
ORIGINAL RESEARCH

Ensemble clustering based approach for software architecture
recovery

Shiva Prasad Reddy Puchala1 • Jitender Kumar Chhabra1 • Amit Rathee2

Received: 1 August 2021 / Accepted: 2 December 2021 / Published online: 25 January 2022

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2021

Abstract Frequent software maintenance usually results in

a change in the original software architecture and thus

architecture recovery is attempted using dependencies in

the software artifacts. Many different techniques for

architecture recovery are proposed in the literature nor-

mally using one out of structural, semantic, and directory

dependencies, and applying clustering over these computed

values. The main drawback of these approaches is that

either they use only one type of dependency computed in a

limited way, and or merge multiple dependencies before

applying a clustering technique and thus the approaches

result in loss of information because each dependency has

its unique characteristics. This paper proposes a new

approach for architecture recovery using ensemble clus-

tering and utilizing a more precise computation of three

types of dependencies: structural, semantic, and directory

dependencies. The proposed approach is evaluated over

open-source java projects and analyzed. The obtained

results clearly show that our proposed architecture recov-

ery approach using ensemble clustering and multiple

dependencies performs much better than other conven-

tional recovery approaches.

Keywords Architecture recovery � Directory

dependencies � Multiple dependencies � Ensemble

clustering

1 Introduction

Softwares are initially developed with a good architecture

but subsequent changes in the code disturb the architecture

and usually, the corresponding documentation remains un-

updated. Proper software architecture is crucial for obvious

reasons such as reuse, maintenance, etc. Hence, many

researchers target architecture recovery by extracting dif-

ferent dependencies from the source code and applying

clustering techniques to obtain a module view of software.

Based on the dependencies used in architecture recovery

these techniques are classified as, structure-based tech-

niques, semantic-based techniques, and knowledge-based

techniques [1]. Structure-based recovery techniques obtain

structural dependencies by analyzing the structure of the

source code and finding relations between entities.

Semantic-based recovery techniques utilize the textual

information like comments, documentation, and naming

available in the source code, and apply information

retrieval techniques to group entities. Knowledge-based

recovery techniques obtain various dependencies from

other sources such as change-history, directory structure,

etc.

Most of the prevalent recovery techniques utilize the

dependencies by combining them before applying cluster-

ing techniques and this results in poor usage of depen-

dencies because every dependency has its unique

characteristic. To overcome the restriction of using a single

clustering technique and to be able to use multiple

dependencies and clustering techniques effectively this

paper proposes a new approach for software architecture

recovery using ensemble clustering by utilizing multiple

dependencies in the recovery process. The main contribu-

tions of this paper include:

& Shiva Prasad Reddy Puchala

puchalashivaprasadreddy@gmail.com

1 Computer Engineering Department, National Institute of

Technology, Kurukshetra 136119, India

2 Computer Science Department, Government College, Barota,

Gohana, Sonipat 131301, India

123

Int. j. inf. tecnol. (June 2022) 14(4):2013–2019

https://doi.org/10.1007/s41870-021-00846-0

http://orcid.org/0000-0002-0109-5879
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-021-00846-0&domain=pdf
https://doi.org/10.1007/s41870-021-00846-0

1. Effective extraction of structural, semantic, and direc-

tory dependencies from the software source code.

2. A new efficient approach for software architecture

recovery using ensemble clustering and multiple

dependencies.

3. Evaluating the effect of individual dependencies and

multiple dependencies in architecture recovery using

ensemble clustering.

2 Related works

The software architecture recovery techniques can be dis-

cussed based on different types of dependencies extracted

from the source code and then used for the recovery.

2.1 Architecture recovery using structural

dependencies

Initially, architecture recovery was attempted using struc-

tural dependencies-based clustering through the Bunch tool

[2]. Then Maqbool and Babri [3] proposed a weighted

combined algorithm (WCA), a hierarchical clustering

algorithm for architecture recovery based on the inter-

cluster distance. Another hierarchical clustering algorithm

was proposed as the scalable information bottleneck algo-

rithm (LIMBO) [4] using information loss measures. Then

the concept of fuzzy sets was extended to it in the form of a

fuzzy logic-based hierarchical clustering technique named

LBFHC [5]. Subsequently Zhang et al. [6] integrated par-

titioned and hierarchical clustering techniques and pro-

posed a hybrid architecture recovery technique that uses

class graphs to find the kernels and then partitions the

graph based on the kernels. Recently Cho et al. [7] pro-

posed an architecture recovery approach using cluster

ensembles, which uses the results of different architecture

recovery approaches and consolidates these results to

recover a better architecture. All of these approaches used

only a few types of structural dependencies, although 8

different types of structural dependencies exist among

various software entities [8, 9] and all should be used for

more accurate computation.

2.2 Architecture recovery using semantic

dependencies

In literature, researchers leveraged the semantic informa-

tion found in the software repositories and proposed

architecture recovery techniques that could take advantage

of the available linguistic information. Kuhn et al. [10]

proposed an architecture recovery approach using infor-

mation retrieval techniques, using Latent semantic

indexing (LSI). A concern is defined as a concept or role of

a software system and semantic dependencies are used in

extracting them. Garcia et al. [11] proposed an architecture

recovery technique using concerns by identifying connec-

tors and components in a software system. Sajnani [12]

proposed an automated architecture recovery approach

using unsupervised learning methods. Link et al. [13]

extended the concept of software concerns for architecture

recovery approach by extracting software concerns from

the textual information of source code and applied classi-

fication techniques to relate entities to a domain. Sun et al.

[14] proposed a novel program comprehension approach

based on Latent Dirichlet Allocation (LDA) model for

clustering large-sized packages. Lee et al. [15] proposed an

approach to improve the semantic dependencies-based

architecture recovery by identifying and removing the

semantic outliers from source code artifacts. Limited works

have been done for recovering the architecture in this

direction, but it is logical to say that semantic information

is necessary, but not sufficient for the architecture

recovery.

Observing the non-sufficiency of structural and semantic

dependencies, some attempts have been recently made in

the literature for architecture recovery techniques by using

alternate information from software repositories such as

knowledge, change history, directory structure, etc. Li et al.

[16] proposed a framework information-oriented architec-

ture recovery technique by considering framework-related

patterns and features in clustering. Shahbazian et al. [17]

proposed an approach to recover architectural design

decisions using the code history found in version control

systems. Kong et al. [1] proposed an architecture recovery

approach based on the directory structure of software and

generated a code dependency graph to apply traditional

recovery techniques to the graph. Most recent being lan-

guage-independent pattern-oriented architecture recovery

framework by Guimaraes [18], which extracted design

patterns and decisions from the source code for the archi-

tecture recovery. These alternate approaches did not give

proper importance to all aspects of structural and semantic

information and hence have limited applicability.

As evident from above, most of the research till date is

confined to use single clustering based on one or at most

two types of dependencies, and those also computed

without covering all of their relevant types. Zahid et al.

[19] surveyed evolution in software architecture recovery

techniques and showed that existing techniques mainly

focus on the extraction of components and connectors

involved in the architecture by forming clusters and mini-

mal attention was paid to concerns, architectural style, or

design pattern used to develop the software system. Fur-

ther, attempts of combining dependencies were done for a

maximum of two types, and combining was done before

2014 Int. j. inf. tecnol. (June 2022) 14(4):2013–2019

123

clustering resulting in loss of unique information of each

type. So all existing approaches are limited to using a

single clustering technique and have the risk of the infor-

mation loss while merging different dependencies. These

research gaps and limitations of previous approaches

motivated us to propose a new approach for software

architecture recovery using ensemble clustering and mul-

tiple dependencies, computed in a precise manner from

source code as well as other relevant structures.

3 Proposed approach

This section provides a detailed overview of the proposed

architecture recovery approach using cluster ensembles and

multiple dependencies.

