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Abstract The weighted sum method is a simple and

widely used technique that scalarizes multiple conflicting

objectives into a single objective function. It suffers from

the problem of determining the appropriate weights cor-

responding to the objectives. This paper proposes a novel

Hierarchical Bayesian model based on multinomial distri-

bution and Dirichlet prior to refine the weights for solving

such multi-objective route optimization problems. The

model and methodologies revolve around data obtained

from a small-scale pilot survey. The method aims at

improving the existing methods of weight determination in

the field of Intelligent Transport Systems as data driven

choice of weights through appropriate probabilistic mod-

elling ensures, on an average, much reliable results than

non-probabilistic techniques. Application of this model and

methodologies to simulated as well as real data sets

revealed quite encouraging performances with respect to

stabilizing the estimates of weights. Generation of weights

using the proposed Bayesian methodology can be used to

develop a bona-fide Bayesian posterior distribution for the

optima, thus properly and coherently quantifying the

uncertainty about the optima.

Keywords Multi-objective � Optimization � Weighted sum

method � Hierarchical Bayesian Model � Dirichlet

Distribution � Multinomial Distribution

1 Introduction

Majority of the real-world complexities generally involve

optimizing multiple conflicting objectives. Simply obtain-

ing a solution for their least values concurrently for all the

objectives does not guarantee correctness; hence a com-

promise needs to be made. As these optimization formu-

lations involve multiple objectives, the objective function

is formulated as a vector and it is treated as a vector

optimization or a multi-objective optimization problem

(MOOP) [1]. A MOOP involving multiple, conflicting

objectives may be combined into a single-objective scalar

function. This approach is named as the weighted-sum

method. This is an a priori method established on the

‘‘linear aggregation of functions’’ principle.

The method is alternatively named as Single Objective

Evolutionary Algorithm (SOEA). By definition, the

weighted-sum method reduces to a positively weighted

convex sum of the objectives, as follows:

Min
Xn

i¼1

wifi xð Þ;where
Xn

i¼1

wi ¼ 1;wi [ 08i ð1Þ

Minimization of this single-objective function is

expected to give an efficient solution for the original multi-

objective problem. The process involves scalarizing the

conflicting objectives into a single objective function.

There are various scalarization techniques which have been

proposed in the past.
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Accounting for ambiguity is important when there are

restrictions on data which leads to inaccurate interpretation

about choices, sensitivities, and other behavioral charac-

teristics. Bayesian analysis, grounded on Bayes’ theorem,

is an instrument that assists in this accounting procedure.

Although theoretically lucid, it is hard to apply in different

real-world problems mainly due to the need of refined

estimates. However, this problem was resolved through the

advancement of mathematical techniques of iterative cal-

culations largely based on Markov chain Monte Carlo

(MCMC) methods. Bayes models free researchers from

computational constraints by developing more realistic

models of user behavior and decision making by integrat-

ing a hierarchical model with Bayesian estimates. The

several sub-models are hierarchically integrated using the

Bayes theorem which manages the uncertainty aspect,

hence the name Bayesian Hierarchical model.

Bayesian Learning is based on the simple logic that one

can achieve better choices by including their recent inter-

pretations and beliefs obtained through previous knowl-

edge and experience. Bayesian learning is also effective

where frequentist statistics is not implementable. It pos-

sesses supplementary features like iterative upgrade of the

posterior while analyzing a hypothesis to assess the

parameters of a machine learning model. This promising

learning technique is based on Bayes’ theorem to obtain the

conditional probability of a hypotheses which is in turn

based on certain previous knowledge. Majority of the

everyday problems does encompass ambiguity and incre-

mental wisdom, therefore making Bayesian learning more

applicable to solve such problems. The Bayesian approach

incorporates past belief and gradually refines the prior

probabilities based on fresh evidence.

Bayesian data analysis is a process of mathematically

modelling data and assigning credibility to individual

parameters that are steady with the data and with previous

experience. