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Abstract Conflicts in the evidence are addressed through

various functions based on distance and similarity measure

etc. Some complications and irrationality in existing dis-

tance measure is an open issue as how to address its con-

flicting degree. In this paper, we have introduced a new

association coefficient measure primarily based on the

modification of Jaccard’s similarity matrix with related

properties and examples. In this paper, firstly the initial

belief functions are constructed by using the fuzzy soft sets

and information structure image matrix. Secondly, we used

the proposed association coefficient measure to pre-process

the initial belief function. Finally, Dempster’s combination

rule is implemented to combine the modified belief func-

tion and rank the alternatives based on their final belief

measure. The study is validated through various examples

and a case study in medical diagnosis with the comparison

of the existing two methods. The proposed association

coefficient is efficient in representing the degree of asso-

ciation between the belief functions and modifying the

belief function.

Keywords Belief function � Fuzzy soft set � Distance

measure � Association coefficient measure � Medical

diagnosis

1 Introduction

Decision-making in the world of uncertainty involves the

knowledge and information about the decision environ-

ment, however, suitable fusion of information and its

exchange helps in decision-making to reduce uncertainty.

Several theories namely probability theory, fuzzy set the-

ory, fuzzy soft set theory, evidence theory have been

developed for a few decades to address the uncertainty

depending on randomness, lack of knowledge, imprecision

etc. Evidence theory or Dempster–Shafer theory is exten-

sively used in real-life applications of decision-making

problems of medical diagnosis [16, 22, 33], fault diagnosis

[2, 8], target and pattern recognition [29], sensor data

fusion [14, 39] etc. Dempster–Shafer evidence theory

(DSET) is often recognized as the generalized form of

Bayesian probability theory jointly developed by Dempster

in 1967 and Shafer in 1976, capable of handling uncer-

tainty without prior knowledge about the events. Despite a

lot of advantages in this theory, its well-known combina-

tion rule of multiple pieces of evidence has some diffi-

culties encountered in the evidence fusion of some set of

evidence which was first pointed out by Zadeh [41].

Zadeh’s demonstration about the conflicts attracted many

researchers towards this theory to develop some other

combination methods to overcome the difficulties. Many

researchers proposed evidence fusion rules among which

[9, 11, 31, 40, 42], etc. are a few fusion methods in this

direction of developing Dempster’s combination rule.

However, conflicts and the counter-intuitive nature of

evidence can also be handled by simple averaging [28]

without acknowledging the importance of the evidence or

weighted averaging of the evidence. In weighted average

mass, the weight or importance of the evidence is an

important factor in evidence combination. Several
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researchers [6, 8, 10, 15, 35, 39] used the approach of the

weighted average mass of the evidence where the Jous-

selme’s distance [17] and belief entropy are broadly used to

find the weight of the evidence.

The various distance measure [17, 18], similarity mea-

sures [38], correlation measures [12], association coeffi-

cient measure [29], and divergence measure [43], etc. are

widely used in various fields of decision-making problems.

Chen et al. [1] proposed an improved combination method

in multi-sensor data fusion using the modified Minkowski

distance and betting-commitment distance function. Zhu

et al. [45] proposed a power set distribution probability

function and introduced a distance based on the power set

distributions betting commitments. Cheng and Xiao [4]

proposed a new distance measure based on the new simi-

larity coefficient and used it in the sensor data fusion of the

target recognition problem. Deng and Wang [7] proposed

the method based on Hellinger distance measure and evi-

dence angle. Sun et al. [32] proposed a method based on

the pignistic probability distance and Deng entropy of

evidence. Li et al. [21] proposed the Hellinger distance

measure and applied it to the fault diagnosis problem. Xhu

and Xiao [44] defined a new belief Hellinger distance

measure with related properties and applied it in the clas-

sification problem of the Iris data set. Khalaj and Khalaj

[20] proposed three well-known similarity measures

namely Jaccard similarity, Cosine similarity, and Dice

similarity on the novel belief set and applied it in multi-

criteria decision-making.

Particularly in medical diagnosis, several researchers

used the concept of Dempster–Shafer theory along with the

other mathematical tools in medical diagnosis problems

[16, 24–26, 36]. Recently, Li et al. [22] presented an

incorporated approach of the fuzzy soft set, grey relation

analysis, and DSET with a diagnostic application. Wang

et al. [33] presented another method where the tools like

fuzzy soft set are used for parameterization, ambiguity

measure for uncertainty, and Dempster’s rule for evidence

combination respectively. Xiao [37] also introduced the

fuzzy soft set approach by means of fuzzy preference

relation, Deng entropy, and evidence theory. Chen et al. [3]

used the distance function and improved belief entropy to

modify the evidence in the medical diagnosis problems.

Zhou et al. [43] proposed the new Pythagorean fuzzy

divergence measure distance in the medical diagnosis

where the Pythagorean fuzzy set is used is in form BPA.

Khalaj and Khalaj [19] proposed the concept of the new

belief set and defined the cosine similarity measure in

medical diagnosis problems.

1.1 Motivation of the study

• Mathematical modelling [3, 16, 22, 33] plays a signif-

icant role in establishing the relationship between the

disease and symptoms in diagnosing the disease of a

patient. Symptoms are assessed by the decision-maker

from multiple sources and its fusion is much preferable

to the single due to change in the symptoms which can

be handled through the evidence theory efficiently.

• The conflicting evidence is modified by utilizing

different types of functions. Existing distance measure

gives some irrational results for some pieces of

evidence. Basically, Jousselme’s distance fails to reflect

the conflicts between two evidence containing singleton

focal elements; especially the distance remains unal-

tered with the alteration of the singleton subset by the

other singleton subset. This motivates us to develop a

new association coefficient measure based on the new

similarity index to deal with the difficulties caused by

the Jousselme distance measure and develop WAM by

using the proposed association coefficient measure in

medical evidence fusion.

• The distance measures [4, 17], correlation measure

[12, 13] and association coefficient measure [29] are

defined based on the similarity index. However, the

evaluation of similarity between two sets from a greater

number of factors has high convergence speed moti-

vates us to use a new similarity index. The similarity

degree is estimated from the ratio of cardinality

numbers that is common with the collection of possible

subsets to the product of both individual subsets as well

as the subset of their union.

In order to deal with the issue of conflict in evidence

fusion and obtained a modified belief function, a new

association coefficient measure is introduced based on the

modification of Jaccard’s similarity index and use some

examples to show its efficiency in showing conflicts

between two belief functions. The proposed association

coefficient measure is treated as a similarity measure to

pre-process the evidence efficiently. The present paper is

structured on the basis of the construction of the initial

belief functions using information structure image matrix,

determination of the initial weight of the evidence by using

the new association coefficient measure, and combined the

weighted average mass of the evidence to evaluate the

belief measure of the decision alternatives. Finally, a case

study from Li et al. [22] is taken for the validation of the

methodology in medical diagnosis and compared with the

existing methods.

The present paper is prepared as follows: In Sect. 2,

preliminaries of soft set and fuzzy soft set with their

‘‘AND’’ & ‘‘OR’’ operations are discussed with a
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numerical example. In addition, the information structure

image matrix is defined in the same section. Section 3pro-

videdthe fundamental idea of Dempster–Shafer theory and

some important definitions of existing distance measures,

correlation measures and association coefficient measures.

In this section, we have proposed a new measure of the

association coefficient and put forward some properties

with examples. In Sect. 4, methodology and algorithm are

introduced for the construction of the initial mass assign-

ment of the decision alternatives in medical diagnosis.

Section 5 illustrates the conclusion of the paper with the

future direction of the study.

2 Preliminaries

In this section, we have put forward various preliminary

definitions of soft set theory [27], fuzzy soft sets [23]with

related operations and examples.

2.1 Fuzzy soft set and some important operations

Definition 1 (Molodtsov [27]). Consider U denotes the

universal set and P be the set parameters over U. A pair

f ;Að Þ where f : A ! 2U is a function is referred to as the

soft set, provided A is subset of P.

Definition 2 (Maji et al. [23]). Suppose, FðUÞ be the

collection of fuzzy sets over the universal set U and A � P.

A fuzzy soft set over U is a pair ef ;A
� �

, where ~f is a

function given by ef : A ! FðUÞ.

2.2 Operations on fuzzy soft set

Definition 3 (Maji et al. [23]). Consider ðf ;X1Þ and

ðg;X2Þ represents the two distinct fuzzy soft sets over U,

we have

(i) AND operation ( ^) The ‘‘AND’’ operation between

ðf ;X1Þ and ðg;X2Þ is defined as:

ðf ;X1Þ ^ g;X2ð Þ ¼ h;X1 � X2ð Þ;

where hðx1; x2Þ ¼ f ðx1Þ ~\gðx2Þ, 8x1 2 X1 and x2 2 X2.

(ii) (OR) operation ( _) The ‘‘OR’’ operation between

ðf ;X1Þ and ðg;X2Þ is defined as:

ðf ;X1Þ _ ðg;X2Þ ¼ ðh;X1 � X2Þ;

where hðx1; x2Þ ¼ f ðx1Þ ~[gðx2Þ, 8x1 2 X1 and x2 2 X2.

Example 1 Consider U ¼ fs1; s2; s3; s4g be the univer-

sal set of four choices of alternatives. Let P ¼

fq1; q2; :::; q5g be the set of selection parameters over U.

Let X1 ¼ q1; q2f g and X2 ¼ q3; q4f g � P such that

ðf ;X1Þ ¼ f ðq1Þ¼fs1=0:65;s2=0:10;s3=0:20;s4=0:35g;f
f ðq2Þ¼fs1=0:85;s2=0:25;s3=0:20;s4=0:55gg

g;X2ð Þ ¼ gðq3Þ¼fs1=0:45;s2=0:65;s3=0:35;s4=0:40g;f
gðq4Þ¼f s1=0:75;s2=0:10;s3=0:25;s4=0:40gg

Then ðf ;X1Þ and ðg;X2Þ represents the fuzzy soft sets

over U. Now, we have

ðf ;X1Þ ^ ðg;X2Þ ¼ ðh;X1 � X2Þ

Therefore, hðqi; qjÞ¼f ðqiÞ ~\gðqjÞ for all qi 2 X1 and

qj 2 X2 is given in Table 1.

Definition 4 (Li et al. [22]). Let M ¼ ½lij�m�n be finite

information matrix through the membership degree of

alternative xi with respect to parameters ej. Then, the

information structure image matrix eM is defined as

e1 e2 � � � en

eM ¼

x1

x2

..

.

xm

~l11 ~l12 � � � ~l1n

~l21 ~l22 � � � ~l2n

..

. ..
. ..

. ..
.

~ln1 ~lm1 . . . ~lmn

2

6

6

6

6

4

3

7

7

7

7

5

ð1Þ

where ~lij ¼
lij

Pm

i¼1
lij

for some parameters ej. Then, the

sequence ~lij ¼ ~l1j; ~l2j; :::; ~lmj
� �

is called the information

structure image sequence.

3 Basic concepts of Dempster–Shafer evidence
theory

In this section, we have put forward some basic concepts of

DSET. In the framework of decision-making, a set X ¼
fx1; x2; :::; xNg under consideration for judgement is a

collection of N mutually exclusive and collectively

exhaustive elements is termed as the frame of discernment

(FOD in short). The power set of X 6¼ / denoted by 2X is

called as the set of hypotheses:

2X ¼ f/; fx1g; :::; fxNg; fx1; x2g; :::;Xg
¼ fH1;H2; :::;Hi; :::;H2Ng

where Hi represents a hypothesis among 2N � 1 non-empty

hypotheses.

Definition 5 (Dempster [5] and Safer [30]). Let X

denotes the FOD and A function m : 2X ! ½0; 1� is referred

to as the basic probability assignment shortly BPA with the

condition
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mð/Þ ¼ 0 and
X

2N�1

Hi22X

mðHiÞ ¼ 1 ð2Þ

The set of all such possible subsets H of X with the mass

function mðHÞ[ 0 forms a body of evidence (BOE)

denoted by F ¼ fH : mðHÞ[ 0; 8H 2 2Xg and every

element H � X is known as the focal element.

Definition 6 (Dempster [5] and Safer [30]). Let m is a

BPA on the FOD X. The Belief measure of any focal

element H is a function Bel : 2X ! ½0; 1� such that

Belð/Þ ¼ 0; BelðHÞ ¼
X

Hi�H

mðHiÞ ð3Þ

Plausibility measure of H is a function Pl : 2X ! ½0; 1�
which satisfies the condition

Plð/Þ ¼ 0; PlðHÞ ¼
X

H\Hi 6¼/

mðHiÞ ð4Þ

where the functions namely BelðHÞ represents the exact

support and PlðHÞ represents the possible support to H.

The bounded interval ½BelðHÞ;PlðHÞ� can be considered as

interval of lower probability and upper probability to which

H is supported, and the difference PlðHÞ � BelðHÞ repre-

sents the uncertainty of the focal element.

Definition 7 (Dempster [5] and Safer [30]). The

Dempster’s combinational rule for combining two BPAs

m1 and m2 is a function m1 � m2 : 2X ! ½0; 1� defined by

ðm1 � m2Þð/Þ ¼ 0 and

ðm1 � m2ÞðHÞ ¼
P

Hi\Hj¼H m1ðHiÞm2ðHjÞ
1 � K

ð5Þ

where Hi;Hj 2 2X and K ¼
P

Hi\Hj¼/ m1ðHiÞm2ðHjÞ rep-

resents the conflict coefficient and the normalization factor

1 � K is interpreted as the conflict coefficient between two

distinct evidence.

The two pieces of evidence is said to be in conflicts

whenever K ¼ 1. Several researchers focus on the issue of

conflicts management through different types of conflict

coefficient measures defined as below.

3.1 Some important conflict management measures

In this section, we have discussed various conflict mea-

surement functions like distance measure, correlation

coefficient and similarity measure that can express the

degree of significance between the BPAs.

Definition 8 (Jousselme et al. [17]). Consider m1 and m2

be two basic probability assignments defined in the FOD X.

The Jousselme’s evidence distance between two BPA is

defined as:

dðm1;m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðm~1 � m~2ÞtDðm~1 � m~2Þ

r

; ð6Þ

where m~1 and m~2 be the BPAs in vector form. The matrix D

in Eq. (6) is the Jaccard’s matrix of order 2N � 2N where

the entries DðHi;HjÞ are the Jaccard’s similarity coefficient

defined as:

DðHi;HjÞ ¼
Hi \ Hj

�

�

�

�

Hi [ Hj

�

�

�

�

; 8Hi;Hj 2 2X ð7Þ

Definition 9 (Jiang [12]). The correlation coefficient

measure between two basic probability assignment m1 and

m2 is defined as:

rðm1;m2Þ ¼
cðm1;m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðm1;m1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðm2;m2Þ
p ; ð8Þ

where

cðm1;m2Þ ¼
X

2N�‘1

i¼1

X

2N�1

j¼1

m1ðHiÞm2ðHjÞ �
jHi \ Hjj
jHi [ Hjj

ð9Þ

Definition 10 (Pan and Deng [29]). The association

coefficient between m1 and m2 is defined as:

aBPAðm1;m2Þ ¼
rðm1;m2Þ

1
2
frðm1;m1Þ þ rðm2;m2Þg

; ð10Þ

where

Table 1 AND operation of

FSSs ðf ;X1Þ and ðg;X2Þ
Alternatives ðf ;X1Þ ðg;X2Þ ðf ;X1Þ ^ ðg;X2Þ

q1 q2 q3 q4 q1 ^ q3 q1 ^ q4 q2 ^ q3 q2 ^ q4

s1 0.65 0.85 0.45 0.70 0.45 0.65 0.45 0.70

s2 0.10 0.25 0.65 0.10 0.10 0.10 0.25 0.10

s3 0.20 0.20 0.35 0.25 0.20 0.20 0.20 0.20

s4 0.35 0.55 0.40 0.40 0.35 0.35 0.40 0.40
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rðm1;m2Þ ¼
X

2N�1

i¼1

X

2N�1

j¼1

m1ðHiÞm2ðHjÞ �
2jHi\Hjj � 1

2jHij � 1

� 	

� 2jHi\Hjj � 1

2jHjj � 1

� 	

or rðm1;m2Þ ¼ m~t
1Ddm~2

ð11Þ

where Hij j denotes the cardinality of the subset Hi, and Dd

is the positive-definite matrix of order ð2N � 1Þ � ð2N � 1Þ
whose elements are given by

DdðHi;HjÞ ¼
2 Hi\Hjj j � 1

2 Hij j � 1

 !

� 2 Hi\Hjj j � 1

2 Hjj j � 1

 !

ð12Þ

3.2 Proposed association coefficient measure

Let m1 and m2 denotes the BPAs in the FOD X consisting

of N elements. The association coefficient measure

between m1 and m2 is defined as:

aðm1;m2Þ ¼ rðm1;m2Þ
1
2
frðm1;m1Þþrðm2;m2Þg ; where

rðm1;m2Þ ¼
X

2N�1

i¼1

X

2N�1

j¼1

m1ðHiÞm2ðHjÞ

� ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ

ð14Þ

which can also be expressed as rðm1;m2Þ ¼
m1ðHiÞDm2ðHjÞ with the similarity index as follows:

DðHi;HjÞ ¼
ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ
; ð15Þ

where D is a positive-definite matrix of order ð2N � 1Þ �

ð2N � 1Þ can be expressed as the product of the invertible

matrix and its transpose i.e.,D ¼ QtQ.

3.3 Properties

The proposed association coefficient measure aðm1;m2Þ
between two distinct belief functions will holds the fol-

lowing properties:

1. aðm1;m2Þ ¼ aðm2;m1Þ
2. 0� aðm1;m2Þ� 1

3. m1 ¼ m2 , aðm1;m2Þ ¼ 1

4. aðm1;m2Þ ¼ 0 , Hi \ Hj ¼ / for all Hi;Hj 2 2X

(1) Proof:

Suppose the two pieces of evidences m1 and m2 are

in vector form as follows:

m~1 ¼ m1ðH1Þ m1ðH2Þ . . . m1ðH2N Þð Þt;
m~2 ¼ m2ðH1Þ m2ðH2Þ . . . m2ðH2N Þð Þt:

By definition of association coefficient measure, we

have

aðm1;m2Þ ¼
rðm1;m2Þ

1
2
frðm1;m1Þ þ rðm2;m2Þg

It is sufficient to proof that rðm1;m2Þ is symmetric i.e.,

rðm1;m2Þ ¼ rðm2;m1Þ. We have

rðm1;m2Þ ¼
X

2N�1

i¼1

X

2N�1

j¼1

m1ðHiÞm2ðHjÞ

� ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ

¼
X

2N�1

i¼1

X

2N�1

j¼1

m1ðHjÞm2ðHiÞ

� ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ
¼ rðm2;m1Þ ) aðm1;m2Þ ¼ aðm2;m1Þ

Therefore, the proposed association coefficient measure

is symmetric.

Before proceeding for the proof of properties 2 and 3,

we first put forward the statement of the Cauchy–Schwartz

triangular inequality for any two nonzero vectors.

Lemma 3.1 For any two vectors x~ 6¼ 0 and y~ 6¼ 0 satisfies

the inequality xþ yk k� xk k þ yk k, where x~¼
ðx1; x2; :::; xnÞt and y~¼ ðy1; y2; :::; ynÞt. The inequality holds

equality iff x is scalar multiple of y.

(2) Proof:

From Cauchy–Schwarz triangle inequality of two

nonzero vectors of BPA, we have

Qðm1 þ m2Þk k2¼ Qm1k k þ Qm2k kð Þ2

) ðQðm1 þ m2ÞÞtðQðm1 þ m2ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
1Q

tCm1

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
2Q

tQm2

p

� �2

) ðm1 þ m2ÞtQtQðm1 þ m2Þ�mt
1Q

tQm1

þ mt
2Q

tQm2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
1Q

tQm1

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
2Q

tQm2

p

) mt
1Q

tQm2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
1Q

tQm1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mt
2Q

tQm2

p

� ðmt
1Q

tQm1Þ þ ðmt
2Q

tQm2Þ
2

) 2mt
1Q

tQm2

ðmt
1Q

tQm1Þ þ ðmt
2Q

tQm2Þ
� 1

) aðm1;m2Þ� 1

Since all the BPAs m1ðHiÞ;m2ðHiÞ	 0 and D positive

definite matrix, we have aðm1;m2Þ	 0. Therefore, the

degree of association lies in the interval 0; 1½ �
i.e.,0� aðm1;m2Þ� 1.
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(3) Proof:

We have, aðm1;m2Þ ¼ 1

) rðm1;m2Þ
1
2
frðm1;m1Þ þ rðm2;m2Þg

¼ 1

) mt
1Q

tQm2 ¼ 1

2
fmt

1Q
tQm1 þ mt

2Q
tQm2g ð*Dpro ¼ QtQÞ

) ðQm1ÞtQm2 ¼ 1

2
fðQm1ÞtQm1 þ ðQm2ÞtQm2g

) jjQðm1 þ m2Þjj ¼
1

2
jjQm1jj þ jjQm2jjf g� Qm1k k þ Qm2k k

which holds equality (according to Lemma 3.1) if

Qm1 ¼ kQm2. Since Q is an invertible matrix implies

m1 ¼ km2, where k is any scalar quantity. Therefore,

aðm1;m2Þ ¼ 1 , m1 ¼ m2.

(4) Proof:

Let us assume aðm1;m2Þ ¼ 0 for any two BPAs m1

and m2, we have

) rðm1;m2Þ
1
2
frðm1;m1Þ þ rðm2;m2Þg

¼ 0

)
X

2N�1

i¼1

X

2N�1

j¼1

m1ðHiÞm2ðHjÞ

� ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ

¼ 0

) ð2jHi\Hjj � 1Þ3

ð2jHij � 1Þð2jHjj � 1Þð2jHi[Hjj � 1Þ
¼ 0

If both m1ðHiÞ[ 0 and m2ðHjÞ[ 0 so that

m1ðHiÞm2ðHjÞ 6¼ 0, then it must follow

¼ [ jHi \ Hjj ¼ 0

¼ [ Hi \ Hj ¼ /; 8Hi;Hj 2 2X :

i.e., aBPAðm1;m2Þ ¼ 0 , Hi \ Hj ¼ / for all

Hi;Hj 2 2X .

If the distance measure between two BPAs is zero, then

BPAs are identical whereas if distance measure is one, they

are completely distinct or doesn’t support to each other.

