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1  Introduction

An ocean, sea, lake, pond, reservoir, river, canal, or aqui-
fer are considered as Underwater Environment (UE). Sev-
eral tasks are conducted in the UE, such as seafloor survey, 
vehicle navigation and positioning, pipeline inspection, and 
drowning detection [1]. The quality of underwater images 
is affected by transmission media and the underwater envi-
ronment. Some of the influential factors of the underwa-
ter environment are water turbidity, artificial lighting, light 
absorption, and scattering due to particles of water [2]. The 
captured underwater images have more spatial and visual 
redundancy when compared with the surface images. Crew-
less underwater vehicles consisting of Remotely Operated 
Underwater Vehicles (ROUVs) [3] and Autonomous Under-
water Vehicles (AUVs) are deployed to acquire, store, and 
transmit video or images for monitoring.

The ROUVs, AUVs, their imaging sensors, and inter-
net and underwater wireless sensor networks constitute the 
Internet of Underwater Things (IoUT).Some of the chal-
lenges faced by IoUT for transferring underwater images are 
[4]: Considerable transmission distance between the AUVs 
and the terrestrial control centres. Overall communication 
connectivity and quality link in transmitting underwater 
images are affected by low bandwidth, propagation delays, 
communication range on non-rechargeable batteries in the 
sensor node. To overcome the above challenges, there is a 
need for an energy-efficient transmission method. Image 
compression minimizes the quantity of data by successfully 
coding digital images to minimize the number of bits being 
communicated to accomplish energy efficiency in IoUT 
nodes.

Conventional image compression techniques like the Joint 
Pictures Experts Group (JPEG) [5], JPEG2000 [6], devel-
oped by the Joint Pictures Experts Group, use linear and 
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invertible transforms to convert an image into coefficients 
with low statistical dependencies. These methods may result 
in noticeable artifacts such as “blurring”, “ringing”, and 
“blocking” for low-rate image compression. There are other 
traditional non-learning techniques such as Discrete Wave-
let Transform (DWT) [7], Embedded Zero trees of Wavelet 
transforms (EZW) [8], Set Partitioning in Hierarchical Trees 
(SPIHT) [9], for image compression. Kahu et al. [10] pro-
posed a Contrast Sensitive Function based quantization in 
JPEG to provide better performance at low bitrates. These 
methods have proved to be inefficient for underwater images.

Emergence of Deep Convolutional Neural Networks 
(DCNNs) are expected to achieve better compression per-
formance than existing image compression standards by 
stacking multiple convolution layers to provide flexible non-
linear analysis and synthesis transformations [11]. Learning 
with non-differential quantizer and non-adaptability with the 
existing image codecs are still challenging issues in DCNNs. 
Residual encoder-decoder [12] contains symmetric convolu-
tion (encoder) and deconvolution (decoder) layers. In resid-
ual encoders, the gradients tend to decrease in magnitude 
as they traverse long paths from later Neural Network (NN) 
stages to affect changes in the previous stages. So, more 
layers will affect the reconstructed quality of underground 
water images. Hussain and Jeong [13] proposed Deep Neu-
ral Network (DNN) with the Rectified Linear Unit (ReLU). 
The compression rates can be determined by adjusting the 
number of hidden layers and hidden neurons between the 
input and output neurons. Johnston et al. [14] proposed three 
techniques to boost the baseline recurrent image compres-
sion architecture by including features like—perceptually 
weighted training loss, hidden-state priming, and spatially 
adaptive bit rates. Li et al. [15] proposed a CNN model 
that addresses quantization and entropy rate estimation by 
using a content-weighted importance map. A symmetric 
Convolutional Autoencoder (CAE) is proposed by Cheng 
et al. [16] to replace the transform and inverse transform 
in traditional codecs to achieve high coding efficiency. The 
above-discussed methods accomplished the state-of-the-art 
results but were inconsistent with the existing image codecs, 
limiting their use in existing systems. Compact Representa-
tion CNN proposed by Li et al. [17] generates low resolution 
images from high resolution ones, which are both visually 
pleasing and informative. Zhang et al. [18] proposed image 
restoration technique which reconstructs high-resolution 
image from low-resolution image. The works [17, 18] can 
be used to achieve the quality of the reconstructed image, 
but they cannot be used to obtain low bit-rates. Jiang et al. 
[19] have utilized Compact-CNN followed by standard JPEG 
for image compression on the sender side and reconstructed 
image on the receiver side using Reconstruction CNN 
(C-CNN_R-CNN) to achieve both the low-bitrates and the 
reconstructed image quality.