Figure 1 depicts the procedure adopted in our proposed

approach for software architecture recovery. First of all

structural, semantic, and directory dependencies are

extracted between software elements by analyzing the

source code. Then different clustering techniques are

applied using dependencies obtained above to generate

clusterings. The intermediate clusterings are named base

clusterings. Now base clusterings are consolidated using a

consensus technique to obtain a similarity matrix and the

complete linkage clustering is applied to this matrix to get

the final clusterings. Finally, the obtained clustering results

are evaluated with Turbo MQ and MoJoFM metrics.

3.1 Improved and effective extraction of structural

and semantic dependencies

In this paper, we considered package names, usage pat-

terns, identifiers, class/method/variable definitions, state-

ments, and comments to effectively mine the semantic

relations. To extract the structural and semantic relations

from the source code, the proposed mathematical approach

by Rathee and Chhabra [9] is used in this paper and

dependency matrices are generated for structural and

semantic dependencies. The existing directory dependency

processing approaches do not consider the file hierarchy

found in the directory structure of software, so we improve

this approach by considering the depth of each file in the

file hierarchy and using it in the computation of directory

dependencies. The process involved in the extraction of

directory dependencies is described in the next section.

3.2 Extracting directory dependencies

Kong et al. [1] described that the software architecture

belongs to the logical view and most of the approaches in

literature ignore the available knowledge of directory

structure while recovering the architecture. This paper

proposes to use the directory structure also. The path

information of each class file in the software system is

extracted and this information is used in building a direc-

tory tree. The internal nodes in the directory tree represent

intermediate directories and leaf nodes represent the clas-

ses in the system. The directory dependency between two

classes is computed based on their placement in the

directory tree. Generally developers tend to create and

organize files in hierarchies while designing. So files at

greater depth in the hierarchy are more related than the files

at a lower depth. To reduce the effect of trivial distance-

based measures and account for granularity, we consider

depth in the similarity computation and it is calculated as

the distance between the root node and common ancestor

node [20]. The distance-depth based measure for similarity

computation is expressed as:

SD Ci;Cj

� �
¼

1 þ D Ai;j;R
� �

1 þ D Ai;j;R
� �

þ D Ci;Cj

� � ð1Þ

Here, D(Ci, Cj) is the length of path/distance between

tree nodes of classes Ci and Cj, Ai,j is the lowest common

ancestor of (Ci, Cj) and R is the root. By using Eq. (1) the

directory dependency matrix (DrDM) is calculated as:

DrDM i; jð Þ ¼
XNj j

i¼1

XNj j

j¼1

SD Ci;Cj

� �
ð2Þ

Fig. 1 The proposed ensemble clustering based approach for

software architecture recovery

Int. j. inf. tecnol. (June 2022) 14(4):2013–2019 2015

123

Here, |N| is the total number of classes in the system.

DrDM is a symmetric matrix and its values vary between 0

and 1.

3.3 Clustering

Clustering techniques group entities based on their simi-

larities to form clusters or sub-clusters. A clustering

ensemble aims at combining multiple clustering results to

produce a better result than that of individual clustering

techniques and its effectiveness depends on the quality and

quantity of intermediate clusterings or base clusterings

obtained and used. There are two techniques to generate

diverse base clusterings; (1) Using the same individual

clustering technique with distinct parameter settings and

(2) Adopting the suitable clustering technique for each base

clusterings generation.

Most of the recovery techniques in literature which use

structural dependencies either adopt Complete Linkage

HAC [21] or KMeans as their clustering technique, so in

this work, we used Complete Linkage HAC, KMeans,

Spectral Clustering on structural dependencies to generate

base clusterings. Garcia et al. [11] worked on semantic

information-based architecture recovery using latent

Dirichlet allocation (LDA) and it is also reported in the

literature that LDA is modeled for finding topics in textual

information. So we use LDA and KMeans on our semantic

dependencies to generate base clusterings. On directory

dependencies, we apply similarity-based clustering tech-

niques such as Complete Linkage HAC and Spectral

clustering to generate base clusterings.

