
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (October 2022) 14(6):2951–2961
https://doi.org/10.1007/s41870-022-01045-1

ORIGINAL RESEARCH

An optimistic approach for task scheduling in cloud computing

Mehak Sharma1 · Mohit Kumar1 ·
Jitendra Kumar Samriya2

Received: 20 April 2022 / Accepted: 22 July 2022 / Published online: 15 August 2022
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2022

Keywords Cloud computing · VM placement · Virtual
machine · QoS parameters · Scheduling

1 Introduction

Cloud Computing is a computing paradigm that offered on-
demand, ubiquitous, continent services to end-users any-
where and anytime that were not available in other comput-
ing paradigms such as Grid computing, Cluster Computing,
etc. It delivered the resources (hardware and software) in
the form of services through virtualization technology [1].
Cloud users, as well as service providers, can leverage the
advantage of virtualization technology that improves the
utilization of cloud resources by allocating them in a multi-
tenant environment. Each instance works as an individual
computing machine exclusively which helps the customer
to have a sense of security while dealing with sensitive
information in the Cloud. The customers of the cloud can
deploy their applications and use the applications installed
on virtual machines by using internet technology [2]. The
end users can expect QoS-aware-based service and ensure
high availability, scalability, elasticity, resource pooling, etc.
[3, 4]. It consists of a pool of resources that are connected
in private or public networks, to give dynamically scalable
infrastructure for application, data, and file storage with
minimal management effort [5].

The cloud provides three types of delivery models such
as infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS), and four types
of deployment models public cloud, private cloud, hybrid
cloud, and community cloud. End-users is benefitted from
the services and models, while service provider wants to
earn maximum profit from the cloud resources [6]. Organi-
zations do not need to purchase the high computing machine,

Abstract Cloud computing is gaining popularity around
the globe over the last decade due to offering various types
of services to end-users. Virtual machines (VM) Configu-
ration is an imperative part of the Cloud which has turned
into the focal point of attraction for many researchers nowa-
days. The objective of VM placement is to find an optimal
physical host in the data center for deploying the VM. It
becomes a challenging issue due to dynamism, uncertainty,
and elasticity-based demands of end-users as well as the
heterogeneous nature of cloud resources, which directly
affect the quality-of-service (QoS) parameters like cost,
energy consumption, utilization of resources, time, etc.
Lots of VM placement techniques have been proposed in
cloud computing, but the entire approach failed to achieve
the optimal results in the form of QoS parameters and is
unable to reduce the overhead. Hence, we have proposed an
optimistic technique for VM placement that improves the
mentioned QoS parameters. Further, the goal of this article
is to reduce the configuration overhead in Cloud through
effective scheduling techniques in which dynamically con-
figured VMs are consolidated over fewer hosts. The experi-
ments are conducted over the CloudSim simulation toolkit
to analyze the performance of the proposed approach. The
simulation results demonstrate that the proposed optimistic
approach improves the QoS parameters in a significant way
in comparison with other scheduling approaches like PSO-
COGENT, Min-Min, and FCFS.

 * Mohit Kumar
 kumarmohit@nitj.ac.in
1 Department of CSE, SLIET, Longowal, India
2 Department of IT, NIT Jalandhar, Jalandhar, India

http://orcid.org/0000-0003-1600-6872
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-01045-1&domain=pdf

2952 Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

and software resources based on their rising demand instead
of that they can hire the resources from the cloud service
providers on a payment basis within a few seconds. Due to
the enormous benefits of cloud-based services, leading cloud
service providers like Amazon, Google, Microsoft, IBM,
Apple, etc. are attracting individuals to the cloud-based
services [7]. Configuration of Virtual Machines is another
essential aspect of the Cloud, a VM is configured by provid-
ing underline physical resources such as CPU, memory, stor-
age and other peripheral devices based upon the requirement
through the hypervisor or manually by the administrator [8].

If we go through the deep about the configuration of Vir-
tual Machines (VMs), we would realize that VMs are made
up of files that consist of records and depict the properties of
VMs. These files contain the server definition, the number of
virtual processors (vCPUs), random access memory (RAM),
the number of system interface cards (NICs) in the virtual
server, and many more [6]. Once a VM is configured, it can
be powered on like a physical server, loaded with an operat-
ing system and other software solutions. Configuring VMs
again and again in the Cloud to meet the demands prompts a
noteworthy increment in the configuration time of VMs that
leads to overhead as well as service level agreement (SLA)
violations. Multiple virtual machines are deployed over the
physical host based upon the demand of end-users as well as
the configuration resources of the physical host. There are
lots of hosts are available in a data center, hence the place-
ment of a VM over the optimal host is always a critical issue
for the service provider. The objective of the VM placement
problem is to find the most appropriate physical host as per
the requirement of end-users and avoid the possibility of
an under-loaded or over-loaded physical host. The optimal
VM placement approach optimizes the QoS parameters like
energy consumption, utilization of resources, cost, and time
without violating the SLA [9, 10]. Hence, we have proposed
an optimistic approach for Virtual Machines Placement that
improves the mentioned QoS parameters and reduces the
VM migration as well as overhead without violating the
SLA and other constraints in cloud computing.

The rest of the paper is organized as follows. Section 2
demonstrates related work. In Sect. 3, the system model of
the proposed work has been explained. Section 4 includes
the Proposed Task scheduling model for efficient VM place-
ment. In Sect. 5, Results and discussions have been made
followed by a Conclusion in Sect. 6.

2 Related work

Many algorithms have been proposed for VM placement and
task scheduling in the last decade. A task scheduling strategy
in the light of virtual machine matching was proposed by
Zhang and Zhou [11]. The goal of the proposed approach

was to schedule tasks in the minimum amount of time and to
limit non-reasonable task mapping. A failure-aware virtual
machine reconfiguration strategy for Cloud in the context
to failures was proposed by Luo and Li Qi [12]. This work
presented a failure expectation system as a proactive strategy
to encourage task scheduling and virtual machine reconfigu-
ration. The methodology proposed failure forecast strategies
to decrease the potential failure effect on the quality and effi-
ciency of the Cloud environment. Min-Min scheduling tech-
nique has been proposed to balance the workload and reduce
the make-span time, but the algorithm failed to achieve it
due to rescheduling the task [23]. Mohit Kumar and S. C.
Sharma proposed an efficient dynamic algorithm for task
scheduling based on the last optimal k-interval and improve
various QoS parameters within the deadline of tasks. Fur-
ther, the developed algorithm also provides the flexibility
to end-user to expand or shrink (elasticity) the demand at
run time [13]. Sahal and Omara proposed the article with
the point to inspect the homogeneity and heterogeneity of
VM configuration for the task of assignments and satisfy
the perfect time and cost [14]. Saha and Hasan, a decision-
making algorithm to decide the attainability to migrate a
task to a cloud server for computing concentrated tasks has
been proposed and actualized [15]. Hermenier et al. [16],
state that clusters provide capable processing of tasks but it
does not consider the dynamic nature of tasks and makes a
rigid task to VM mapping. Dynamic consolidation of VMs
is necessary as it helps in overcoming the overload condi-
tions in the Cloud environment as well as helps in packing
the VMs over a few numbers physical hosts to reduce the
power and energy.

Past consolidation techniques for task placement consider
only local optimization while neglecting the overall global
optimization. The Entropy resource manager for homoge-
neous clusters, not only provides dynamic consolidation
but also keeps in mind the migration overhead in this arti-
cle. The task mapping is done in a better way by taking not
only local optimization but also global optimization into 19
accounts. This paper is focused on migration overhead using
the concept of entropy to reduce the migration overhead.
Guo et al. [17], a delay-optimal VM scheduling algorithm
is proposed that consists of resources like CPU, storage, and
memory. Different kinds of VMs are allocated to upcoming
demand to complete it before the deadline. A queuing model
is used to handle the dynamic workloads of consumers. The
basic decision process for delaying optimal VM schedul-
ing depends upon the vector of VM configuration and the
objective is also to reduce the average task completion time.
Shortest job first (SJF) and min-min best fit (MMBF) sched-
uling algorithms are combined to make a new hybrid algo-
rithm, but most of the proposed algorithms are unable to
select the optimal host for the VM placement to fulfill the
demand of end-users which leads to the problem of over or

2953Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

under-loaded host along with overhead. Hence, we have pro-
posed an optimistic model to overcome the mentioned issue
and find an optimal host for the VM to execute the end-user
tasks in minimum time and cost without any SLA violation.

3 Problem definition and system model

This section discusses the problem definition related to VM
placement at optimal host along with their important QoS
parameters. Further, we will formulate the problem in math-
ematical format to define the fitness and objective function
by considering the Cloud datacenter model.