The increase in degree of association effects in the decrease

of the distance measure between the two evidences. Based

on this distance principle, the conflict coefficient measure

between two distinct BPAs based on new association

coefficient measure is defined as follows:

Cðm1;m2Þ ¼ 1 � aðm1;m2Þ; ð16Þ

where Cðm1;m2Þ in Eq. (16) represents the conflict coef-

ficient measure between two BPAs. The proposed associ-

ation coefficient measure is based on the new similarity

index where the similarity between two sets is estimated

from ratio of the common element to the product of non-

trivial power set of two set and nontrivial power set of its

union respectively.

For any two sets A ¼ fx1g(fixed) and another with

variable set B ¼ fx1g,fx1; x2g,…,fx1; x2:::; x10g, the simi-

larity index is observed and compared with the similarity

index given by Eqs. (9) to (12) that used in [12] and [29].

In Fig. 1, it is seen that the convergence of association of

the all the decreases with the increasing B and the proposed

coefficient measure is speed convergence in reflecting the

association between two sets than the other similarity

index.

The validity of the conflict coefficient measure based on

the proposed association coefficient measure is discussed

with some numerical examples.

Example 2 Consider the set X ¼ f1; 2; 3; 4g as the frame

of discernment and the BPAs are as follows:

m1ðf1gÞ ¼ 0:4; m1ðf2gÞ ¼ 0:6; m1ðf3gÞ ¼ 0; m1ðf4gÞ ¼ 0:

m2ðf1gÞ ¼ 0; m2ðf2gÞ ¼ 0; m2ðf3gÞ ¼ 0:7; m2ðf4gÞ
¼ 0:3:

m3ðf1gÞ ¼ 0:30; m3ðf2gÞ ¼ 0:25; m3ðf3gÞ
¼ 0:25; m3ðf4gÞ ¼ 0:20:

m4ðf1gÞ ¼ 0:30; m4ðf2gÞ ¼ 0:25; m4ðf3gÞ
¼ 0:25; m4ðf4gÞ ¼ 0:20:

In this example, the BPAs m1 supports the event ðf2gÞ
whereas m2 is in favour of the event ðf3gÞ which is con-

flicting to each other. In Table 2, it has been seen that the

Jousselme’s evidence distance between m1 and m2 is

Fig. 1 Comparison of association degree between two sets that used

in [12] and [29]
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0.7416 which is not much reasonable as the BPAs are

completely counter intuitive to each other. The rest of the

conflict coefficient other than Jousselme’s distance is 1 for

the evidence m1 and m2.

In case of m3 and m4, the Dempster’s conflict coefficient

is 0.745 which is again not reasonable as the evidence are

identical while all the other conflicts are zero. Therefore,

since m1 6¼ m2 and m3 ¼ m4 the respective BPAs satisfies

the property of extreme conflict coefficients by the pro-

posed association coefficient measure.

Example 3 Let F ¼ fx1; x2; x3g be the frame of dis-

cernment and two basic probability assignments for the

bodies of evidence with 0\a\1, respectively are as

follows.

In Table 3, consider two BPAs where m2 is fixed real

number and m1 depends on the values of a. Here, the

association coefficient measure is increases with the

increasing value of a which seems that the proposed

association coefficient is logical for representing the asso-

ciation between two evidences. The association coefficient

measure aðm1;m2Þ between m1 and m2 is given by the

Eq. (17) and shown in Fig. 2 below:

aðm1;m2Þ ¼
8889aþ 1111

8889a2 � 8889aþ 10000
ð17Þ

Example 4 Let F ¼ fx1; x2; x3g be the frame of discern-

ment and two basic probability assignment for the bodies

of evidence with 0\a\1 and 0\b\1, respectively are as

follows (Table 4).

The Example 4 deals with the case where the evidence

m1 depends on the change of the parameter a and m2

depends on the parameter b respectively. For different

values of the parameters a and b, the surface of the asso-

ciation coefficient measure between the belief functions m1

and m2 is given by the Eq. (18) and shown in the Fig. 3

below:

aðm1;m2Þ ¼
2ð1633a� 1837Þðb� 1Þ

8889a2 � 8889aþ 9796b2 � 9796bþ 10000

ð18Þ

Table 2 Conflict coefficient measure of different measures.

Basic probability assignment Dempster’s conflict coefficient

k
Jousselme’s distance

dBPA

Jiang’s conflict

kr

Pan et al. conflict

CBPA

Proposed conflict

C

m1;m2 1 0.7416 1 1 1

m3;m4 0.745 0 0 0 0

Fig. 2 The association coefficient when one BPA changes with

parameter a while the other is fixed

Table 4 Focal elements with

two BPA depends upon the

different parameters

Focal elements m1ð�Þ m2ð�Þ

fx1g a 0

fx3g 0 b

fx1; x2g 1 � a 0

fx1; x2; x3g 0 1 � b

Fig. 3 The association coefficient where both the BPAs are vary

with two different parameters

Table 3 Focal elements with

variable BPA and fixed BPA
Focal elements m1ð�Þ m2ð�Þ

fx1g a 1

fx3g 0 0

fx1; x2g 1 � a 0

fx1; x2; x3g 0 0
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Example 5 Let F ¼ fx1; x2; x3g be the frame of dis-

cernment and two basic probability assignment for the

bodies of evidence with 0\a\1, 0\b\1 and aþ b ¼ 1,

respectively are as follows (Table 5).

In the Example 3, the BPA m1 assigns fixed real number

for all the focal elements and m2 depends on the variables a

and b. The behaviour of the association coefficient measure

between the BPAs m1 and m2 is shown in the Fig. 4 .

Example 6 Consider X ¼ f1; 2; :::; 12g be a FOD. The

BPAs m1 and m2 for the focal elements are given by

m1ðf1; 2; 3gÞ ¼ 0:05; m1ðf7gÞ ¼ 0:05; m1ðAÞ
¼ 0:8; m1ðXÞ ¼ 0:1

m2ðf1; 2; :::; 5gÞ ¼ 1

In this example, consider a set A whose elements varies

from {1}, {1, 2},…{1,2,…,12} respectively. The conflict

coefficient between the couple of BPAs are measured from

the Eqs. (5) to (15) with the changing behaviour of A.

