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Abstract Code Smells are structural characteristics of

software that indicate design problems that lead to less

maintainable code. It can be seen as symptom of under-

lying problems like defects and bugs. In the literature,

many detection tools are available for code smell detection.

However, due to lack of agreement, Machine learning is

used for detecting code smell presence. Apart from the

presence of code smell, its severity is also an important

factor. In this paper, we analysed and corrected the datasets

available in the literature to remove inconsistencies in the

God class and Data class datasets. It resulted in better

machine learning performance for severity classification of

code smell. Thereafter, SSHM approach was proposed that

employed SMOTE and Stacking in combination, for

severity classification of four code smells namely God

class, Data class, Feature envy, and Long method. Three

performance parameters: accuracy, spearman’s score and

mean square error were used for evaluating performance of

proposed approach. The proposed approach surpassed other

literature study with peak accuracy improvement to

97–99% from 76 to 92% for various code smells.

Keywords Code smells detection � Severity classification �
Machine learning � SMOTE � Stacking

1 Introduction

Software maintenance and enhancement is a complex

activity. A large amount of cost is consumed in it [1].

Various deadlines and constraints force developers to focus

on functionality rather than design structures, leading to

complex design and low-quality software [2]. One of the

foremost indications of the presence of poorly designed

software is represented by the presence of Code smells [3].

They are deviation in design characteristics from basic

object-oriented principles like abstraction, modularity and

modifiability. Most of the software developed initially have

good software design, but design structures may be affec-

ted with subsequent updates [4]. Many smells are intro-

duced during such updates and enhancements activities [5].

Many empirical research has been conducted to assess the

impact of code smells on software quality and maintain-

ability. Modules with code smells are found to be more

prone to defects and changes [6]. Code smells have also

been found in positive association of fault proneness [7].

These smells hamper the maintainability of the software

developed [8]. Formal definitions [9], tools [10–12], and

most research conducted are for binary classification. A

class/method is classified as positive or negative based on

its characteristics. An important notable aspect of code

smell is its severity. A minor smell has a low impact on

software quality, whereas a severe smell has a high impact

[13].

Various machine learning (ML) based methodologies

have been studied in the literature. Low ML performance

for severity classification of class code smells motivated us

to work in this area. The main contributions of this paper

are:
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• Removing inconsistencies from multinomial God and

Data class datasets.

• Studying the performance of ML classifiers trained on

corrected vs original datasets.

• Proposing a SMOTE-Stacked Hybrid Model (SSHM)

further to improve the severity classification perfor-

mance of four code smells: God class, Data class,

Feature envy, and Long method.

2 Literature review

The literature review is divided into two sections: non-ML

based studies for code smell identification and ML-based

studies for code smell detection.

2.1 Non-ML studies for detection of code smell

Initially, Lanza et al. [9] proposed a rule-based detection

approach providing rules using software metrics. Rules act

as the threshold, and when a class/method are in accor-

dance with the threshold, it is flagged positive for the

smell; otherwise, not. Marinescu et al. [10] presented a

detection tool, iPlasma. It could detect code smells in java

and C?? language. Many large-scale projects were suc-

cessfully modelled using this tool. Moha et al. [14] pro-

posed DÉCOR, a ‘‘Rule card’’ concept, which acts as a

sample template for Anti-pattern and Code smell. Average

precision and recall during the evaluation were approxi-

mately 60% and 100%, respectively. Palomba et al. [15]

proposed the HIST approach, which considers historical

information from a version control system. Its accuracy

increases as the number of versions available for analysis

increases. Vidal et al. [16] proposed SpIRIT, a semi-auto-

mated process for prioritizing the code smell based on three

criteria. They used two case studies to evaluate their

approach and found that the developers considered priori-

tized code smell important. Fontana et al. [17] experi-

mented with four code smell rule-based detectors and

analyzed if these detectors were in agreement with each

other. It was observed that most detectors did not agree

with each other. Due to such a lack of consensus and

subjectivity, various ML techniques were implemented in

this field.

2.2 ML for detection of code smell

Maiga et al. [18] proposed the SVMDetect approach based

on Support Vector Machine classifier to identify four anti-

patterns in three open-source java applications. Barbez

et al. [19] proposed CAME, which considered the historical

evolution metrics and structural aspects and assessed smell

presence. These metrics were then fed to the CNN classi-

fier. CAME was better at identifying code smell when

compared to various other approaches. Fontana et al. [20]

experimented with a large set of machine learning tech-

niques on four Code smells binary datasets. The accuracy

varied from 96 to 99%. Nucci et al. [21] experimented with

highly imbalanced datasets with more than one smell to

present a more realistic picture. It was found that classifi-

cation performance reported in the literature cannot be

achieved with the modified datasets. Guggulothu et al. [22]

corrected datasets in literature to remove disparity among

instances. They experimented with three multi-label clas-

sifiers and achieved an accuracy of * 95%. Barbez et al.

[23] proposed SMAD, an ensemble approach by taking

three different detection tools and merging their output as a

single vector. This vector was used as input for Multi-

Layered Perceptron. This technique gave better results than

the individual tools that were clubbed together. Liu et al.

[24] studied code smell prediction using deep learning.

They experimented with four code smells and validated on

multiple open-source projects. Their approach performed

better than other approaches. Alazba et al. [25] investigated

the application of the stacking ensemble and feature

selection in code smell detection. 14 classifiers were

applied individually and then stacked together. Three dif-

ferent stacking ensembles were used for experiments.

Logistic regression and SVM as meta-classifiers resulted in

better code smell detection. Kaur and Kaur [26] experi-

mented with bagging and random forest ensemble learning

and three feature selection techniques in various combi-

nations. Random forest was the best performing classifier,

and BFS was the best among feature selection methods.

Pecorelli et al. [27] conducted an empirical comparison

between six different data balancing techniques for code

smell classification. It was observed that data balancing did

not significantly increase classifiers accuracy.

Fontana et al. [13] presented a multinomial severity

classification approach based on ML techniques for four

code smells. They found that the severity classification of

method level code smell could be done accurately, whereas

there is further scope of improvement for the class level

smell. Gupta et al. [28] developed an automated hybrid

approach for assigning the severity of code smell. They

used the CART model for the severity assignment based on

the metrics distribution of positive instances. Zhang et al.

[29] investigated six code smells and presented the order of

refactoring based on the association of faults with code

smells.

Our proposed work extends the study of Fontana et al.

[13] (from here on ‘reference study’). Class-level smells

classification performance was lower than method-level

smells (* 75% and * 90%, respectively) in their study.

Our work aims to resolve this disparity and provide a
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hybrid model (SSHM) for code smell classification by

combining Stacking and SMOTE to improve classification

performance further. To the best of our knowledge,

SMOTE and Stacking have not been applied in combina-

tion in code smell severity classification. A comparison of

our proposed approach with various code smell severity

classification and refactoring prioritization approaches are

presented in Table 1.

3 Dataset

Four datasets have been taken from the reference study.

God class (GC) and Data class (DC) are for class level

smells, while Feature envy (FE) and Long method (LM)

are for method level smells. Dataset was created using 76

Software from Qualitas corpus [30] release 20120401r.

There were four levels used to represent four levels of

severity, where 1 represents ‘No smell’ and 4 means

‘Severe smell’. Each dataset consists of 420 instances.

There were 63 features in class smell datasets and 84

features in method smell datasets.

3.1 Dataset correction

All four multinomial datasets were inspected for errors.

Binary datasets of the same code smell and identical

instances presented by the same researchers in their pre-

vious study [20] were also used for comparison. A signif-

icant number of inconsistencies between binary and

multinomial datasets of GC and DC were identified during

analysis. These discrepancies were rectified, and the

remaining instances were evaluated for any misclassifica-

tion and severity readjustment (from 2/3/4 to 2/3/4). Many

advisors were employed during the correction phase,

namely iPlasma [10], JSpIRIT [11] and PMD1 for GC and

iPlasma tool for DC. The final decision and severity label

was assigned using expert opinion. Table 2 summarises the

different corrections made for various reasons.