3.1 Problem Definition

The objective of the proposed approach is to find the optimal
host for deploying the virtual machine and reduce the pos-
sibility of over and under-utilization of the physical host.

3.2 Datacenter model

The Cloud datacenter D is considered as a finite set of
M physical hosts represented as D = {PH1, PH2, PH3

………..PHM}. Each physical host PHi has attributes with
the name CPU capacity Ci(in MIPS), Memory Mi (in GB),
disk storage capacity Di (in GB), Bandwidth BWi and work-
ing state Si [18, 19].

In the present research work, we have considered hetero-
geneous types of physical hosts with different CPU capaci-
ties, and range of main memory from 1 to 16 GB for experi-
mental purposes. Working state of host Hi . is defined by
Eq. 2 (active or inactive state).

The physical host is always ready for the execution of the
user’s applications in active mode while the physical host is
switch to a power-saving mode and needs to be activated for
the execution of applications in an inactive state. In an inac-
tive state, the n number of VMs can be deployed on the
physical host Hi represented by the set { VMi1, VMi2, ……
VMin} where VMij denotes jth VM deployed on ith physical
host. Each virtual machine is represented with the attributes
such as CPU capacity of VMj at Hi is CVMij

 (in MIPS), mem-
ory MVMij

 (in GB), disk storage capacity DVMij
 (in GB), band-

width BWVMij
 , state SVMij

 and STVMij
 depicts ‘scheduled task’

on the virtual machine VMij.

(1)PHi =
{

Ci, Mi, Di, BWi, Si
}

where (1 ≤ i ≤ M)

(2)Si =

{

0 if host is inactive state

1 if host is in Active state
(2)

Working state of virtual machines SVMij
 can be defined

(Executing or Non-Executing) by Eq. 4.

In the Executing state, a task is scheduled and executed
on a VM while in a non-executing state VM remains idle and
does not execute any task. To efficiently utilize the resources
of physical hosts in the data center, firstly find the optimal
physical host and then deployed VMs over the host without
degrading the QoS parameters.

3.3 Task model

In this section, we defined the model for end user’s tasks/
applications. Suppose, there are set of CPU intensive tasks
are coming at cloud end for the services T = {t1, t2, t3…….…tp
}, where each task tk is represented as:

ak represents the ‘arrival time’, tsk represents the size
of the task in million instructions (MI), dk represents the
deadline of end-user’s tasks, sk is the time, when tasks start
their execution over the virtual machines, Ek represents the
execution time of the task and fk represents the expected
finish time of the task tk . Concerning the CPU capacity of
the VM, the execution time Ek of a task tk running on VMij
is calculated as:

Execution time of all the tasks T is defined by Eq. 7

where �tkVMj
 is binary decision variable and its value is

defined in Eq. 8 [20]

The expected finish time of the task tk at the VMj is cal-
culated by Eq. 9.

The makespan (MS) time of the entire workload at the
cloud end can be calculated by Eq. 10

(3)VMij =

{

CVMij
,MVMij

,DVMij
,BWVMij,

SVMij
, STVMij

}

(4)

SVMij
=

{

EXECUTING if executing a task

NON - EXECUTING if not executing a task

(5)tk =
{

ak, tsk, dk, sk, Ek, fk
}

(6)Ek =
tsk

CVMij

(7)Total Execution time ETtkVMj
=

p
∑

i=1

�tkVMj
∗

tsk

CVMij

.

(8)�tkVMj
=

{

1 if tk is assigned to VMj

0 if tk is not assigned to VMj

(9)fk = ak + Ek

2954 Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

The objective of the proposed approach is to minimize
the makespan time by efficiently utilizing the resources so
that end users have to pay less amount for the services. Task
guarantee ratio depicts the number of tasks effectively depart
from Cloud after completion of their execution within the
deadline. It is calculated using equation the 11.

VM Consumption represents the ratio to configured the
virtual machines for processing the upcoming tasks and it is
calculated using the Eq. 12.

Task execution overhead depicts the aggregate sum of
time required in seconds to configure VMs and time for
tasks migration as well as task execution. It is calculated
by Eq. 13.

(10)MS = Max

n
∑

j=1

fVMj

(11)

Task Guarantee Ratio ∶
Number of tasks depart successfully

Total number of tasks
∗ 100

(12)

VM Consumption =
Number of VMs Configured

Total number of tasks
∗ 100

(13)

Task execution Overhead ∶
Total overhead

Total number of tasks
∗ 100

4 Proposed task scheduling model

In this research work, we present a scheduling model for
the reduction of VM configuration overhead in the Cloud
as shown in Fig. 1. The function of each component in the
architecture is explained corresponding to the task’s execu-
tion cycle as follows:

Task Receiver The Task Receiver is the initial com-
ponent of the architecture that receives the upcoming
requests (tasks) dynamically submitted by end-users in
the Cloud environment. It has two sub-components named
Arrival Queue and Type Checker. The Arrival Queue is an
input buffer where the incoming tasks requests are queued
for further execution and the Type Checker examines the
parameters of the task like task size, its deadline, type of
tasks and required resources etc. There may be different
types of tasks i.e., some tasks are required high computa-
tion oriented VM, low computation oriented VM, medium
computation oriented VM etc. as shown in Table 1. Hence,
type 0 task required the CPU capacity less than or equal to
250 MIPS. A task of type 0 can also be scheduled on VMs

Fig. 1 Proposed Architecture for scheduling the tasks

Table 1 Virtual machine
classes

Class CPU
capacity (in
MIPS)

1 ≤ 250
2 251–500
3 501–750
4 751–1000

2955Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

with higher CPU capacity if low computation-oriented
VM is not free for execution. Similarly, if a task has type
1, it can be scheduled on VM of class either 2, 3 or 4. A
task of type 2 can be scheduled on VM of class either 3
or 4 and a task of type 3 must be scheduled on a VM of
class 4 only.

Task Scheduler The aim of task scheduler is to schedule
the upcoming workload over the running heterogeneous
VMs for execution. It has sub-components as VM Allo-
cator, Task Migrator, VM Configure Module, and VM
Searching Module. The VM Allocator allocates the tasks
to the optimal VM instance for the execution with the help
of other sub-components. First, it is checked if any pre-
configured VM is exist for the execution of tasks when it
arrived. If no pre-configured VM is found, then, VM Allo-
cator calls to VM Configure Module and VM Searching
Module to search and configure the optimal VM accord-
ing to the requirements of the task. VM searching module
searches pre-configured VMs in decreasing order of their
resource capacity. Upcoming task request is mapped with
the available running VMs and find the optimal resource
for the execution of tasks. In this way, VM Searching Mod-
ule finds the optimal virtual machines for entire upcoming
requests. If any pre-configured VM is found in idle condi-
tion and capable of meeting the task’s requirements within
the deadline, then, the task will be scheduled on this VM
and further searching is stopped. If no pre-configured VM
is found during the search which is both idle and capable
of meeting the task’s requirements, then, VM Searching
Module calls Task Migrator to carry out further process-
ing. The task will now enter the Migration queue.

Task Migrator performs the migration to schedule the
task on pre-configured VMs which are non-idle, and it
follows the two main steps as:

• Non-idle VMs (VMs on which tasks are already sched-
uled and state as “EXECUTING”) are searched in
decreasing order of their CPU capacity. While search-
ing non-idle VMs, if any VM is found capable of
meeting the task’s requirements within the deadline,
then, the currently executing task on this non-idle VM
(termed as Source VM) needs to be migrated to some
other VM which is idle.

• Idle VMs (No tasks are scheduled and state as “NON-
EXECUTING”) are searched which could execute the
remaining size of currently executing a task on the
Source VM within the deadline. If such VM is discov-
ered (termed as Destination VM), then, the task cur-
rently executing on the Source VM will be migrated
to the Destination VM and the task (to be executed)
will be scheduled on the Source VM. The task (to be
executed) will now enter the Scheduled queue.

Task Migrator makes space for the tasks on pre-config-
ured non-idle VMs by migrating their tasks to other suitable
and idle VMs with the goal to configure another VM for the
task. The entire procedure of migrating a task from Source
VM to Destination VM takes approximately 2 s [21]. VM
Allocator will call the VM Configure module to configure a
VM for the task execution. Before configuring the VM, all
active hosts have been arranged accordingly to BHF (Busiest
Host First) strategy in which the hosts are sorted in increas-
ing order of their Remaining CPU Capacity [22]. This will
help in configuring VM over the host first that has a note-
worthy usage of its resources and attempting to consolidate
VMs over a smaller number of active hosts and utilizing the
resources of hosts in a greater degree.

VM Configure Module configures a VM with the help of
Virtual Machine Monitor (VMM) that provides underline
physical resources to a VM according to its requirements. If
a VM is successfully configured on an active host arranged
by BHF strategy, then, the task will be scheduled on this
VM, otherwise, an Inactive host is waked up and it takes
approximately 90 s.

Task Execution Tracer A task enters in the running queue
in a FIFO manner and its execution initiates with the help of
Task Execution Tracer on Cloud. The tasks’ expected finish
time is computed and the tasks are permitted to depart at
their expected finish time. Task’s inter-arrival Time depicts
the average time of the next task arrival in the Cloud. Tasks’
Inter-Arrival Time is calculated as:

Since the value of tasks’ Inter-Arrival Time can change,
subsequently, its value is calculated after a regular interval
of time. After being configured for the task’s inter-arrival
Time, if it is discovered, then some other tasks are now
scheduled on the idle VM that are capable of meeting its
requirements during the task’s inter-arrival Time. Flow chart
of the proposed approach is shown in Fig. 2.

Proposed Algorithm Algorithm 1 describes the steps
required for scheduling tasks in Cloud. Every task is sub-
mitted dynamically by end-users. Step 3–5 of the proposed
approach represents the configured VMs/VM exists or not.
If the condition is true, then VM Search function is called
otherwise VM is configured according to the requirements of
the task using VM deploy function in step 6. In steps 7–10,
it is checked if the expected finish time of task ftk is less
than or equal to the deadline of task dtk . If the condition is
true, then task tk successfully departs otherwise fails. After
execution of the task over the VM, it remains configured
for tasks’ Inter-Arrival Time represented as IAT in step 11.
After being configured for IAT VM undeploy function is
called in step 12.

(14)Inter − Arrival Time (IAT) =

p
∑

k=1

tk+1 − tk

p − 1

2956 Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

Algorithm1 Function task scheduling ()
flag1← FALSE, flag2← FALSE

1. for each task do
2. Add to arrival queue;
3. if VM configure! = NULL
4. Call VM Search ();
5. elseif flag1==FALSE &&

flag2==FALSE
6. Call VM deploy
7. if <=
8. successfully departs;
9. else
10. fails;
11. VM remain configured for IAT;
12. Call VM undeploy ();

Algorithm 2 Function VM Search()

1. for every host do
2. if == ACTIVE
3. for each Virtual Machine on host do
4. Search decreasing order of
5. if == NON-EXECUTING && > =
6. Schedule over the virtual machine ;
7. Add to scheduled queue;
8. flag1← TRUE;
9. break; end if, end for
10. end if, end for
11. if flag1==FALSE
12. for each host do
13. if = =ACTIVE
14. for each search in decreasing order of capacity
15. If = EXECUTING && > =
16. ←
17. break; end if, end for
18. end if, end for
19. for each host do
20. for each on host do
21. if == ACTIVE && == NON-EXECUTING && =
22. ←
23. Migrate task scheduled on to
24. ← ;
25. flag2← TRUE;
26. Add to scheduled queue;
27. break; end if, end for, end for
28. if flag1==TRUE || flag2==TRUE
29. Execute and calculate ;
30. Add to running queue;
31. ← EXECUTING;
32. ← ;
33. end if

Algorithm 2 describes the steps involved in searching a
configured VM suitable for the execution of the task t

k
 sub-

mitted by the end users. If a VMj is found idle (NON-EXE-
CUTING) and the capacity of VM (CVMij

) is greater than or
equal to the capacity required by the task t

k
 . The task t

k
 is

scheduled on this VM and added in the scheduled queue. If
the status of a VM is found EXECUTING (which means
some tasks, say t

m
 , is already scheduled over VM) and

capacity of VM (CVMij
) is greater than or equal to the capac-

ity required by the task t
k
 , then, VM will work as v

source
 .

Further, VMs over active hosts have searched again. If
another VM is found idle during the search and the capacity
of VMij is greater than or equal to the capacity required by
task tm scheduled over non-idle vsource . The task tm is migrated
to VM vdestination and the task tk is scheduled over Virtual

2957Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

Fig. 2 Flowchart of Proposed Approach

Machine vsource . In addition, the task is migrated from vsource
to vdestination . The task tk is added to the scheduled queue as
it gets a VM for execution during task migration. If
flag1 = = TRUE which means an idle VM suitable for the
execution of the task tk is found or flag2 = = TRUE which
states that a VM is found for the execution of the task tk dur-
ing task migration, the task tk is added to the running queue
and task tm migrated to vdestination will also start its execution
and status of VM vdestination is set to EXECUTING. Algo-
rithm 3 depicts the function VM deploy (), and algorithm 4,
VM undeploy () function.