Cho et al. [7] showed that for better usage of cluster

ensemble approach in software architecture recovery the

number of base clustering generated should be above 20

and normally between 20 and 70 to avoid oversaturation.

Accordingly, we chose to generate a total of 31 base

clusterings; as shown in Table 1 for our experiments.

3.4 Consolidation of base clusterings using

consensus techniques

In this step, consensus techniques are applied to the gen-

erated base clusterings to consolidate them into a unique

clustering result. As described by Cho et al. [7] there are

several consensus techniques in literature; we adopt the

evidence accumulation (EA) algorithm [22] as our con-

sensus technique. Evidence accumulation algorithm is

shown to perform well in the literature and it works on the

entity co-occurrence approach. It uses the number of co-

occurrences across base clusterings as similarities between

two entities and generates a similarity matrix. Finally

complete linkage HAC is applied to the similarity matrix to

produce the final clustering results.

4 Experimentation and results

We experimented with our approach on two open-source

projects and analyzed the results of applying our approach

by using individual dependencies and multiple dependen-

cies. Finally, we compared the evaluation scores of

applying our approach to the weight-based dependency

clustering approach.

4.1 Formulated research questions

In this paper we answer the following two research

questions:

RQ1 Do multiple dependencies perform better than

individual dependencies in recovering architecture

using ensemble clustering?

RQ2 Do software architecture recovery using ensemble

clustering and multiple dependencies perform

better than approaches using weight-based

dependency clustering?

4.2 Subject projects

Two open-source projects ArchStudio and Hadoop are

selected to investigate the two research questions. Lutellier

et al. [23] constructed expert architectures of five projects

in their work. The projects are Chromium, ITK, Bash,

Hadoop, ArchStudio and they provided open access to the

expert decompositions of these projects. So we selected

Hadoop and ArchStudio as our subject systems because of

their accessible expert decompositions. The clustering

techniques require the parameter i.e. the number of clusters

to be set in advance, so in this paper, we decided the

number of clusters parameter by examining the clusters in

expert decompositions.

Table 1 Parameter setting for base clusterings generation

Dependency Clustering technique # of base clusterings

Structural Complete linkage HAC 5

Kmeans 5

Spectral clustering 5

Semantic Latent Dirichlet allocation 5

KMeans 5

Directory Complete linkage HAC 3

Spectral clustering 3

Total # of base clusterings 31

2016 Int. j. inf. tecnol. (June 2022) 14(4):2013–2019

123

4.3 Evaluation measures

In this paper, the clustering results obtained from the

consensus phase are evaluated with MoJoFM [24] and

Turbo MQ [25] measures. MoJoFM and Turbo MQ have

been commonly used in the literature for the comparison of

architectures and clusters. These metrics are shortly sum-

marized as follows:

(i) MoJoFM: MoJoFM is an external evaluation mea-

sure. It measures the similarity of recovered architecture to

the expert architecture and it is calculated as,

MoJoFM ¼ 1 � mno P;Qð Þ
max mno 8P;Qð Þð Þ

� �
� 100% ð3Þ

P is the recovered architecture, Q is expert architecture,

mno(P, Q) is the minimum number of Move and Join

operations needed to transform P to Q. A lower score

indicates a greater disparity between the architectures P

and Q, a higher score indicates how much P is closer to Q.

(ii) Turbo modularization quality (turbo MQ): Turbo

MQ is an internal quality measure that is based on the

assumption that recovered architecture should exhibit high

cohesion and low coupling. Turbo MQ is calculated as,

TurboMQ ¼
Xk

i¼1

2li
2li þ

P
j eij þ eji
� � ð4Þ

where li indicates the number of intra-relationships in

cluster i, and eij ? eji indicates the number of inter-rela-

tionships between cluster i and cluster j.

