyth-
mia

CWT,CNN 94.43%

Proposed 2021 MIT BIH CNN, SVM, RF, KNN 99.60%
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not limited to Physionet, PTB Datasets, Mendeley datasets 
etc. The evaluation of real-time energy consumption and 
optimization for clinical use might be future scope of pro-
posed research work.
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