The composition of multinomial GC and DC datasets for

severity labels 1,2,3,4 after corrections were 281, 9, 34, 96

and 274, 32, 77, 37, respectively. Numerous conflicting

instances accounted for more than 75% of the correction in

both datasets. After correcting datasets, an experiment was

conducted to evaluate changes in the classifier’s

performance.

3.2 Experiment

This experiment applied identical pre-processing from the

reference study to evaluate the extent of performance

change in ML classifiers with corrected datasets. Jrip

model was experimented with in Weka 3.8.5, and the rest

in Python 3.8.8 using the scikit-learn library. A computer

system with 8 GB RAM, Intel i5-9300H and windows 10

was used for this experiment. Hyperparameters were set

manually based on the best setting achieved.

3.3 Performance evaluation with improved datasets

Five simple ML classifiers and their corresponding five

Adaboost boosted methods were evaluated, namely

Table 1 Comparison of the proposed approach with various severity classification and refactoring prioritization studies

Fontana et al. [13] Gupta et al. [28] Vidal et al. [16] Proposed approach

Basis of

severity

assignment

Score based on negative

impact on software quality

as assessed by expert

Severity based on software

metrics distribution of

smelly instances

Refactoring order based on

software developer’s point of

view and other factors

Score based on negative

impact on software quality

as assessed by expert

Issues

addressed

Supervised traditional ML

classification of various

code smell based on their

severity levels assigned by

human expert

Detection of code smell in

Kotlin and refactoring

ordering of positive

instances based on

software metrics

distribution

Prioritizing code smells using

many software histories related

details and information

obtained after interviews with

developers

Increasing classification

performance of ML

classifiers for various code

smells using proposed

SSHM approach

Issues not

addressed

Disparity in classification

performance of class and

method level smell was

not addressed

Developer/expert view was

not taken into account for

assigning severity index

Applied on a minimal set of

software. A more extensive

evaluation is pending

Historic details were not

taken into account for

severity classification

Methodology Prepared multinomial

severity dataset from 76

software and applied

various traditional ML

classifiers to it

Prepared Binary dataset

from 30 software and

applied CART model on it

for smell identification and

severity indexing

Three criteria i.e. History of

updation, relevance of smell

and modifiability scenarios,

were used for the ordering of

refactoring opportunities

Corrected dataset in the

literature. Then proposed

SSHM approach was

applied to improve severity

classification performance

1 https://github.com/pmd/pmd.
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Decision Tree-Pruned (DT), Random Forest (RF), Libsvm-

C-SVM-RBF (SVM), JRIP, Naı̈ve Bayes (NB), B-Decision

tree-Pruned (B-DT), B-Random Forest (B-RF), B-Libsvm-

C-SVM-RBF (B-SVM), B-JRIP and B-Naı̈ve Bayes (B-

NB). Three performance criteria, namely Accuracy,

Spearman’s score, and mean square error (MSE) of the

reference study were used for evaluation.

3.3.1 Results

The performance results of ML classifiers trained on the

original dataset were directly taken from the reference

study. SVM-RBF’s performance was poor in it. As a result,

the best SVM and B-SVM results were selected for com-

parison. Table 3 summarises the average performance of

classifiers trained on corrected and original datasets.

All classifiers performed significantly better when

trained with corrected datasets. It supports our claim that

discrepancies hampered the classifier’s learning. Detailed

results of this experiment, corrected datasets and instance-

wise evaluation of multinomial datasets of GC and DC can

be accessed from here https://drive.google.com/drive/fold

ers/16BqUdNlKNgdM_qrrJqGWKdQ_NfEdRPVD?usp=

sharing. The performance of classifiers on class level

smell is now comparable to method level smells (* 90%

peak accuracy). However, we see further scope of

improvement as specific concerns such as imbalanced

datasets, non-utilization of heterogeneous ensemble, etc.,

are still present.