4.4 Results and analysis

The section presents the results obtained after evaluating

the proposed approach on ArchStudio and Hadoop soft-

ware systems. In our experimentations, we applied com-

plete linkage clustering on the similarity matrix obtained

after the consensus phase to generate the final architectural

decompositions. Finally, the recovered decompositions are

evaluated with Turbo MQ and MoJoFM evaluation mea-

sures, and the scores are presented in Table 2. For

ArchStudio, we experimented exhaustively with 10 dif-

ferent numbers of clusters as 53, 54,…,62, and for

Hadoops, 62, 63,…,71. We have also presented the eval-

uation scores of using individual dependencies in the

ensemble clustering based architecture recovery approach

in Table 2. The following table shows some useful results

for a selective number of clusters.

RQ1 Do multiple dependencies perform better than

individual dependencies in recovering architecture using

ensemble clustering?

Figure 2 shows a comparison of results obtained using

each dependency individually and multiple dependencies

in architecture recovery using ensemble clustering

approach, From the plots in Fig. 2, it is observed that the

ensemble clustering approach using directory dependencies

shows higher scores of MoJoFM than any other depen-

dencies because for the selected subject system the existing

directory structure is well maintained, but it can be

observed that the scores of Turbo MQ using directory

dependencies are lower than others because the directory

dependencies alone cannot account for the cohesiveness of

the entities present in a cluster. The obtained scores of

MoJoFM and Turbo MQ by applying ensemble clustering

approach on Archstudio and Hadoop show that the results

of a recovery technique improve by using multiple

dependencies and it is also clear that the cohesiveness of

clusters formed by using multiple dependencies is much

better compared to others. As we can see from Fig. 2, the

Turbo MQ scores of each subject system by using struc-

tural, semantic, and directory dependencies together in

architecture recovery would eventually improve and out-

perform other individual dependencies.

Table 2 Few results of experimentation

#a STRb SEMb DIRb Our Appb

ArchStudio

53 39.2, 7.4 53.6, 12.7 80.1, 19.0 76.2, 20.4

57 42.27, 8.0 54.53, 13.6 80.28, 19.5 75.67, 21.1

62 47.78, 10.9 56.13, 14.5 81.53, 21.1 75.31, 21.7

Hadoop

62 30.44, 13.5 37.88, 11.0 62.12, 15.3 52.92, 19.1

69 30.97, 15.0 40.35, 12.4 63.01, 15.2 53.45, 19.8

71 30.62, 15.2 40.35, 12.5 62.83, 15.3 53.1, 19.8

a# of clusters
bValues of MojoFM, TurboMQ

Fig. 2 Comparison of the evaluation scores obtained using individual

dependencies and multiple dependencies using ensemble clustering

approach

Int. j. inf. tecnol. (June 2022) 14(4):2013–2019 2017

123

RQ2 Do software architecture recovery using ensemble

clustering and multiple dependencies perform better than

approaches using weight-based dependency clustering?

To test RQ2, we obtained the software dependency

matrices of ArchStudio for each type of dependency and

combined them using the following 0.5, 0.3, 0.2 weights

for structural, semantic, and directory dependencies

respectively. Then we applied complete linkage HAC to

get the final clustering results and evaluated results with

MoJoFM and Turbo MQ. The same approach is also

repeated for the subject system Hadoop and the results are

noted. Finally, the scores obtained using weight-based

dependency scheme and ensemble clustering scheme on

the subject system ArchStudio are plotted in Fig. 3. The

proposed approach eliminates the burden of setting the

weights for each type of dependency manually as in the

weight-based dependency clustering.

From Fig. 3 it can be observed that for subject system

ArchStudio, the proposed approach continued to perform

well in the case of both MoJoFM and Turbo MQ.

Finally, based on observations from the subject system

Hadoop and the plots of ArchStudio shown in Fig. 3, it

is concluded that architecture recovery using ensemble

clustering and multiple dependencies outperforms

weight-based dependency clustering schemes in archi-

tecture recovery.