Algorithm 3. Function VM Deploy()

1. for every host do
2. If == ACTIVE && >=
3. Configure over ;
4. else
5. If == INACTIVE
6. ← ACTIVE;
7. Configure over ;
8. end if
9. Add to scheduled queue;
10. end for
11. Execute and add to running queue;
12. calculate ;

Algorithm 4. Function VM Undeploy()
1. for every host do
2. If == ACTIVE
3. for each over do
4. If ==NULL&&(+

IAT)== current time
5. Destroy ;
6. else
7. remain configured;
8. end for, end if
9. end for

5 Results and discussion

In this section, initially, we will discuss the experimental
environment, where we have tested the proposed algorithm
as well as other state-of-art algorithms. After that, the per-
formance of the proposed approach is compared with exist-
ing state-of-arts algorithms.

5.1 Experimental environment

We will test the performance of the developed optimistic
technique and its accuracy by correlating it with existing

2958 Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

several techniques. The performance evaluation of experi-
mental outcomes is done by using the Cloudsim simulation
toolkit and Eclipse IDE platform. All the above-mentioned
experimental analysis and development work is performed
at the Intel Xeon Platinum 8180 M (2.0 GHz) and 16 GB
RAM capacity with 64 bits windows-10 operating system.
Here, we have created multiple datacenters to find out the
experimental outcome of the proposed algorithm. We can
deploy multiple physical hosts over a datacenter based upon
the resource configuration of the datacenter.

5.2 Results and discussion about QoS parameters

This section demonstrates the results of experiments per-
formed on the CloudSim toolkit for assessing different
parameters, like makespan time, Guarantee Ratio, VM
Consumption, energy consumption, and Task Execution
Overhead.

Makespan Time: We have generated synthetic workloads
that have different types of tasks and they required different
processing speeds for the execution. The virtual machines
in our simulation have heterogeneous processing power and
running over an optimal host. To assess, the performance
of the developed algorithm, the end user’s workload is allo-
cated to the running host and calculated the makespan time
of the developed algorithm. We have considered two cases
to assess the performance.

Case 1: We have deployed 500 heterogeneous virtual
machines over the physical host and started to allocate the
workload based upon the proposed algorithm. Initially, the
end user’s workload consists of 1000 diverse tasks and their
requirement varies in terms of computation resources. After
allocation of workload to 500 VMs by developed algorithm,
makespan time of VMs is calculated. The same synthetic
workload is generated for the other state-of-arts algorithms
and allocated to the virtual machines. After the simulation
experiment, Fig. 3 shows that the proposed optimistic algo-
rithm provides the optimal makespan time as compared with
others scheduling approaches such as PSO-COGENT [20],
Min-Min [23], first come first serve (FCFS) [24]. Further, we

have increased the number of tasks from 1000 to 4000 and,
simulation-based results are (shown in Fig. 3) verified that
the proposed optimistic approach is much better than other
scheduling policies.

Case 2: We have generated the synthetic workload that
consists of 4000 diverse tasks and vary the number of cloud
resources (VMs) from 300 to 1000 that are deployed over
the physical host. Initially, the proposed algorithm allocates
the workload among the 300 VMs to perform the execution.
The same scenario is created for other scheduling algorithm
to calculate the makespan time. Figure 4 shows that the pro-
posed optimistic algorithm provides the optimal makespan
time as compared with others scheduling approaches such
as PSO-COGENT [20], Min-Min [23], FCFS [24]. Further,
we have increased the number of VMs from 300 to 1000 and
simulation-based results are (shown in Fig. 4) verified that
the proposed optimistic approach is much better than other
scheduling policies.

Task guarantee ratio It is calculated using the Eq. 11,
where ratio of departed task and total number of submitted
task is calculated in the simulation environment. To calcu-
late the task guarantee ratio in the simulation environment,
we have generated synthetic workload (diverse tasks) along
with the deadline and assigned to running virtual machines
using the proposed approach as well as the existing schedul-
ing approach. Calculated results shown in Fig. 5 proved that
the proposed approach provides a better task guarantee ratio
as compared with other scheduling approaches like PSO-
COGENT [20], Min-Min [23], FCFS [24]. Further, as we
increased the number of tasks in the simulation environment,
the task guarantee ratio slightly decreases as shown in Fig. 5.