We have noticed in Table 6 that the conflict coefficient

between m1 and m2 changes with the variable set A ¼ f1g
to A ¼ f1; 2; :::; 12g. The degree of conflict attains its

minimum value for A ¼ f1; 2; :::; 5g and increased with the

addition of elements in A. The proposed association coef-

ficient is also changing its pattern with the change in A with

high association coefficient degree than others. However,

Dempster’s conflict coefficient degree remains constant for

all A. The comparative analysis of the conflict coefficient

of the existing functions is shown in the Fig. 5 below.

4 Application in medical diagnosis decision
making

In this section, we have implemented the association

coefficient measure in order to determine the modified

initial mass function of the decision alternatives from the

dataset that put forward in the existing paper [3, 22].

4.1 Methodology and algorithm

Consider E be the universal set of parameters consists of

two sets of decision parameters A ¼ fe1; e2; :::; emg and

B ¼ ff1; f2; :::; fng, where A be the set of the symptoms and

B stands for the decision-making tools other than symp-

toms. The building steps for the generation of the basic

probability assignment for the diseases X ¼ fx1; x2; :::; xkg
are as follows.

Step 1: Construct the fuzzy soft sets ðf ;AÞ and ðg;BÞ
represents the symptoms and decision-making tools of the

disease such that

f ðeMÞ ¼
xk
uki

: uki 2 ½0; 1�; i ¼ 1; 2; :::;m


 �

and

gðsjÞ ¼
xk
vkj

: mkj 2 ½0; 1�; j ¼ 1; 2; :::; n


 �

;

for k ¼ 1; 2; :::; p and uki; mkj are the membership degree

of xk for the parameters ei and sj respectively. In the matrix

form, we have

e1 e2 . . . em s1 s2 . . . sn

ðF;AÞ ¼

x1

x2

..

.

xk

u11 u12 . . . u1m

u21 u22 . . . u2m

..

. ..
. . .

. ..
.

uk1 uk2 . . . ukm

2

6

6

6

6

4

3

7

7

7

7

5

and (G;BÞ ¼

x1

x2

..

.

xk

v11 v12 . . . v1n

v21 v22 . . . v2n

..

. ..
. . .

. ..
.

vk1 vk2 . . . vkn

2

6

6

6

6

4

3

7

7

7

7

5

Step 2: Construct the matrix M ¼ ½cij�k�t, where cij be

the joint membership degree of xi for t ¼ mn possible

parameters formed by ei and sj as follows:

Table 5 Focal elements with fixed BPA and other varies with two

parameters

Focal elements m1ð�Þ m2ð�Þ

fx1g 0.1 0

fx3g 0.2 1 � a� b

fx1; x2g 0.4 a

fx1; x2; x3g 0.3 b

Fig. 4 The association coefficient with one BPA is fixed while the

other depends upon the two parameters
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p1 p2 . . . pt

M ¼

x1

x2

..

.

xk

c11 c12 . . . c1t

c21 c22 . . . c2t

..

. ..
. . .

. ..
.

ck1 ck2 . . . ckt

2

6

6

6

6

4

3

7

7

7

7

5

where cij ¼ minðuij; vijÞ, and the information structure

image matrix eM ¼ ½~cij�k�t is defined as:

p1 p2 . . . pt

M ¼

x1

x2

..

.

xk

~c11 ~c12 . . . ~c1t

~c21 ~c22 . . . ~c2t

..

. ..
. . .

. ..
.

~ck1 ~ck2 . . . ~ckt

2

6

6

6

6

4

3

7

7

7

7

5

Step 3: Build t pieces of initial BPAs defined as follows:

m1fx1g ¼ ~c11; m1fx2g ¼ ~c21; . . . m1fxjg ¼ ~cj1; . . . m1fxkg ¼ ~ck1

m2fx1g ¼ ~c12; m2fx2g ¼ ~c22 . . . m2fxjg ¼ ~cj2; . . . m2fxkg ¼ ~ck2

..

. ..
. ..

. ..
.

mifx1g ¼ ~c1i; mifx2g ¼ ~c2i; . . . mifxjg ¼ ~cji; . . . mifxkg ¼ ~cki

..

. ..
. ..

. ..
.

mtfx1g ¼ ~c1t mtfx2g ¼ ~c2t . . . mtfxjg ¼ ~cjt . . . mtfxkg ¼ ~ckt

Step 4: The association coefficient matrix of the body of

evidence is defined as:

m1 m2 ::: mt

A ¼

m1

m1

..

.

mt

1 a12 ::: a1t

a21 1 ::: a2t

..

. ..
. . .

. ..
.

at1 at2 ::: 1

2

6

6

6

6

4

3

7

7

7

7

5

; where aij ¼ aðmi;mjÞ:

Step 5: The support degree SupðmiÞ and credibility

degree CrdðmiÞ of any mi is defined as:

SupðmiÞ ¼
X

n

j¼1;j6¼i

aðmi;mjÞ and CrdðmiÞ ¼
SupðmiÞ
P

n

i¼1

SupðmiÞ
;

where CrdðmiÞ is the weight of the evidence, and
Pn

i¼1 CrdðmiÞ ¼ 1 implies that the BPAs are evident.