4.5 Comparison with existing approaches

in the literature

To show how an ensemble-based clustering approach

improves the architecture recovery results, a comparison is

provided between Kong et al. [1], Cho et al. [7] and the pro-

posed approach. Cho et al. [7] proposed an architecture

recovery approach based on cluster ensembles, and Kong et al.

[1] proposed an approach that generates a submodule-level

dependency graph based on directory hierarchy and uses it to

improve the architecture recovery. Table 3 presents the scores

of MoJoFM and Turbo MQ obtained after evaluating the

proposed approach and the values presented by Cho et al. [7]

and Kong et al. [1] approaches on Hadoop and ArchStudio.

The main reason behind considering ArchStudio and Hadoop

is that these software systems are also evaluated by Cho et al.

[7] and Kong et al. [1] and their proposed approaches are not

publicly available for experimentation purposes.

In the case of ArchStudio, it can be observed from

Table 3 that even with a lower number of base clusterings

the proposed approach showed an improvement of 8–13%

in the MoJoFM evaluation scores. This is because the

proposed approach effectively extracts dependencies and

accurately uses them in the recovery process. In the case of

Hadoop, we can observe a minor improvement in the

scores of MojoFM and Turbo MQ and our observations

show that the cohesiveness of the clusters formed by our

approach is better. The recovery approach by Cho et al. [7]

is not directly available for evaluation, so deep further

analysis is needed and being carried out. Finally, based on

the results of subject systems Hadoop and ArchStudio, it

can be concluded that the proposed approach performs

better than Cho et al. [7] and Kong et al. [1] approaches

and improves the overall architecture recovery results.

5 Conclusion

Program comprehension and software maintenance can be

done in a much better way using the software architecture

derived from the most recent implementation than the older

versions. Various dependencies and their integration play

an important role in this process. In this paper, a new

approach to architecture recovery is proposed using

ensemble clustering and multiple dependencies. The

Fig. 3 Comparison of the evaluation scores obtained using weight-

based dependency clustering and ensemble clustering approach

Table 3 Comparison of the

proposed approach with Kong

et al. [1] and Cho et al. [7]

approaches

Arch. recov. approaches Hadoop ArchStudio

MoJoFM (%) Turbo MQ MoJoFM (%) TurboMQ

Kong et al.’s [1] 49 18.1 62 26.35

Cho et al. [7] 53 – 67 –

Proposed approach 53 19.8 75 21.7

2018 Int. j. inf. tecnol. (June 2022) 14(4):2013–2019

123

structural, semantic, and directory dependencies are

effectively utilized in the architecture recovery process and

each dependency is fully leveraged by applying suit-

able clustering techniques on it. The proposed approach

also eliminates the restriction of relying on the results of a

single clustering technique and the application of different

clustering techniques on each dependency helps in gener-

ating diverse base clusterings which in turn improves the

accuracy of architecture recovery. Our experimentations

verified that architecture recovery using ensemble cluster-

ing and multiple dependencies performs much better than

weight-based dependency clustering.

In the future, the proposed approach can be investigated

by considering different dependencies and clustering

techniques by generating more diverse base clusterings to

improve the recovery results. A more detailed evaluation

can be carried out to study the architecture recovery results

by applying various consensus techniques. The proposed

ensemble clustering based approach for architecture

recovery can be utilized for software remodularization and

in software restructuring.

References

1. Kong X, Li B, Wang L, Wu W (2018) Directory-based dependency

processing for software architecture recovery. IEEE Access

6:52321–52335. https://doi.org/10.1109/access.2018.2870118

2. Mancoridis S, Mitchell B, Chen Y, Gansner E (1999) Bunch: a

clustering tool for the recovery and maintenance of software

system structures. In: Proceedings IEEE international conference

on software maintenance—1999 (ICSM’99). ’software mainte-

nance for business change’ (Cat. No.99CB36360), pp 50–59.

https://doi.org/10.1109/icsm.1999.792498

3. Maqbool O, Babri H (2004) The weighted combined algorithm: a

linkage algorithm for software clustering. In: 8th European confer-

ence on software maintenance and reengineering, 2004. CSMR 2004.