VM Consumption: VM Consumption portrays the num-
ber of virtual machines configured over the physical host
to execute the tasks. It is calculated by Eq. 12. Synthetic
workload (diverse tasks) has been generated to calculate the
consumption of virtual machines using the proposed algo-
rithm as well as other scheduling approaches. As Fig. 6 dem-
onstrates the quantity of VMs configured to execute tasks in
the proposed approach are roughly 50–60% of the number
utilized in the existing methodology, while other approaches

Fig. 3 Makespan time compari-
son at fixed VMs

2959Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

have approximately 60–80%. The proposed scheduling
approach has helped in an incredible way to reduce the quan-
tity of VMs configured to execute tasks.

Task execution Overhead It is the ratio of total over-
head with number of submitted requests and calculated by
Eq. 13. In the existing approach, task execution overhead
is examined, VM configuration, migration overhead and
execution are considered because lots of factor affects the

task migration during the scheduling. We have generated
the number of tasks and processed over the 500 heterogene-
ous virtual machines using the proposed approach as well
as other scheduling approaches like PSO-COGENT [20],
Min-Min [23], FCFS [24]. Simulation results show in Fig. 7
represents that the overhead of the proposed approach is less
than the other scheduling approaches. The migration and
configuration overhead both consolidated in the proposed

Fig. 4 Makespan time compari-
son at fixed Tasks

Fig. 5 Task guarantee ratio

Fig. 6 Consumption of VMs

2960 Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

approach and the total overhead is roughly half of the over-
head in the existing approach while serving customers’
requirements dynamically.

6 Conclusion

Optimal virtual placement is one of the interesting topics in
the field of the cloud because lots of performance param-
eters depend upon it. In the existing work, a large number
of VMs are configured to serve the requirements of the end-
users. Configuring a VM takes a lot of time, which leads
to degrade the performance. Hence, we have used an opti-
mistic approach to overcome the above-mentioned issues
and reduce the overhead as well as makespan time of end
users’ tasks. Further, the proposed approach used a produc-
tive scheduling strategy to schedule tasks over VMs, and
task migration is utilized that helped incredibly to decrease
the quantity of VMs for the execution of tasks in a dynamic
environment. Also, tasks are attempted to schedule effec-
tively over the pre-configured VMs with the goal that the
configuration overhead of VMs can be reduced and avoid
the possibility of over or under-utilization of the physical
host. To assess the performance of the proposed approach,
we have used Cloudsim toolkit 3.03 with synthetic work-
load. Experimental results are shown in Figs. 3, 4, 5, 6 and
7 proved that our approach of scheduling tasks has helped
in an incredible way to improve the QoS parameters. In the
future, we will apply the proposed approach to calculate
other QoS parameters like reliability, energy consumption,
availability, etc. We can apply the machine learning based
approach to predict the upcoming workload, to allocate the
cloud datacenter resources in more optimal fashion.

Author contributions MS: writing—original draft, results and out-
come. MK: software, experimental/simulation work, and Visualization.
JKS: conceptualization and methodology, review & editing.

Funding No funds, grants, or other support was receive for this
research work.

Data availability The synthetic datasets has been generated by
author’s to evaluate the performance of the proposed algorithm that
can be provided after the request.

Declarations

Conflict of interest The authors have no conflicts of interest to de-
clare that are relevant to the content of this article.

Human and/or animals participants The article did not involve
human and/or animals participants.

References

 1. Kumar M et al (2019) A comprehensive survey for scheduling
techniques in cloud computing. J Netw Comput Appl 143:1–33

 2. Mell PM, Grance T (2011) The NIST definition of cloud comput-
ing. National Institute of Standards and Technology: U.S. Depart-
ment of Commerce, Gaithersburg, MD

 3. Kumar M et al (2017) Elastic and flexible deadline constraint
load Balancing algorithm for Cloud Computing. Proc Comput Sci
125:717–724

 4. Gill SS et al (2018) CHOPPER: an intelligent QoS-aware auto-
nomic resource management approach for cloud computing. Clus-
ter Comput 21(2):1203–2124

 5. Buyya R et al (2009) Cloud computing and emerging IT plat-
forms: Vision, hype, and reality for delivering computing as the
5th utility. Future Gener Comput Syst 25(6):599–616

 6. Masdari M, Nabavi SS, Ahmadi V (2016) An overview of virtual
machine placement schemes in cloud computing. J Netw Comput
Appl 66:106–127