4 Proposed approach: SMOTE-stacked hybrid
model (SSHM)

In this section, our proposed model of SSHM is presented

for better severity classification of four Code smells,

namely GC, DC, FE and LM. SSHM is a hybrid approach

formed by combining SMOTE with Stacking. SMOTE is

employed to handle class imbalance problems. As all the

datasets under consideration are imbalanced, balancing

them may yield better performance. Stacking is an

ensemble method for combining similar or different

classifiers, potentially improving performance of ML

models. Stacking provides exceptional customization

ability, which is missed in most ensemble techniques. The

only concern for Stacking is that it requires a larger dataset

for adequate learning as learning is divided into two parts.

First, base classifiers learn, followed by meta-classifiers.

To prevent overfitting, instances of both learning parts need

to be mutually exclusive. As a result, each classifier is

given fewer instances to train on. In an imbalanced envi-

ronment, SMOTE will increase samples available for

training. Consequently, we anticipate combining SMOTE

with Stacking will significantly improve performance in

imbalanced environment. The proposed approach can be

defined in the following steps:

Step 1: Select the Feature set

Step 2: Balance all four classes using SMOTE (label 1/2/

3/4)

Step 3: Split the balanced dataset into training and

testing data

Step 4: Create a Stack of base classifiers

Step 5: Select the meta-classifier and its parameters

Step 6: Train the Stacked ensemble and record the test

results.

4.1 Experiment

Three experiments were conducted: SMOTE, Stacking and

SSHM. In homogeneous Stacking, five instances of same

classifiers were employed as base classifiers with signifi-

cantly different hyperparameters. Each classifier was used

only once in heterogeneous Stacking. All stacking models

used Logistic regression as a meta-classifier. ML classi-

fier’s parameters were set manually based on the best set-

ting achieved. fivefold cross-validation with ten repetitions

was performed, and average performance was considered.

Out of all features, some prominent features chosen for

various code smells are as follows:

GC: AMWNAMM, LCOM5, LOCNAMM,

LOCS_Package, NOMNAMM, NOI_Package, TCC,

Is_Static_Type,

Table 2 Details of corrected instances

Reason God Class Data Class

A. Conflict between dataset 128 129

B. Misclassified as negative instance 005 012

C. Misclassified as positive instance 006 006

D. Severity reclassification 018 020

E. Non-conflicting changes (B ? C ? D) 029 038

Total (A ? E) 157 167

Table 3 Average performance of classifiers trained on the corrected

and original dataset

Performance metric God Class Data Class

OD CD OD CD

Accuracy 0.67 0.88 0.68 0.82

Spearman’s score 0.77 0.94 0.79 0.83

MSE 0.76 0.21 0.68 0.40

CD = Corrected Dataset, OD = Original Dataset
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Table 4 Performance of classifiers on different approaches for four code smell