This paper proposes a compression framework inspired 
from [10, 17, 18], integrates deep-learning and traditional 
techniques for underwater image compression to improve 
both the compression rate and quality of the restored 
image. It consists of Contrast Sensitivity Function (CSF) 
quantization-based JPEG with a non-symmetric DCNN 
image compression model to improve reconstructed image 
quality and low compression rate. The proposed model 
works on two levels. At the first level, two CNNs, Com-
pact CNN (C-CNN) and Residual Dense Convolutional 
Neural Network (RD-CNN), are trained together to retain 
the structural information of data and to provide better 
reconstruct. As the underwater images have more spatial 
and visual redundancy, C-CNN helps preserve maximum 
information and provides a visually pleasing compact 
image. In the second level, the compact representation of 
the original underwater image is subjected to CSF quanti-
zation-based JPEG encoding to improve the compression 
rate further. RD-CNN helps to improve the quality of the 
up-scaled-decompressed image.

The advantages of the proposed methodology are:

	 (i)	 It combines the merits of both traditional and deep 
learning techniques to provide better compression 
rates and reconstruction quality underwater images 
for monitoring purposes.

	 (ii)	 It overcomes the problems of blurring, ringing, and 
blocking artifacts caused due to traditional techniques 
by training C-CNN and RD-CNN together to preserve 
the structural information of data.

	(iii)	 The reconstructed images from the proposed frame-
work is subjected to fish classification using transfer 
learning techniques. The results shows significant per-
formance in recognition of fishes under study.

The paper is organised as follows. Section 2 contains 
details of the experimental system, a summary of the data-
set used for training and testing, metrics used for perfor-
mance evaluation. Section 3 provides the description of 
the proposed methodology. Section 4 contains the experi-
mental results and discussion. Section 5 concludes why the 
proposed method is superior to the existing techniques and 
future work.

2 � Materials and methods

This section contains details of the experimental setup 
required for carrying out the proposed work, summary of the 
dataset which is used for training and testing of the model 
under study and metrics used to evaluate the performance 
of the model.



3805Int. j. inf. tecnol. (December 2022) 14(7):3803–3814	

1 3

2.1 � Experimental system

The analysis has been carried out on Google Colaboratory. 
An image of size 128 × 128 × 3, Adaptive Moment Esti-
mation (Adam) optimizer [20] with 1e-3 as the learning 
rate, and 1000 epochs are used for training and testing.

2.2 � Dataset description

The fish image dataset [21] used for the experiment is 
taken from Fish4Knowledge, funded by EUSFP (European 
Union Seventh Framework Programme). The images are 
collected using ten underwater cameras to provide live 
video feeds. Some images are crowded, and some are 
blurred due to underwater lighting effects. To evaluate the 
proposed framework, 4,483 underwater images have been 
used for training the network. The trained network is tested 
on a sample of 200 images.

2.3 � Performance evaluation index

The efficiency of the proposed model can be evaluated 
using the following metrics:

1.	 Objective metrics such as Peak Signal to Noise Ratio 
(PSNR) and Structural Similarity Index Measure (SSIM) 
[22] are used to quantify the quality of the reconstructed 
underwater image for the original underwater image.

Consider x to represent the original image and y to rep-
resent the reconstructed image of size p × q. Then PSNR 
and SSIM can be defined using the formula given in Eqs. 
(1) and (2).

where,

Luminance comparison is made using l(x, y) function, 
Contrast comparison is made using c(x, y) function and 
Structure comparison is done using s(x, y) function.

2.	 Bits/Pixel is used to quantify the accomplishment of the 
compression technique by using the formula given in 
Eq. (3):

(1)PSNR(x, y) = 10 log10

(
2552

/
MSE(x, y)

)

(2)SSIM(x, y) = l(x, y)c(x, y)s(x, y)

MSE(x, y) =
1

pq

p∑
i=1

q∑
j=1

(
xij − yij

)2

where p denotes the number of rows, and q denotes the 
number of columns in the given image.

3.	 A relative measure names Compression Ratio (CR) is 
used to compute the ratio between the uncompressed 
image and compressed image using Eq. (4).

where, Iuncomp represents uncompressed image size and 
Icomp represents compressed image size.