Step 6: The weighted average mass WAM(m) of the

evidences mi is given by

WAMðmÞ ¼
X

n

i¼1

crdðmiÞ � mi

Table 6 Comparisons with the existing conflicts measurement

Sl. no. Variable set

A
Dempster conflict coefficient

k
Jousselme et al. distance

dBPA

Jiang’s conflict

kr

Pan et.al conflict

CBPA

Proposed conflict

C

1 {1} 0.05 0.7858 0.7850 0.9552 0.9959

2 {1, 2} 0.05 0.6866 0.6250 0.8928 0.9879

3 {1, 2, 3} 0.05 0.5705 0.4650 0.7681 0.9477

4 {1, 2, 3, 4} 0.05 0.4237 0.3050 0.5186 0.7706

5 {1, 2, …, 5} 0.05 0.1323 0.0094 0.0196 0.0302

6 {1, 2, …, 6} 0.05 0.3884 0.1639 0.5106 0.7628

7 {1, 2, …, 7} 0.05 0.5029 0.2808 0.7504 0.9393

8 {1, 2, …, 8} 0.05 0.5705 0.3637 0.8688 0.9826

9 {1, 2, …, 9} 0.05 0.6187 0.4288 0.9277 0.9934

10 {1, 2, …, 10} 0.05 0.6554 0.4770 0.9571 0.9960

11 {1, 2,…, 11} 0.05 0.6844 0.5202 0.9717 0.9967

12 {1, 2, …, 12} 0.05 0.7082 0.5565 0.9790 0.9969

Fig. 5 Comparison of conflicts when the behaviour of A changes
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Step 7: Finally, WAM(m) is combined for ðn� 1Þ times

by Dempster’s combination rule and rank the decision

alternatives based on the final belief measure.

4.2 Case study in medical diagnosis

In the diagnostic support system, we take the case study

that put forward in [3, 22], a patient is under observation

have noticed some symptoms among the several symptoms

s1—fever, s2—running nose, s3—weakness, s4—oro-facial

pain, s5-nausea or vomiting, s6—swelling, s7—trismus etc.

A decision-maker assessed the patient based the three

symptoms s1, s2 and s4 with decision-making tools h—

history, p—physical examination, l—lab investigation etc.

Consider X ¼ fx1; x2; x3; x4g be the set of possible disease

associated with the symptoms, where x1, x2, x3 and x4

stands for the disease Acute dental abscess, Migraine,

Acute sinusitis and Peritonsillar abscess respectively.

Let E be the set of parameters formed by the symptoms

and decision-making tools with A ¼ fs1; s2; :::; s7g repre-

sents the set of symptoms and B ¼ fh; p; lg be the decision-

making tools of diseases such that

ðf ;AÞ ¼ ff ðs1Þ; f ðs2Þ; :::; f ðs7Þg and

ðg;BÞ ¼ fgðhÞ; gðpÞ; gðlÞg:

be the fuzzy soft set whose membership degree is given

in the Tables 7 and 8 respectively.

The patient is suffered from a disease and assessed

based on the symptoms fever, running noise, facial pain.

Thus, patient’s symptoms and decision-making tool forms

the nine possible pairs of parameters or evidence as ðs1; hÞ,
ðs1; pÞ, ðs1; lÞ, ðs2; hÞ, ðs2; pÞ, ðs2; lÞ, ðs4; hÞ, ðs4; pÞ, ðs4; lÞ
respectively. Consider X ¼ fx1; x2; x3; x4g be the set of four

diseases as the frame of discernment and their assessment

is obtained as shown in Table 9.

The initial BPAs min
j can be generated from the

parameters according as in Step 1–3 and arranged as

follows:

ðs1; hÞ : min
1 ðfx1gÞ ¼ 0:40, min

1 ðfx2gÞ ¼ 0:1333,

min
1 ðfx3gÞ ¼ 0:20, min

1 ðfx4gÞ ¼ 0:2667.

ðs1; pÞ : min
2 ðfx1gÞ ¼ 0:40, min

2 ðfx2gÞ ¼ 0:1333,

min
2 ðfx3gÞ ¼ 0:20, min

2 ðfx4gÞ ¼ 0:2667.

ðs1; lÞ : min
3 ðfx1gÞ ¼ 0:3333, min

3 ðfx2gÞ ¼ 0:1667,

min
3 ðfx3gÞ ¼ 0:25, min

3 ðfx4gÞ ¼ 0:25.

ðs2; hÞ : min
4 ðfx1gÞ ¼ 0, min

4 ðfx2gÞ ¼ 0, min
4 ðfx3gÞ ¼ 1,

min
4 ðfx4gÞ ¼ 0.

ðs2; pÞ : min
5 ðfx1gÞ ¼ 0, min

5 ðfx2gÞ ¼ 0, min
5 ðfx3gÞ ¼ 1,

min
5 ðfx4gÞ ¼ 0.

ðs2; lÞ : min
6 ðfx1gÞ ¼ 0, min

6 ðfx2gÞ ¼ 0, min
6 ðfx3gÞ ¼ 1,

min
6 ðfx4gÞ ¼ 0.

ðs4; hÞ : min
7 ðfx1gÞ ¼ 0:2143, min

7 ðfx2gÞ ¼ 0:2857,

min
7 ðfx3gÞ ¼ 0:2857, min

7 ðfx4gÞ ¼ 0:2143.

ðs4; pÞ : min
8 ðfx1gÞ ¼ 0:3636, min

8 ðfx2gÞ ¼ 0:1364,

min
8 ðfx3gÞ ¼ 0:1818, min

8 ðfx4gÞ ¼ 0:3182.

ðs4; lÞ : min
9 ðfx1gÞ ¼ 0:20, min

9 ðfx2gÞ ¼ 0:30,

min
9 ðfx3gÞ ¼ 0:35, min

9 ðfx4gÞ ¼ 0:15.