Code Smell and classifiers Accuracy Spearman’s score (q) MSE

F S ST SSHM F S ST SSHM F S ST SSHM

God class

DT 0.76 0.92 0.91 0.94 0.85 0.96 0.96 0.97 0.46 0.10 0.14 0.08

RF 0.75 0.93 0.93 0.97 0.83 0.97 0.98 0.98 0.53 0.07 0.08 0.04

SVM 0.60 0.90 0.91 0.93 0.67 0.94 0.95 0.96 1.05 0.13 0.14 0.10

NB 0.55 0.76 0.87 0.85 0.69 0.88 0.92 0.91 1.16 0.31 0.36 0.29

DNSR – – 0.92 0.95 – – 0.97 0.98 – – 0.09 0.05

B-DT 0.75 0.96 0.91 0.98 0.84 0.98 0.95 0.99 0.48 0.04 0.14 0.02

B-RF 0.74 0.96 0.92 0.98 0.85 0.98 0.96 0.99 0.43 0.04 0.11 0.02

B-SVM 0.58 0.89 0.92 0.93 0.64 0.95 0.95 0.94 1.11 0.13 0.15 0.24

B-NB 0.55 0.82 0.86 0.86 0.69 0.90 0.89 0.91 1.16 0.23 0.39 0.23

B-DNSR – – 0.91 0.98 – – 0.95 0.99 – – 0.19 0.02

Data class

DT 0.76 0.89 0.85 0.92 0.86 0.93 0.88 0.94 0.43 0.17 0.28 0.14

RF 0.77 0.89 0.88 0.90 0.85 0.94 0.89 0.94 0.43 0.14 0.24 0.14

SVM 0.63 0.86 0.85 0.86 0.71 0.92 0.87 0.91 0.89 0.21 0.29 0.23

NB 0.55 0.69 0.75 0.71 0.71 0.76 0.59 0.77 1.11 0.59 0.94 0.57

DNSR – – 0.92 0.93 – – 0.95 0.96 – – 0.12 0.10

B-DT 0.73 0.96 0.86 0.97 0.84 0.98 0.90 0.97 0.47 0.05 0.25 0.07

B-RF 0.76 0.95 0.88 0.96 0.86 0.96 0.90 0.98 0.39 0.09 0.24 0.05

B-SVM 0.64 0.86 0.83 0.91 0.73 0.92 0.85 0.93 0.78 0.18 0.42 0.18

B-NB 0.55 0.83 0.83 0.86 0.71 0.90 0.84 0.89 1.11 0.25 0.39 0.31

B-DNSR – – 0.89 0.96 – – 0.92 0.97 – – 0.20 0.06

Feature envy

DT 0.93 0.94 0.90 0.95 0.93 0.97 0.91 0.97 0.14 0.08 0.18 0.08

RF 0.91 0.95 0.91 0.96 0.93 0.97 0.92 0.98 0.15 0.07 0.15 0.05

SVM 0.69 0.97 0.90 0.97 0.66 0.97 0.91 0.98 0.50 0.27 0.20 0.05

NB 0.76 0.84 0.86 0.85 0.75 0.91 0.84 0.92 0.55 0.24 0.33 0.20

DNSR – – 0.92 0.98 – – 0.94 0.98 – – 0.13 0.04

B-DT 0.91 0.97 0.93 0.98 0.92 0.98 0.93 0.98 0.17 0.05 0.15 0.04

B-RF 0.91 0.97 0.92 0.98 0.92 0.98 0.93 0.99 0.15 0.05 0.12 0.03

B-SVM 0.83 0.97 0.90 0.98 0.81 0.97 0.93 0.99 0.50 0.27 0.14 0.03

B-NB 0.77 0.94 0.91 0.96 0.76 0.97 0.91 0.98 0.48 0.09 0.16 0.06

B-DNSR – – 0.91 0.98 – – 0.94 0.99 – – 0.12 0.02

Long method

DT 0.88 0.91 0.92 0.95 0.95 0.96 0.98 0.98 0.18 0.10 0.08 0.05

RF 0.91 0.98 0.96 0.98 0.96 0.99 0.99 0.99 0.13 0.03 0.04 0.02

SVM 0.86 0.98 0.98 0.98 0.89 0.98 0.98 0.99 0.29 0.04 0.04 0.03

NB 0.79 0.81 0.89 0.89 0.80 0.88 0.89 0.94 0.57 0.30 0.29 0.18

DNSR – – 0.94 0.99 – – 0.97 0.99 – – 0.08 0.02

B-DT 0.91 0.98 0.94 0.99 0.96 0.98 0.98 0.99 0.14 0.04 0.08 0.02

B-RF 0.92 0.98 0.96 0.98 0.96 0.99 0.99 0.99 0.12 0.02 0.04 0.02

B-SVM 0.88 0.98 0.98 0.98 0.91 0.98 0.98 0.98 0.25 0.04 0.04 0.04

B-NB 0.85 0.93 0.93 0.96 0.88 0.96 0.96 0.98 0.35 0.10 0.11 0.05

B-DNSR – – 0.95 0.99 – – 0.99 0.99 – – 0.05 0.01

F Fontana et al. [13], S SMOTE, ST Stack, SSHM proposed SMOTE stack hybrid model
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number_constructor_DefaultConstructor_methods,