Proceedings, pp 15–24. https://doi.org/10.1109/csmr.2004.1281402

4. Andritsos P, Tzerpos V (2005) Information-theoretic software

clustering. IEEE Trans Software Eng 31(2):150–165. https://doi.

org/10.1109/tse.2005.25

5. Wang Y, Liu P, Guo H, Li H, Chen X (2010) Improved hierarchical

clustering algorithm for software architecture recovery. In: 2010

international conference on intelligent computing and cognitive

informatics, pp 247–250.https://doi.org/10.1109/icicci.2010.45

6. Zhang Q, Qiu D, Tian Q, Sun L (2010) Object-oriented software

architecture recovery using a new hybrid clustering algorithm. In:

7th international conference on fuzzy systems and knowledge

discovery, vol 6, pp 2546–2550. https://doi.org/10.1109/fskd.

2010.5569799

7. Cho C, Lee K, Lee M, Lee C (2019) Software architecture

module-view recovery using cluster ensembles. IEEE Access

7:72872–72884. https://doi.org/10.1109/access.2019.2920427

8. Prajapati A, Parashar A, Chhabra J (2020) Restructuring object-

oriented software systems using various aspects of class infor-

mation. Arab J Sci Eng 45(12):10433–10457. https://doi.org/10.

1007/s13369-020-04785-z

9. Rathee A, Chhabra J (2018) Clustering for software remodular-

ization by using structural, conceptual and evolutionary. J JUCS

24(12):1731–1757. https://doi.org/10.3217/jucs-024-12-1731

10. Kuhn A, Ducasse S, Gı̂rba T (2007) Semantic clustering: iden-

tifying topics in source code. Inf Softw Technol 49(3):230–243.

https://doi.org/10.1016/j.infsof.2006.10.017

11. Garcia J, Popescu D, Mattmann C, Medvidovic N, Yuanfang C

(2011) Enhancing architectural recovery using concerns. In: 26th

IEEE/ACM international conference on automated software

engineering (ASE 2011), pp 552–555. https://doi.org/10.1109/

ase.2011.6100123

12. Sajnani H (2012) Automatic software architecture recovery: a

machine learning approach. In: 20th IEEE international confer-

ence on program comprehension (ICPC), pp 265–268. https://doi.

org/10.1109/icpc.2012.6240501

13. Link D, Behnamghader P, Moazeni R, Boehm B (2019) Recover

and RELAX: concern-oriented software architecture recovery for

systems development and maintenance. In: 2019 IEEE/ACM

international conference on software and system processes

(ICSSP), pp 64–73.https://doi.org/10.1109/icssp.2019.00018

14. Sun X, Liu X, Li B, Li B, Lo D, Liao L (2017) Clustering classes

in packages for program comprehension. Sci Program 2017:1–15.

https://doi.org/10.1155/2017/3787053

15. Lee K, Lee C (2020) Identifying semantic outliers of source code

artifacts and their application to software architecture recovery.

IEEE Access 8:212467–212477. https://doi.org/10.1109/access.

2020.3040024

16. Li X, Zhang L, Ge N (2017) Framework information based java

software architecture recovery. In: 24th Asia-Pacific software

engineering conference workshops (APSECW), pp 114–120.

https://doi.org/10.1109/apsecw.2017.15

17. Shahbazian A, Kyu Lee Y, Le D, Brun Y, Medvidovic N (2018)

Recovering architectural design decisions. In: 2018 IEEE inter-

national conference on software architecture (ICSA),

pp 95–9509.https://doi.org/10.1109/icsa.2018.00019

18. Guimaraes E, Cai Y (2020) Understanding software systems

through interactive pattern detection. In: 2020 IEEE international

conference on software architecture companion (ICSA-C),

pp 51–54. https://doi.org/10.1109/icsa-c50368.2020.00017

19. Zahid M, Mehmmod Z, Inayat I (2017) Evolution in software

architecture recovery techniques—a survey. In: 13th international

conference on emerging technologies (ICET), pp 1–6. https://doi.