 7. Chen W, Qiao X, Wei J, Huang T (2012) A two-level virtual
machine self-reconfiguration mechanism for the cloud comput-
ing platforms. In: Proc.—IEEE 9th Int. Conf. Ubiquitous Intell.
Comput. IEEE 9th Int. Conf. Auton. Trust. Comput. 50 UIC-ATC
2012, pp 563–570

 8. Do AV, Chen J, Wang C, Lee YC, Zomaya AY, Zhou BB (2011)
Profiling applications for virtual machine placement in clouds. In:
Proceedings of the 4th IEEE international conference on cloud
computing, pp 660–667

Fig. 7 Tasks overhead of
proposed approach and other
scheduling approach

2961Int. j. inf. tecnol. (October 2022) 14(6):2951–2961

1 3

 9. Gupta MK, Jain A, Amgoth T (2018) Power and resource-aware
virtual machine placement for IaaS cloud. Sustain Computi Inf
Syst 19:52–60

 10. Jiang H-P, Chen W-M (2018) Self-adaptive resource allocation for
energy-aware virtual machine placement in dynamic computing
cloud. J Netw Comput Appl 120:119–129

 11. Zhang P, Zhou M (2017) Task scheduling based on virtual
machine matching in clouds. In: Proceedings of the 13th IEEE
Conference on Automation Science and Engineering (CASE), pp
618–623

 12. Luo Y, Qi L (2012) Failure-aware virtual machine configuration
for cloud computing. In: Proc.—2012 IEEE Asia-Pacific Serv.
Comput. Conf. APSCC 2012, p. 125–132

 13. Kumar M, Sharma SC (2018) Deadline constrained based dynamic
load balancing algorithm with elasticity in cloud environment.
Comput Electr Eng 69:395–411

 14. Sahal R, Omara FA (2015) Effective virtual machine configuration
for cloud environment. In: 2014 9th Int. Conf. Informatics Syst.
INFOS 2014, pp PDC15–PDC20

 15. Saha S, Hasan MS (2017) Effective task migration to reduce exe-
cution time in mobile cloud computing. In:ICAC 2017—2017
23rd IEEE Int. Conf. Autom. Comput. Addressing Glob. Chal-
lenges through Autom. Comput., no. September, pp 7–8

 16. Hermenier F, Lorca X, Menaud JM, Muller G, Lawall J (2009)
Entropy: a consolidation manager for clusters. In: Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, pp 41–50

 17. Guo M, Guan Q, Ke W (2018) Optimal Scheduling of VMs in
Queueing Cloud Computing Systems with a Heterogeneous Work-
load. IEEE Access 6:15178–15191

 18. Zhu X, Yang LT, Chen H, Wang J, Yin S, Liu X (2014) Real-
time tasks oriented energy-aware scheduling in virtualized clouds.
IEEE Trans Cloud Comput 2(2):168–180

 19. Samimi P, Teimouri Y, Mukhtar M (2016) A combinatorial double
auction resource allocation model in cloud computing. Inf Sci
(NY) 357:201–216

 20. Kumar M, Sharma SC (2018) “PSO-COGENT: Cost and Energy
Efficient scheduling in Cloud environment with deadline con-
straint. Sustain Comput Inf Syst 19:147–164

 21. Shamsinezhad E, Shahbahrami A, Hedayati A, Zadeh AK, Bani-
rostam H (2013) Presentation methods for task migration in cloud
computing by combination of Yu Router and Post-copy. Int J
Comput Sci 10(4)

 22. Wang J, Bao W, Zhu X, Yang LT, Xiang Y (2015) FESTAL: fault-
tolerant elastic scheduling algorithm for real-time tasks in virtual-
ized clouds. IEEE Trans Comput 64(9):2545–2558

 23. Chen et al (2013) User-priority guided min-min scheduling algo-
rithm for load balancing in cloud computing. In: National Confer-
ence on Parallel Computing Technologies., Bangalore., KA, 2013,
pp 1–8

 24. Li W, Shi H (2009) Dynamic load balancing algorithm based
on FCFS. In: Innovative computing, information and control
(ICICIC), 2009 Fourth International Conference on. IEEE, 2009,
pp 1528–1531

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

	An optimistic approach for task scheduling in cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition and system model
	3.1 Problem Definition
	3.2 Datacenter model
	3.3 Task model

	4 Proposed task scheduling model
	5 Results and discussion
	5.1 Experimental environment
	5.2 Results and discussion about QoS parameters

	6 Conclusion
	References

