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Abstract Quantitative Structure–Activity Relationship

(QSAR) is known as one of the most suitable and appli-

cable approaches in computer-aided drug discovery field.

Establishing QSAR involves difficulties and challenges in

its different sections. One open challenge QSAR dealing

with is the existence of compounds with activity cliff

property in datasets. Drug compounds with activity cliff

property have very similar structures, but the values of

their activities are different. In this study, we propose a

method called PCAC to apply a genetic neural network

algorithm as feature selection method in order to discover

the most proper descriptors. In order to predict compounds

with activity cliffs, an ensemble machine learning method

employed random forest algorithms has been utilized. This

paper aims to find drug compounds with activity cliff used

Structure–Activity Landscape Index (SALI), and com-

pounds are classified as cliff and non-cliff based on their

SALI values. Experiments are conducted on three datasets,

including Costanzo, Dai, and Kalla. PCAC is compared

with baselines, results show that the proposed method has

better performance in most cases in comparison with

baselines in terms of the correlation coefficient, root-mean-

square error and mean absolute error.

Keywords QSAR � Activity cliff challenge � Machine

learning � Feature selection

1 Introduction

Quantitative Structure–Activity Relationship (QSAR) is a

widely-used, proper and applicable strategy in computer-

aided drug design (CADD) areas for extracting information

from big datasets [1]. QSAR is an indirect Lig-based

approach that models the structure properties of biological

activity. QSAR model has been applied to propose new

compounds with improved activity and candidate com-

pounds for a special drug goal [2]. The Idea of QSAR is

based on mold molecules’ properties such as solving in

water, fats, oils and Lipophilicity solvent and balance

electronic features and biologic activity of molecules. This

relation can be simplified in Eq. (1):

LogBR ¼ f r1; r2; r3; . . .ð Þ ð1Þ

where BR is a biologic response like IC50, ED50, LD50,

and Ki. rn are molecules descriptors, including mathe-

matical molecules features. Main problems with QSAR are

when applications relying on biologic activity and the

matrix of molecules descriptors are non-linear. Another

problem arises when the number of computed variables is

larger than the number of compounds in datasets [3]. To

deal with the non-linear issue, non-linear modeling

framework are used, and the problem of increase in

dimension is solved by feature selection, selecting the

descriptors with highest effect on activity of a set of

compounds. One reason leading failure in QSAR is asso-

ciated to the nature of SARThe essential assumption of

QSAR and methods based on similarity is SAR continuity

[4]. Thus that, gradual changes in a structure must bring to

gradual changes in activity. However, the systematic and

quantitative properties of different compound sets indicate

that most SARs are heterogeneous [5] in a way that the plot

of their activity has had slight descends and in some points
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witnesses sharp and low deep cliffs. Activity cliffs or

totally property cliff, are pairs of compounds with high

similarity in structure and against what expected have large

differences in activity value [6]. We consider machine

learning to detect compounds with this property. Our

method has contributions in two parts: (1) Feature selection

with genetic neural network, (2) Applying ensemble

learning algorithm.

The rest of this paper is organized as follows: in Sect. 2

related works are reviewed. In Sect. 3 our method called

PCAC is presented, in Sect. 4 experimental settings and

empirical results are reported, and we conclude in Sect. 5.

2 Related work

Several studies focused on QSAR applying machine

learning [7]. These models include transforming molecular

structures to mathematical descriptors, descriptors selec-

tion, extracting a function as a relationship between

descriptors and biologic characteristics and model valida-

tion [8].

2.1 Transforming molecular structures

to mathematical descriptors

A molecular descriptor is statistical representations of a

molecule [9], which is the result of an algorithm employed

to molecular representation or an experimental procedure

[10]. These descriptors are always derived from the x, y, z

cartesian coordinates of the molecule atoms; thus, they are

called 3D-molecular descriptors [11]. Molecular descrip-

tors are divided into two classes: experimental measure-

ments, such as log P, molar refractivity, dipole moment,

polarizability, and Physico-chemical properties, and theo-

retical molecular descriptors, which are derived from a

symbolic representation of the molecule and are classified

according to the different types of molecular representa-

tion. Information on molecular geometry has experienced

an explosion as a result of augmentation of topological

representation of a molecule. Several geometrical

descriptors are extracting from the three dimensional spa-

tial coordinates of a molecule, including shadow indexes,

charged partial surface area descriptors, WHIM descrip-

tors, gravitational indexes, EVA descriptors, 3D-MoRSE

descriptors, and GETAWAY descriptors [10].