The proposed methodology is compared with stand-
ard compression methods such as JPEG, JPEG with CSF 
based quantization (JPEG-CSF), and C-CNN_R-CNN. 
C-CNN_R-CNN utilizes Compact-CNN followed by stand-
ard JPEG for image compression on the sender side and 
reconstructs image on the receiver side using Reconstruc-
tion CNN. Whereas, the proposed method utilizes Com-
pact CNN followed by JPEG with CSF based quantization 
for image compression on the sender side and reconstructs 
image on the receiver side using Residual Dense Convolu-
tional Neural Network. The proposed methodology is also 
compared with Super-Resolution CNN (SRCNN) [23] to 
measure the quality of the reconstructed images.

3 � Proposed method

This section proposes a method that can deal with the 
artifacts such as “blurring”, “ringing”, and “blocking” for 
low-rate image compression faced by traditional image 
compression techniques and proved to be efficient and 
adaptable for underwater images than the recent works 
[11]. The existing methods produce poorly reconstructed 
image quality at a low compression rate as they cannot 
extract hierarchical features required for image reconstruc-
tion. Figure 1 represents the architecture of the proposed 
system, which consists of two CNNs, i.e., C-CNN and 
RD-CNN, which are trained together.

The proposed method consists of C-CNN and CSF 
quantization-based JPEG encoder at the sender side. 
C-CNN is used to retain the structural information 
of input 128 × 128 × 3 data. The output of C-CNN, a 
compressed 64 × 64 × 3 image, is fed as input to CSF 
quantization-based JPEG encoder for further compres-
sion. The compressed image is reconstructed using CSF 
quantization-based JPEG decoder on the receiver side and 

(3)bpp =
number of bits in the compressed stream

p × q × 3

(4)CR = Iuncomp
/
Icomp
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is subjected to bicubic interpolation. So, to restore it to 
its original image size of 128 × 128 × 3, the interpolated 
image is subjected to RD-CNN for image restoration. Each 
part of the proposed system is discussed in the following 
sub-sections.

3.1 � Architecture of CSF quantization‑based JPEG

The CSF quantization-based JPEG shown in Fig. 2 is a part 
of the proposed compression system. It uses linear and per-
ceptually uniform CIE La´b´ color space in the JPEG com-
pression, and the linear contrast sensitivity function is used 
to generate quantization matrices. CIE La’b’ is perceptu-
ally device-independent [24], uniform, linear, luminance-
chrominance color space. Due to this, quantization can be 
effectively implemented without perceptual visual quality 
loss [25]. There is no direct transformation from RGB color 
space to CIE La´b´. The conversion consists of the subse-
quent steps:

1.	 Transform gamma corrected RGB values to linear RGB.
2.	 Convert linear Rl Gl Bl to CIE XYZ using the following 

formula:

3.	 Convert CIE XYZ to CIE La’b’ [25–27] using Eqs. (5), 
(6) and (7):

where the function f is defined as follows [26–28]

After converting the RGB compact image produced by 
C-CNN into CIE La’b’ using steps 1–3, the sub-planes (L, 
a’ or b’) are divided into 8 × 8 (p × q) size non-overlap-
ping uniform blocks. The statistical moments (mean, vari-
ance) are calculated for each block, and a histogram table is 
constructed for all the blocks based on statistical moments 

⎡
⎢⎢⎣

X

Y

Z

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

0.4121 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

⎤
⎥⎥⎦
×

⎡
⎢⎢⎣

Rl

Gl

Bl

⎤
⎥⎥⎦

(5)L = 116 × f

(
Y

Yn

)
− 16

(6)a
�

= 500 ×

[
f

(
X

Xn

)
− f

(
Y

Yn

)]

(7)b
�

= 200 ×

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]

f (x) =

⎧
⎪⎨⎪⎩

x
1

3 x > 0.008856

7.787x +
16

116
x ≤ 0.008856
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Fig. 1   Architecture of Image compression model with CSF quantization-based JPEG
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and threshold values of mean & variance. Also, a new 
matrix Ix of size p/8 × q/8 is formed parallelly, which con-
tains indices of the blocks corresponding to the histogram 
table.

This matrix Ix merges the adjacent blocks of the same 
index values. Since adjacent blocks are grouped, this leads 
to varying block sizes from 8 × 8 to 32 × 32. Then, these 
block sizes are allotted indices from 0 to 15. Finally, a 
block size index array (Blx)  is formed using the histo-
gram table and the matrix Ix. The array Blx denotes the 
size of the block and its corresponding statistical moments 
in the histogram table. This is encoded using Exponen-
tial Golomb code [29] and sent as overhead information 
to the receiver side. As both position and size of image 
blocks are variable, the image structure of CSF_JPEG is 
more compatible than the hierarchical variable block size 
of H.264 or High Efficiency Video Coding (HEVC). Let 
M × N be the size of the image sub-blocks. These are 
subjected to Two Dimensional-Discrete Cosine Transform 
(2D-DCT). The transformed sub-blocks are subjected to 
CSF, further subjected to Zig-Zag ordering and Run-
length coding, respectively.