The association coefficient measure between any two

BPAs is obtained based on the step 4 and the association

coefficient matrix whole set of evidence is given by

Table 7 Tabular representation ðf ;AÞ for symptoms

Diseases s1 s2 s3 s4 s5 s6 s7

x1 0.60 0 0.60 0.90 0 0.70 0.80

x2 0.20 0 0.10 0.90 0.80 0 0

x3 0.30 0.70 0.30 0.80 0.30 0.40 0

x4 0.40 0 0.20 0 0.10 0.60 0.50

Table 8 Tabular representation

ðg;BÞ for decision-making tools
Diseases h p l

x1 0.60 0.80 0.40

x2 0.80 0.30 0.60

x3 0.80 0.40 0.70

x4 0.60 0.80 0.30

Table 9 Tabular forms of pairs

of symptom and decision-

making tool ðF;AÞ ^ ðG;BÞ

Diseases ðs1; hÞ ðs1; pÞ ðs1; lÞ ðs2; hÞ ðs2; pÞ ðs2; lÞ ðs4; hÞ ðs4; pÞ ðs4; lÞ

x1 0.60 0.60 0.40 0 0 0 0.60 0.80 0.40

x2 0.20 0.20 0.20 0 0 0 0.80 0.30 0.60

x3 0.30 0.30 0.30 0.70 0.40 0.70 0.80 0.40 0.70

x4 0.40 0.40 0.30 00 0 0 0.60 0.70 0.30
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m1 m2 m3 m4 m5 m6 m7 m8 m9

A ¼

m1

m2

m3

m4

m5

m6

m7

m8

m9

1 1 0:9849 0:3103 0:3103 0:3103 0:8754 0:9925 0:8157

1 1 0:9849 0:3103 0:3103 0:3103 0:8754 0:9925 0:8157

0:9849 0:9849 1 0:3956 0:3956 0:3956 0:9405 0:9797 0:8969

0:3103 0:3103 0:3956 1 1 1 0:4553 0:2829 0:5490

0:3103 0:3103 0:3956 1 1 1 0:4553 0:2829 0:5490

0:3103 0:3103 0:3956 1 1 1 0:4553 0:2829 0:5490

0:8754 0:8754 0:9405 0:4553 0:4553 0:4553 1 0:8775 0:9836

0:9925 0:9925 0:9797 0:2829 0:2829 0:2829 0:8775 1 0:8034

0:8157 0:8157 0:8969 0:5490 0:5490 0:5490 0:9836 0:8034 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Now, the support degree of BPAs and the corresponding

credibility degrees are obtained based on the Step 5and is

given below

Supðm1Þ ¼ 5:5996; Supðm2Þ ¼ 5:5995; Supðm3Þ
¼ 5:9738; Supðm4Þ ¼ 4:3035; Supðm5Þ ¼ 4:3035;

Supðm6Þ ¼ 4:3035; Supðm7Þ ¼ 5:9182; Supðm8Þ
¼ 5:4944; Supðm9Þ ¼ 5:9625

and

Crdðm1Þ ¼ 0:1180;Crdðm2Þ ¼ 0:1180;Crdðm3Þ
¼ 0:1259;Crdðm4Þ ¼ 0:0907;Crdðm5Þ ¼ 0:0907;

Crdðm6Þ ¼ 0:0907;Crdðm7Þ ¼ 0:1247; crdðm8Þ
¼ 0:1158;Crdðm9Þ ¼ 0:1256:

The weighted average mass of each alternative is

obtained as shown in the Step 8 and, we have

mðfx1gÞ ¼ 0:2303; mðfx2gÞ ¼ 0:1415; mðfx3gÞ
¼ 0:4515; mðfx4gÞ ¼ 0:1768:

Finally, the WAM(m) of the alternatives are combined

for eight times to itself by using Dempster’s combination

rule and final belief measure for each alternative are

obtained as shown below:

Bel fx1gð Þ ¼ 0:0023, Bel fx2gð Þ ¼ 0:0000, Bel fx3gð Þ ¼
0:9974 and Bel fx4gð Þ ¼ 0:0002.

4.3 Comparison and results

From the final belief measure of the alternatives, the dis-

ease x3 has the high degree of belief and we conclude that

the patient has the high possibility of suffering from the

disease x3. However, in comparison to the existing method

of Li et al. [22], Wang et al. [33] and Chen et al. [3],the

belief measure of disease alternatives is shown in the

Fig. 6and Table 10 below.

In Table 10, the ranking order of alternatives remains

same with the high belief degree in support of disease x3

and it is increases up to 0.9974 which is better performance

than existing two methods [22, 33]. Also, the belief mea-

sure of x3 is lower than the Chen et al. [3] method never-

theless the use of new association coefficient measure in

Fig. 6 Belief measures of alternatives from different methods

Table 10 Comparison of final belief measure top ranked alternatives

with existing method

Different method Ranking order Belfx3g mfXg

Li et al.’s method [22] x3 [ x1 [ x4 [ x2 0.8349 0.0069

Wang et al.’s method [33] x3 [ x1 [ x4 [ x2 0.9906 0.0001

Chen et al.’s [3] x3 [ x1 [ x4 [ x2 0.9989 0.0000

The proposed method x3 [ x1 [ x4 [ x2 0.9974 0.0001
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proposed methodology makes the decision-process more

reasonable.

5 Conclusion

Conflict management is an essential factor in appropriate

decision-making in the evidence theory. In literature, var-

ious conflict measurement functions such as distance

measure, similarity measure and association coefficient

measure etc. are widely used to describe the significance in

between two distinct evidences. To address the difficulties

in the existing conflict coefficient and distance, we pro-

posed a new association coefficient measure with desirable

properties and some numerical examples to show its

effectiveness. In this paper, proposed association coeffi-

cient is used in the construction of initial BPAs by using

information structure image matrix, evaluating the weigh-

ted average mass and combined the mass by the Demp-

ster’s rule of combination. Finally, the belief measure in

medical diagnosis is analysed and compared with the

existing related works.

In future direction, association coefficient measure may

be used on the generalised fuzzy number such as Intu-

itionistic fuzzy number, Pythagorean fuzzy number and

q-rung fuzzy number etc. in place of discrete number to

handle the uncertainty more efficiently.
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