org/10.1109/icet.2017.8281704

20. Sologub (2011) On measuring of similarity between tree nodes.

In: Proceedings of the 5th Russian young scientists conference in

information retrieval

21. Maqbool O, Babri H (2007) Hierarchical clustering for software

architecture recovery. IEEE Trans Software Eng 33(11):759–780.

https://doi.org/10.1109/tse.2007.70732

22. Fred A, Jain A (2005) Combining multiple clusterings using

evidence accumulation. IEEE Trans Pattern Anal Mach Intell

27(6):835–850. https://doi.org/10.1109/tpami.2005.113

23. Lutellier T, Chollak D, Garcia J, Tan L, Rayside D, Medvidovic

N, Kroeger R (2015) Comparing software architecture recovery

techniques using accurate dependencies. In: 2015 IEEE/ACM

37th IEEE international conference on software engineering,

pp 69–78. https://doi.org/10.1109/icse.2015.136

24. Zhihua W, Tzerpos V (2004) An effectiveness measure for

software clustering algorithms. In: 12th IEEE international

workshop on program comprehension proceedings, pp 194–203.

https://doi.org/10.1109/wpc.2004.1311061

25. Mitchell B (2003) A heuristic approach to solving the software

clustering problem. In: International conference on software

maintenance, 2003. ICSM 2003. Proceedings, pp 285–288.https://

doi.org/10.1109/icsm.2003.1235432

Int. j. inf. tecnol. (June 2022) 14(4):2013–2019 2019

123

https://doi.org/10.1109/access.2018.2870118
https://doi.org/10.1109/icsm.1999.792498
https://doi.org/10.1109/csmr.2004.1281402
https://doi.org/10.1109/tse.2005.25
https://doi.org/10.1109/tse.2005.25
https://doi.org/10.1109/icicci.2010.45
https://doi.org/10.1109/fskd.2010.5569799
https://doi.org/10.1109/fskd.2010.5569799
https://doi.org/10.1109/access.2019.2920427
https://doi.org/10.1007/s13369-020-04785-z
https://doi.org/10.1007/s13369-020-04785-z
https://doi.org/10.3217/jucs-024-12-1731
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1109/ase.2011.6100123
https://doi.org/10.1109/ase.2011.6100123
https://doi.org/10.1109/icpc.2012.6240501
https://doi.org/10.1109/icpc.2012.6240501
https://doi.org/10.1109/icssp.2019.00018
https://doi.org/10.1155/2017/3787053
https://doi.org/10.1109/access.2020.3040024
https://doi.org/10.1109/access.2020.3040024
https://doi.org/10.1109/apsecw.2017.15
https://doi.org/10.1109/icsa.2018.00019
https://doi.org/10.1109/icsa-c50368.2020.00017
https://doi.org/10.1109/icet.2017.8281704
https://doi.org/10.1109/icet.2017.8281704
https://doi.org/10.1109/tse.2007.70732
https://doi.org/10.1109/tpami.2005.113
https://doi.org/10.1109/icse.2015.136
https://doi.org/10.1109/wpc.2004.1311061
https://doi.org/10.1109/icsm.2003.1235432
https://doi.org/10.1109/icsm.2003.1235432

	Ensemble clustering based approach for software architecture recovery
	Abstract
	Introduction
	Related works
	Architecture recovery using structural dependencies
	Architecture recovery using semantic dependencies

	Proposed approach
	Improved and effective extraction of structural and semantic dependencies
	Extracting directory dependencies
	Clustering
	Consolidation of base clusterings using consensus techniques

	Experimentation and results
	Formulated research questions
	Subject projects
	Evaluation measures
	Results and analysis
	Comparison with existing approaches in the literature

	Conclusion
	References