According to [30], CSF quantization is given as:

where f is defined as the spatial frequency for the M  ×  N 
matrix, measured in cycles/degrees:

where x1, y1 represents DCT block coordinates. Δ repre-
sents Pixel size, assumed to be 1.5 min/pixel [30] and Nn 
is defined as

A linear CSF as defined by Eq. (10), is used for quan-
tization matrix generation since Commission Interna-
tionale de l’Elcairage (CIE) La´b´ color space is used for 
compression.

fmax is defined as the maximum frequency in an M × N 
image sub-block and is calculated using Eq. (11):

Quantization matrix is defined as:

(8)CSF(f ) = 100
√
f exp(−0.13f )

(9)f
�
x1, y1

�
= 30

√
x1

2 + y1
2

Nn × Δ

Nn =
√
M × N

(10)CSF(f ) = c(f − fmax)

(11)fmax = 30

√
M2 + N2

Nn × Δ

(12)Quant
(
x1, y1

)
= min(T

(
x1, y1

)
× range, cmax(x1,y1))

For a given range of spatial frequencies, cmax(x1,y1) is 
defined as the matrix containing maximum values that 
DCT coefficients can take. T

(
x1, y1

)
 is defined as the 

threshold for DCT basis functions in an M × N matrix 
using Eq. (13):

Nm
(
x1, y1

)
 is defined as the normalization function used 

in 2D-DCT. Orientation Tuning Function (OTF) is defined 
as:

The obtained nonzero discrete cosine CSF based quan-
tized coefficients after applying Eq. (12) for each sub-block 
is zigzag ordered, and the zigzag ordered coefficients are 
encoded using run-length coding followed by Binary Arith-
metic (QM) coding. The encoded data is sent as bitstream to 
the decoder. Decoding is done at the decoder in the inverse 
order of the encoding procedure shown in Fig 2 to get the 
reconstructed image.

3.2 � Architecture of C‑CNN for compact representation

The underlying architecture of C-CNN is described in Fig. 3. 
To maintain the spatial structure of the underwater image, 
C-CNN uses three weight layers. Input image of size 128 
× 128 × 3 is given as input to the first Convolutional layer, 
which uses 64 filters of size 3 × 3 followed by ReLU activa-
tion. ReLU activation has the property of faster convergence 

(13)

T
�
x1, y1

�
=

⎧
⎪⎪⎨⎪⎪⎩

1

Nm
�
x1, y1

�
× CSF(f )

for x = 0 or y = 0

1

Nm
�
x1, y1

�
× CSF(f ) × OTF(x1, y1)

for x and y > 0

(14)OTF
�
x1, y1

�
=

⎧⎪⎨⎪⎩

exp

�
−9.5

�
x1

y2

�2
�

forx < y

exp

�
−9.5

�
x1

y2

�2
�

otherwise

conv convReLU ReLUconv BN

Compact 
Representa�on
(64*64)

Original 
Image 
(128*128)

Fig. 3   C-CNN for Compact representation of input underwater 
image [10]
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and generalization of Deep Neural Networks than the exten-
sively used logistic sigmoid and hyperbolic tangent func-
tions. ReLU outperforms other activation functions even 
though they are asymmetric, possess hard linearity, and are 
not differentiable. The second layer consists of a convolu-
tional layer having a stride equal to two, followed by Batch 
Normalization (BN) and ReLU. BN normalizes input vol-
ume activations before passing it to the next layer in the 
network, i.e., reducing Internal Covariate Shift. The second 
layer helps to downscale and enhance the attributes. The sec-
ond layer’s output is input to the last layer, consisting of c fil-
ters of size 33 × 64 to construct the compact representation.

3.3 � Architecture of receiver side to attain high image 
quality

Figure 4 provides the overall architecture of the decoder 
side. The decoded image is up-scaled using bi-cubic inter-
polation to the size of the original image. The up-scaled 

image is subjected to RD-CNN, consisting of D-Residual 
Dense Blocks (RDB). Figure 5 shows the building blocks of 
RD-CNN, and Fig. 6 shows the architecture of a single RDB.