number_constructor_NotDefaultConstructor_methods

DC: AMWNAMM, LCOM5, LOCNAMM, CFNAMM,

NOMNAMM, ATFD, NIM, NMO, NOC, NOPA,

WMCNAMM, CBO, RFC

FE: LCOM5, FDP, NOA, CFNAMM, FANOUT,

ATFD, LAA, CLNAMM, TCC, CDISP, ATLD, CBO

NOLV

LM: AMWNAMM, CYCLO, LOCNAMM, CFNAMM,

LOC, MAXNESTING, LAA, CLNAMM, NOAV,

Is_Static_Type, ATLD, AMW, NOLV.

4.2 Evaluation

The corrected datasets (GC and DC) and original datasets

(FE and LM) were used for evaluation, and three perfor-

mance metrics were employed: Accuracy, Spearman’s

score, and MSE. Four classifiers and their Adaboost

boosted versions, namely DT, RF, SVM, NB, B-DT, B-RF,

B-SVM, B-NB and one heterogeneous stacking ensemble

(applicable for Stacking and SSHM only) and its Adaboost

version DNSR (DT, NB, SVM and RF) and B-DNSR (B-

DT, B-NB, B-SVM and B-RF) were evaluated in this

experiment. The study conducted by Fontana et al. [13] is

used as the baseline for the performance evaluation of our

proposed approach. The baseline performance values have

been directly taken from their study. In addition, the per-

formance of SMOTE and Stacking in isolation have also

been used for evaluation.

4.3 Results and discussion

Table 4 shows the comparative results of baseline studies

and the proposed approach. The best results for each

parameter are indicated with bold letters.

The average accuracy rate of classifiers on all four

smells for the baseline, SMOTE, Stack and SSHM

approach were 76.19, 91.13, 90.32 and 94.07, respectively.

It provides a broad overview of how the proposed hybrid

approach performed in comparison to other approaches.

The heterogeneous SSHM classifier’s performance (B-

DNSR) was best among all classifiers with accuracy,

spearman’s score and MSE of 98%, 0.99 and 0.02,

respectively. Figure 1 shows the accuracy comparison of

the baseline study, SMOTE, Stacking, and SSHM

approaches for different code smells. It is visible that the

application of SMOTE and Stacking approach, when

applied individually, improves the efficiency noticeably.

However, by using them in combination as proposed in our

approach, significantly better results were observed.

For all four code smells, it can be seen that the SSHM

approach performs better than any other technique. These

results suggested that the proposed SSHM approach pro-

vides superior severity classification. Applied with the

appropriate classifiers, the proposed approach can give

near-perfect (* 98%) severity classification accuracy for

all four code smells.

5 Conclusion

We began by addressing the disparity between classifiers

peak accuracy of class (* 75%) and method (* 90%)

level smell in literature. It was achieved by identifying

various inconsistencies in class level datasets. After

removing inconsistencies, ten ML classifiers were trained

over the corrected datasets using similar experiment. The

performance of these classifiers was then compared to the

previous study. The results showed an increase in peak

performance from approx. 75 to 90%, thereby removing

performance disparity between class and method level

smells.

However, the potential for further improvement moti-

vated us to propose the SMOTE-Stacked hybrid model

(SSHM) approach for the severity classification of four

code smells. Our proposed approach was evaluated using

ten ML classifiers. The SSHM approach was found to

outperform the baseline approach. Compared to the base-

line technique with a peak classification accuracy of

76–92%, the proposed SSHM approach had a peak clas-

sification accuracy of 97–99% for various code smells.
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