2.2 Descriptors selection

Having a large number of molecules descriptors, the

interpretation of the process can face with problems. A

model with few numbers of descriptors can lead to a better

rather than with a large number of ones. A solution to this

issue is feature selection including filter, wrapper and

floating approach [12]. Filter methods based on intent

properties of data try to find the relationships between

features. For each property, a score is computed and fea-

tures with fewer scores are removed. This model is simple,

quick and independent from the classification. In [13]

correlation-based method and in [14] information- theory

are employed as filter feature selection. Wrapper methods

are utilized with mapping algorithms and a subset of fea-

tures according to the efficiency of machine learning and

its error for that subset is selected. Genetic algorithm [15],

Particle Swarm Optimization [16] and Simulated annealing

[17] are used as wrapper methods. Floating approach has

more than one forward and backward in subsets of feature

set. A dynamic backward search provides reliable results.

In [18] sequential forward floating selection is used as a

floating approach.

2.3 Extracting a function as a relationship

between descriptors and biologic characteristics

Detecting compounds with activity cliffs leads to designing

new compounds. The issue can be interpreted as a classi-

fication problem. Support Vector Machine, Gaussian Pro-

cess, Artificial Neural Network, Naı̈ve Bayesian, Decision

Trees and Ensemble learning are applied for activity cliffs

detection. SVM algorithms rooted in the concepts of

structural risk minimization and statistical learning theory.

SVM in QSAR is known as a robust and highly accurate

classification technique. In [19], the classification of com-

pounds to cliff and Non-cliff has been down with SVM by

defining kernel function considering pairs of compounds

instead of individual compounds. GP method for nonlinear

regression is proper for a large number of descriptors. GP

enjoys sound properties such as selection of the important

descriptors, handling overtraining, and estimating likeli-

hood in predictions. Authors in [20] extend the application

of GP for classification and to indicate the predictive

accuracy of GP compared it with decision trees, random

forest, SVM, and probit partial least squares. NN are

consisting of several parallels distributed processor units,

resemble the brain. NNs, including one input layer, one

output layer and one or more hidden layers. Each layer

consists of nodes and nodes in each layer are connected to

the nodes from their previous and next layer. In [21] the

uses of NNs in QSAR models generated from large diverse

dataset is elucidated. NB classifier is utilized for learning

tasks where each instance x is described by a conjunction

of attribute values and where the target function f (x) can

take on any value from some finite set. In [22] developed

large scale human ligand–protein predictive models based

on bioactivity data using NB. In [23] a method employing

RF is presented, assumed that compounds with activity
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cliff properties have a large value of SALI. Therefore, pairs

of compounds are detected indirectly via predicting the

SALI value.

2.4 Model validation

Validation is the last stage of every learning model

including QSAR. In validation, the reliability and validity

of a learned model is assessed. Validation methods are

categorized to internal and external models [24]. Statistical

methodologies applied to ensure that the generated models

are sound and unbiased have been introduced as external

techniques. The methods of least square fit (R2), cross-

validation (Q2), adjusted R2 (R2adj), chi-squared test (v2),

root-mean-squared error (RMSE), bootstrapping and

scrambling (Y-randomization) are internal methods. It has

been suggested the only way to estimate the true predictive

power of a QSAR model is to compare the predicted and

observed activities of an (sufficiently large) external test set

of compounds that were not used in the model development

[25]. Statistical characteristics: correlation coefficient R

between the predicted and observed activities; coefficients

of determination (R2) (predicted vs. observed activities

r02, and observed vs. predicted activities r00); slopes k and

k0 of the regression lines through the origin are external

methods [26].

3 Proposed method for predicting compounds
with activity cliff property (PCAC)

We proposed a novel method to predict compounds with

activity cliff property called PCAC, which is based on the

idea of predicting SALI value of components’ pairs. PCAC

consists of feature reduction, descriptors calculations,

computing SALI value for compounds’ pair feature selec-

tion and learning (Fig. 1).