Due to scaling, the same or alike objects in an image 
appear different and are subjected to other artifacts. Hier-
archical features can capture such features, which would 
accord to finer reconstruct. This is made possible by using 
RD-CNN, which constitutes densely connected layers and 
local features fusion (LFF) with local residual learning 
(LRL).

LFF in each RDB extracts dense local features by 
concatenating the states of preceding and current RDBs. 
Global feature fusion preserves global hierarchical features 
by combining shallow and in-depth features. The fusion 
kernel size of 1by1 is chosen for local and global features. 
All remaining convolution layers use 3 by 3 kernel size 
and padding on all sides of the input image to maintain its 
size. The residual output is added with the up-scaled image 
to get back the original image. This helps maintain the 

Decoded 
image
64*64

Bicubic Interpola�on
128*128

RD-CNN

Residual
Image 
128*128

Reconstructed
image

Fig. 4   Overall architecture of RD-CNN [18]

conv conv conv convconcat 1x1 
conv

Input Output

RDB block RDB block RDB block

Fig. 5   RD-CNN to attain high quality underwater reconstructed image

Fig. 6   Building blocks of an 
RDB [18]
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quality of deep-sea images transmitted by AUVs, which 
helps in real-time intelligent monitoring of underwater fish 
behaviour.

3.4 � Learning algorithm

The learning algorithm for the proposed network is presented 
in this section. A back-to-back training is done between the 
C-CNN and RD-CNN to reduce the inaccuracy between the 
considered input image and the reconstructed image by using 
the following optimization goal [31]:

Here � is the original input image. �1, �2 are the param-
eters of C-CNN and RD-CNN, respectively. Cc(.) and Rd(.) 
represent C-CNN and RD-CNN, respectively. Cf(.) repre-
sents CSF_JPEG.

While performing backpropagation, there is a rounding 
function in Eq. (15), which cannot be differentiable in Cf(.). 
An iterative optimization algorithm has been proposed based 
on [31] to overcome this problem by fixing the �1, �2 param-
eters of C-CNN and RD-CNN as give in Eq. (16) and (17), 
respectively.

To update the parameter �2 , an auxiliary variable �̂m is 
defined as decoded compact representation of � as given in 
Eq. (18).

By combing Eq. (17) and (18), Eq. (19) is obtained:

To update the parameter �1 ,  �̂
′

m , an auxiliary variable 
is defined as the optimal input to RD-CNN as given in 
Eq. (20), since Cf(.) is not differentiable while performing 
backpropagation.

Assume that Rd
(
𝛼̂2, ⋅

)
 . is monotonic to �̂ ′

m shown as 
below:

(15)⟨𝛼̂1, 𝛼̂2⟩ = argmin
𝛼1,𝛼2

���Rd
�
𝛼2,Cf

�
Cc

�
𝛼1,𝜓

���
− 𝜓

���
2

(16)⟨𝛼̂1⟩ = argmin
𝛼1

���Rd
�
𝛼̂2,Cf

�
Cc

�
𝛼1,𝜓

���
− 𝜓

���
2

(17)⟨𝛼̂2⟩ = argmin
𝛼2

���Rd
�
𝛼2,Cf

�
Cc

�
𝛼̂1,𝜓

���
− 𝜓

���
2

(18)�̂m = Cf
(
Cc

(
�̂1,�

))

(19)⟨𝛼̂2⟩ = argmin
𝛼2

���Rd
�
𝛼2, 𝜓̂m

�
− 𝜓

���
2

(20)
⟨
�𝜓 �

m

⟩
= argmin

𝜓̂m

‖‖‖Rd
(
𝛼̂2, 𝜓̂m

)
− 𝜓

‖‖‖
2

‖‖‖� − �̂ �
m
‖‖‖
2

≥
‖‖‖� − �̂ �

m
‖‖‖
2

If only if

Assume arg min
�1

‖Cf (Cr (�,�)) − �̂m ‖2 to be the solu-

tion of 
∼
�1 such that Eq. (22) is satisfied for any possible 

value of �′

1 as shown:

Following assumption (21), the following can be 
obtained:

Accordingly,

From Eq. (16) �̂1 = 
∼

�1 is obtained, which is

Since Co(.) is a codec, Eq. (26) can be formulated as:

Combine assumption in Eq. (17) above and Eq. (27), 
it arrives:

Equation (27) is used instead of Eq. (16) in training our 
C-CNN as it is the approximation of Eq. (16). Thus, by 
iteratively optimizing the Eq. (19) and Eq. (27), optimal 
values for �1, �2 parameters of C-CNN and RD-CNN are 
obtained. The complete algorithm to train the proposed 
network is given in Algorithm-I.
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3.5 � Loss functions for C‑CNN and RD‑CNN

Mean Squared Error (MSE) is defined as the loss function 
of C-CNN as follows:

where �k represents the original image, �2 trained param-
eter, N is the batch size, and �1 is the trainable parameter.

For training RD-CNN, loss function, i.e., MSE is defined 
as:

where �̂mk
 is the compact representation of �k , �2 represents 

the trainable parameter, res(.) represents the residual-dense 
learned by RD-CNN.
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4 � Results and discussion

The proposed method is compared with traditional tech-
niques such as Block Truncation Coding (BTC) [32], 
Pyramid technique [33], DCT[34], Singular Value Decom-
position (SVD) [35], SPIHT, DWT-DCT[36] traditional 
compression techniques. Figure 7 shows the quantitative dif-
ference between the decompression output of all the above-
mentioned techniques.

Figure 7 shows that the proposed technique retains the 
features of original input image. Pyramid technique provides 
blurred output, BTC has lot of noise and blocking artifacts, 
DCT, SVD, SPIHT and DWT-DCT are not able to retain 
edge features of the object under study.

PSNR values for Standard JPEG, JPEG-CSF, C-CNN_ 
R-CNN and proposed method are compared in Fig. 8. The 
proposed method shows better results when compared to 
standard JPEG, JPEG-CSF, C-CNN_R-CNN as shown in 
Fig. 8.

A comparison of PSNR values of Standard JPEG, JPEG- 
CSF, C-CNN_R-CNN and the proposed method is shown in 
Table 1 for a sample of 51 images. The average performance 
of the proposed method is better than Standard JPEG, JPEG- 
CSF and C-CNN_R-CNN. From Fig. 9, it is seen that the 
proposed method requires the least number of bits per pixel 
(0.095484 bpp on an average) for representing compressed 
Underwater images when compared with C-CNN_ R-CNN 
(0.27095 bpp on an average), Standard JPEG (0.683034 bpp 
on an average) and JPEG-CSF (0.198957 bpp on an aver-
age). As the compression in the proposed method takes place 

a)Original     

Image

(b)Pyramid   (c)BTC       (d)DCT      (e)SVD     (f)SPIHT      (g)DWT -DCT (h)Proposed

Technique

Fig. 7   A quantitative comparison between the decompressed images of traditional techniques with proposed technique
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Fig. 8   Average PSNR values for Standard JPEG, JPEG-CSF, 
C-CNN_R-CNN and the Proposed method on the sample of 200 test 
images
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in two steps, it provides better compression than the existing 
methods such as standard JPEG, JPEG-CSF and combina-
tion of C-CNN_R-CNN.

A comparison of Bits per pixel values of Standard JPEG, 
JPEG- CSF, C-CNN_R-CNN and the proposed method is 
shown in Table 2 for a sample of 51 images. The C-CNN 
compresses image by 50% of its original size which is fur-
ther reduced by the JPEG-CSF.

The quality of the reconstructed image by the proposed 
network is also compared with Super-Resolution CNN 
(SRCNN). Figures 10 and 11 show that the proposed method 
has better PSNR and SSIM than SRCNN. SRCNN recon-
structs images which are reduced by 50% of their original 
size as per the work. Also, the proposed method uses Resid-
ual dense Neural Network for reconstructing image which 
transfers features of image from one block to another. This 
improves the quality of the reconstructed image. Hence the 
proposed method provides better quality when compared 
to SRCNN. As a conclusion from the Tables 1 and 2 and 
Figs. 8 and 10 that the proposed method performs better 
than C-CNN_R-CNN and SRCNN, because the proposed 
first compresses the original image to its 50% size by using 
a compact CNN and then further reduces it by using JPEG-
CSF which helps to further reduce the size of the image. In 
C-CNN_ R-CNN, there is no further compression applied 
to the compact representation. So, the proposed method pro-
vides better compression performance than C-CNN_R-CNN. 
The reconstructed images from the proposed framework is 
subjected for fish image classification.