3.1 Feature reduction

Similar to [23], two simple strategies are applied to reduce

the number of features. Features having constant values or

near-constant values and features with high correlation

according to R2 correlation coefficient are deleted from

datasets. R2 is a statistical metric that describes how close

the data are and defined as the following in Eq. (2):

R2 ¼ ½NRXY � ðRXÞðRYÞÞ=R½NRX2 � ðRXÞ2�½NRY2

� ðRYÞ2�
ð2Þ

To determine similar features, a cutoff of 0.8 is

considered.

3.2 Descriptors calculations

Descriptors can be calculated for pairs of compounds rather

than individuals [23]. Since the activity cliff concept and

SALI are over the compounds’ pairs, first all compounds’

pairs in datasets are calculated and the new dataset is

created. The initial dataset is altered to a pairwise dataset.

For an initial dataset whit N number of compounds, the

number of compounds’ pairs is N(N - 1)/2. Features for

the compounds’ pairs are computed by following Eq. (3).

f3i ¼ a � f1iOPb � f2i ð3Þ

where f3i is set of i number of new descriptors, f2i and f1i

are the descriptors of first and second compounds, OP is the

operator, a and b are constants, if a = b = 1, OP is sub-

traction, if a = b = 1/2, OP is summation [27].

3.3 SALI value computation

For utilizing the compound data towards the machine

learning strategies, Each molecule is numerically repre-

sented by a molecular fingerprint which is a binary

descriptor. The standard approach to quantify similarity for

AC assessment is the calculation of the Tanimoto coeffi-

cient on fingerprint descriptors [2]. This numerical simi-

larity metric assesses whole-molecule similarity in

‘fingerprint space’ and requires the definition of threshold

values. The 1051-bit BCI fingerprints form Digital chem-

istry or CDK19,20 1024-bit path fingerprint were applied

to compute SALI values. Applying a simple index can

detect compounds with cliff property. One typically uses

either the raw activity value or the log of that value. The

former is more appropriate for activity which is represented

as percent inhibition; the latter, when the activity is a Ki or

IC50.7. SALI index [28] is defined as follows Eq. (4):

SALIi:j ¼ Ai � Ajj j=1 � sim i; jð Þ ð4Þ

where Ai, Aj are the activity values of the ith and jth

molecule and sim is the correlation coefficient between

these molecules. Compounds with cliff lead to large value

Fig1 Block diagram of PCAC model for predicting compounds with activity cliff in QSAR approach
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of SALI. For two similar compounds, which the value of

the correlation coefficient equals to one and the SALI value

is infinite; the SALI value is set to the largest value of

SALI.

3.4 Feature selection

A hybrid filter feature selection algorithm consisting of

Genetic algorithm (GA) and Neural Network (NN) is

applied. GA optimizes the prediction error of model on a

set of features [29] to select features. A GA starts with

generation population of N chromosomes then fitness

function for each chromosome is calculated. Afterwards,

new populations are generated by following iterative

stages: selection of two parents according to their fitness,

transition in order to create a child and mutation which

modify a gen value of a chromosome with a probability and

add new child to population. New population is applied

over previous steps. This procedure is repeated until sat-

isfied a convergence condition. NN [30] are mathematical

models which are developed to have functions inspired by

simple and idle biological neural. Each layer of NN has

several neurons. A neuron receives signals from its input

and computes activation level and sends it as output to the

next layer. NN employed here to compute GA’s cost

function.

3.5 Ensemble learning

Ensemble methods are efficient solutions to improve effi-

ciency of learning models [31], which consist of generating

some models and combining the results. First a number of

classifiers are utilized sequentially or in parallel. Then

results are combined with special methods to enjoy more

accurate results. Ensembles can be learnt from different

part of dataset, different learning algorithms, or different

subset of features. Here, two random forest algorithms

[32], which are ensemble models utilizing several random

trees as basic learners, as classifier are applied. RF with

different feature sets, as a result of its robustness against

overfitting to the training data is selected. The reason

behind applying two learners is to use the benefit of feature

selection while making use of all features’ information

simultaneously. The elements in RF are as follows; for kth

tree, a random vector of hk, independent from previous

random vectors h1, …, hk - 1 with identical distribution is

produced. A tree grows with training data and hk and result

in a classifier h(x, hk), where after creating a considerable

number of tree votes to find the class. One of RF model

works with initial dataset; another is conducted on an

altered dataset after feature selection. The results are

integrated by mean and absolute different as aggregation

operators. The predicted SALI values are used to detect

compounds with activity cliff. The compounds’ pair with

SALI value higher than a threshold, are assigned as cliff

and others as non-cliff.

4 Experiment

4.1 Experimental setting

Herein three datasets including Costanzo, Kalla and Dai

dataset similar to [23] are used. The subset of molecules in

each assay that had non-censored experimental values are

applied. Costanzo contained 60, alpha-Ketoheterocycles as

inhibitors of Thrombin. Kalla has 38, 8-(C-4-pyrazolyl)

xanthines. Dai has 44, 3-aminoindazole. Table 1 summa-

rized in datasets’ properties. Ndesc indicates the sizes of

the descriptor pool after reduction.

In running experiments and evaluation tenfold cross-

validation is applied. To evaluate methods metrics such as

Correlation Coefficient, Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE) are used.

Correlation Coefficient shows the amount and condition

of linear relationship between two variables and is calcu-

lated by following Eq. (5):

qX;Y ¼ cov X;Yð ÞrX � rY ð5Þ

where Cov (X, Y) is the covariance value of X and Y

variables, and rx is the standard variance. The value result

is in the range of (- 1, 1) where 1 indicates the direct

relationship and - 1 expresses the indirect relationships of

two variables. Zero means the lack of relationship between

two variables.

Mean Absolute Error (MAE) reports the error of pre-

diction for the proposed method and is defined by Eq. (6):

MAE ¼ 1=n R fi � yij j ð6Þ

where fi is the predicted value, and yi is the real value.

Root Mean Squared Error (RMSE) is a popular metric in

investigating the differences in real values and estimated

values. This measure is defined as the following Eq. (7):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=nðRðfi � yiÞ2Þ
q

ð7Þ

4.2 Experimental results

We compare PCAC with baselines including: random

forest (RF) [23], the result of genetic neural network fea-

ture selection on RF (RF with GNN), neural networks

(NN), neural network with genetic neural network feature

selection (NN with GNN) and ensemble method on NN.

The results of classifiers, are combined with the same
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aggregation operators, namely mean (shown as fmean) and

absolute different (demonstrated by fdiff) applied in [30].

4.2.1 Experiment 1. Correlation coefficient

Table 2 shows the results of Correlation Coefficient over

datasets. The highest value in Costanza is gained by PCAC

applying diff as aggregation function. The second best

correlation obtained by RF. Feature selection did not bring

an increase in RF. NN methods led to less value. The

feature selection leads to a slight improvement in on NN.

Among NN models ensemble has the highest value.

Models act differently from the aforementioned results

when mean has been applied to integrate the data. In this

case RF enjoyed the best value, feature selection cause a

reduction. Ensemble witnesses an increase in comparison

to RF with GNN. For NN models similar behavior have

been observed. In Kalla dataset, all RF models and PCAC

showed almost similar behavior with diff aggregation

function. RF models obtain more correlation almost twice

in comparison to NN methods. In the case of mean func-

tion, feature selection decreases model’s correlation and

the ensemble model have risen in comparison to the GNN.

The results on the Dai dataset show PCAC shows a slight

improvement. It is 0.0091 larger than the value of RF when

applying diff function and gained the highest rank between

all models. For the same aggregation function, PCAC

outperforms other methods.

4.2.2 Experiment 2. Mean average error (MAE)

Table 3 shows the results in terms of MAE for datasets. In

Costanza, the least value is performed by PCAC and RF.

RF with GNN experienced a growth in comparison to RF

while NN with GNN had a reduction in comparison to NN.

Ensemble NN proves the lowest error between NN algo-

rithms. For both aggregations, the above results have been

noticed, except for NN with GNN, which error did not fall

in comparison with NN. When diff is aggregating function,

all three RF models perform similarly in Kalla dataset.