Table 3 provides the validation accuracy percentage 
and time taken for computation using transfer learn-
ing on various Deep learning models such as Dense 

Table 1   Comparison of PSNR values in dB for 51 images taken 
from fish image dataset

Image No JPEG JPEG-CSF C-CNN_R-CNN Proposed method

Image0 17.25 24.07 19.84 26.30
Image1 23.64 24.94 24.91 25.79
Image2 25.06 24.74 27.43 28.30
Image3 24.88 25.75 26.09 27.13
Image4 23.72 24.26 24.26 26.37
Image5 25.07 23.41 27.91 28.24
Image6 23.80 23.55 26.86 27.05
Image7 23.60 25.12 27.41 27.60
Image8 22.45 24.94 23.10 26.03
Image9 24.39 24.94 24.76 25.32
Image10 24.33 25.08 27.03 27.89
Image11 24.60 24.65 25.48 27.99
Image12 24.79 26.34 25.90 26.87
Image13 25.33 25.00 27.88 28.73
Image14 23.25 22.50 26.22 27.94
Image15 23.42 22.78 27.62 27.75
Image16 22.89 24.37 23.61 25.47
Image17 24.19 25.01 25.19 26.24
Image18 23.93 24.80 26.80 26.72
Image19 24.74 24.54 25.44 27.64
Image20 22.19 22.86 23.85 24.49
Image21 25.03 23.10 27.58 27.96
Image22 22.74 22.37 25.30 26.90
Image23 24.72 25.34 27.83 27.85
Image24 23.45 24.26 24.28 25.75
Image25 24.87 25.06 25.72 25.21
Image26 24.05 25.41 26.75 27.96
Image27 24.70 24.57 25.25 25.61
Image28 21.97 22.51 23.97 23.80
Image29 25.22 24.37 27.56 27.57
Image30 23.29 22.68 25.58 26.12
Image31 24.40 24.58 27.77 27.98
Image32 25.46 24.95 27.11 27.89
Image33 23.86 23.36 25.04 25.57
Image34 24.14 25.01 25.32 27.05
Image35 24.67 26.84 25.26 27.88
Image36 23.84 23.65 27.35 27.66
Image37 25.21 24.07 27.86 25.26
Image38 24.07 23.12 26.27 26.77
Image39 24.19 23.75 27.47 27.58
Image40 19.48 25.06 23.21 26.96
Image41 24.87 24.93 26.29 25.66
Image42 24.10 23.96 24.71 25.13
Image43 24.17 26.71 25.32 26.73
Image44 24.36 23.89 27.61 28.49
Image45 23.25 23.84 25.85 25.92
Image46 24.17 24.04 25.41 25.50
Image47 22.04 23.92 23.42 24.43
Image48 23.54 25.47 24.84 25.61

Table 1   (continued)

Image No JPEG JPEG-CSF C-CNN_R-CNN Proposed method

Image49 26.17 25.97 28.40 29.11
Image50 24.59 24.28 25.27 25.59
Average 23.89 24.41 25.83 26.73
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Fig. 9   Average Bits per pixel values for the Proposed method, JPEG-
CSF, Standard JPEG and C-CNN_R-CNN on the sample of 200 test 
images
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Convolutional Network (Densenet201) [37], Googlenet 
[38], Mobilenetv2 [39], Residual Network (Resnet18) 
[40], Resnet50, Resnet101, Shufflenet [41], Visual Geom-
etry Group (VGG16) [42], VGG19.

From Table 3, Shufflenet has the highest validation 
accuracy percentage with 46 min 24 s as the computation 
time. If time of computation is important than the accuracy 
then Googlenet provides an accuracy of 91.94% in 30 min 
27 s computation time.

Table 2   Comparison of Bits per pixel values for 51 images taken 
from fish image dataset

Image No JPEG JPEG-CSF C-CNN_R-
CNN

Proposed method

Image0 1.14700 0.32334 0.34393 0.10404
Image1 0.60150 0.16111 0.21745 0.06378
Image2 0.47100 0.13680 0.16433 0.05412
Image3 0.53300 0.16329 0.19432 0.05674
Image4 0.62150 0.12500 0.21686 0.06239
Image5 0.40340 0.14345 0.13723 0.04822
Image6 0.44700 0.14248 0.15399 0.05424
Image7 0.43700 0.19332 0.15037 0.05214
Image8 0.71700 0.15426 0.25783 0.07418
Image9 0.58100 0.15426 0.21273 0.05835
Image10 0.50720 0.15147 0.18081 0.05778
Image11 0.56070 0.14640 0.20455 0.05755
Image12 0.54740 0.14187 0.20024 0.05644
Image13 0.41490 0.12604 0.14229 0.04797
Image14 0.49917 0.15855 0.17055 0.05634
Image15 0.45199 0.15141 0.15324 0.05267
Image16 0.67993 0.17991 0.24762 0.06960
Image17 0.55194 0.14917 0.20640 0.06122
Image18 0.52035 0.15340 0.17739 0.057332
Image19 0.57066 0.14630 0.21458 0.05928
Image20 0.66947 0.18412 0.22439 0.07086
Image21 0.46794 0.13072 0.16591 0.05084
Image22 0.54645 0.17008 0.18361 0.06104
Image23 0.43054 0.12891 0.14921 0.04903
Image24 0.63743 0.17124 0.23309 0.06527
Image25 0.55943 0.14303 0.20612 0.05713
Image26 0.49284 0.14632 0.16624 0.05593
Image27 0.57009 0.14734 0.20970 0.05961
Image28 0.64978 0.18182 0.22270 0.06767
Image29 0.46678 0.13100 0.17055 0.05184
Image30 0.53365 0.16028 0.18306 0.06020
Image31 0.44322 0.14185 0.15196 0.05218
Image32 0.49640 0.12492 0.19141 0.05247
Image33 0.54983 0.14807 0.19615 0.05769
Image34 0.54154 0.14919 0.19678 0.05975
Image35 0.57605 0.15112 0.21200 0.05890
Image36 0.42365 0.13796 0.14626 0.04958
Image37 0.47237 0.12823 0.15987 0.04856
Image38 0.51503 0.15383 0.17900 0.05884
Image39 0.47085 0.13753 0.17442 0.05143
Image40 0.65232 0.20215 0.20386 0.06443
Image41 0.51491 0.13837 0.18412 0.05336
Image42 0.60610 0.15672 0.21718 0.06081
Image43 0.59424 0.15122 0.22005 0.06118
Image44 0.42478 0.13186 0.14559 0.05111
Image45 0.56736 0.16392 0.20483 0.06048
Image46 0.53857 0.15645 0.19775 0.06313
Image47 0.70669 0.19147 0.25299 0.07194

Table 2   (continued)

Image No JPEG JPEG-CSF C-CNN_R-
CNN

Proposed method

Image48 0.58083 0.17350 0.20677 0.06608
Image49 0.42800 0.11778 0.15108 0.04848
Image50 0.56635 0.14775 0.20443 0.05847
Average 0.54818 0.15491 0.19329 0.05888
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Fig. 10   Comparison of PSNR of SRCNN with the proposed method 
on the sample of 200 test images
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Fig. 11   Comparison of SSIM of SRCNN with the proposed method 
on the sample of 200 test images
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5 � Conclusions and future work

The proposed method provides an energy-efficient technique 
that reduces the amount of data transmitted and at the same 
time can retain the quality of the transmitted image. The 
proposed model works on two levels. At the first level, two 
CNNs (C-CNN and RD-CNN) are trained together to retain 
data’s structural information and provide better reconstruc-
tion quality, respectively. In the second level, the compact 
presentation of the original underwater image is subjected 
to CSF quantization-based JPEG encoding to enhance the 
compression rate.

Experimental results reveal that the proposed work pro-
vides better underwater image quality and a high compres-
sion ratio than traditional and existing CNN techniques. The 
proposed method requires the least number of bits per pixel 
to represent compressed Underwater images compared with 
C-CNN_ R-CNN, Standard JPEG, and JPEG-CSF. The pro-
posed method provides a 52% reduction in bits per pixel than 
JPEG-CSF, 86% reduction in bits per pixel than Standard 
JPEG, and 64.7% reduction in bits per pixel than C-CNN_ 
R-CNN on an average basis. The proposed method has 
3.80% better PSNR and 3.51% better SSIM than SRCNN 
on an average basis. The proposed method provides better 
PSNR and Bits per pixel values on 200 images taken from 
the fish image dataset compared with C-CNN_ R-CNN, 
Standard JPEG, and JPEG-CSF. The reconstructed images 
of the proposed model are classified with the highest accu-
racy of 92.12% using shufflenet, which makes the recogni-
tion of different species of images very efficient.

Images of fishes collected by AUVs are transmitted via 
communication channels to the terrestrial control centre 
for monitoring purpose. So, there is a need for fast data 
transmission between the underwater nodes and terrestrial-
monitoring systems which can overcome the power fail-
ure problems of sensor nodes and effective utilization of 
communication bandwidth. For the effective utilization of 

communication bandwidth, there is a need for variable rate 
encoding. The underwater images need to be enhanced to 
remove the dominance of blue-green colour. These improve-
ments will be carried out as future work.
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