PCAC witnesses a small growth 0.0427 rather the values of

RF, while still performing better in comparison with other

models in case of applying mean. NN models act with

more error value, but the error has reduced after feature

selection and ensemble the results when diff aggregation is

applied. The results on Dai dataset indicates PCAC similar

to RF has the best results. RF with GNN experienced a

growth in comparison to RF. NN after feature selection

experience a growth. Finally, ensemble reduces the error

over all models.

4.2.3 Experiment 3. Root mean squared error (RMSE)

In Table 4 the results based on RMSE are summarized.

PCAC has the least amount of RMSE in case of applying

diff function for Costanza dataset. It can be seen by GNN

values stayed steady on RF and NN, while the ensemble

improves the results. When mean is applied as aggregation

function RF with GNN showed considerable growth in

comparison to RF. For NN models, similar phenomena are

Table 1 Datasets and their properties

Name Target Target type Ligand Meas. Tech Endpoint Ndesc

Costanzo Trypsin Enzyme BDBM14090 Enzyme Inhibition

Assay

IC50 630 ± n/a nM 21

Kalla Adenosine receptor A2a G protein-coupled

receptor

BDBM50001493 ChEMBL_364156 Ki 81,300 ± n/a nM 10

Dai Tyrosine-protein kinase

Fgr

Protein BDBM21079 ChEMBL_429074 IC50 500,000 ± n/a nM 12

Table 2 Correlation coefficient

on three datasets
Dataset Function RF Rf with GNN PCAC NN NN with GNN Ensemble

Costanza tdiff 0.4694 0.4659 0.4739 0.2603 0.2615 0.2695

fmean 0.3687 0.3749 0.388 0.3068 0.2705 0.3033

Kalla tdiff 0.7779 0.7675 0.7759 0.366 0.3304 0.3645

fmean 0.7268 0.574 0.683 0.3728 0.3073 0.3586

Dai tdiff 0.6483 0.653 0.6553 0.348 0.2809 0.3346

fmean 0.6454 0.6189 0.6439 0.3719 0.247 0.3401
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reported. The ensemble reduces the error for both RF and

NN. PCAC did well and reduced 0.067 with applying

difference function in the Kalla dataset. NN models did not

work well on this dataset. Just in case of the ensemble, a

few improvements are witnessed. The model for the Kalla

dataset shows poor results. This performance can be rooted

in the size of dataset which is small. It has been proved that

conducting small dataset for learning models always can-

not lead to high performance. Turns to the Dia dataset

reduction of 0.0661 can be seen in PCAC, which is the

lowest error between all models. Applying feature selection

on RF deteriorates the performance of RF. Again NN

models worked poorly on this dataset. The worst ranks are

gained by NN with GNN. The merit behavior of PCAC

rooted in the power of RF and aggregation of it with

model’s result after feature selection.

In all datasets when applying diff function better results

are provided in terms of correlation and RMSE. Just in case

of NN the mean function has better performance according

to MAE and RMSE. Altogether, our ensemble method

applying RF outperforms other models almost in all cases.

The results show that RF method outperformed NN. It can

be seen that PCAC provided better performance in most

cases using ensemble learning than RF with initial features.

Using feature selection, it was expected the results indicate

improvement, while merely feature selection did not satisfy

this expectation. The ensemble model and feature selection

leads to improvements both on RF and NN.

5 Conclusion and future works

This study focused on detecting compounds with activity

cliff which is an open issue in QSAR approach. By pre-

dicting SALI value of pairs of compound the compounds

with activity cliff are recognized. In this research Genetic

Neural Network is employed in order to select proper

descriptors. An ensemble machine learning algorithm is

used to predict SALI value. These results are reported

about the improvement in error and fair progress of the

correlation coefficient in comparison to baselines. Con-

sidering the significant role of detecting compounds with

activity cliff in order to enjoy more accurate QSAR mod-

els, future research will concern about (1) assessment of

chemical structure of compounds and finding their shared

cliff to apply them in automatic detection of these com-

pounds (2) proposing a method for finding descriptors

associated with compound pairs in calculating their SALI

(3) extending current study to compound pairs to coordi-

nated activity cliffs (4) considering an upper bound and

lower bound of SALI in order to classifying compounds to

cliff and non-cliff preciously according to predicted SALI

index.
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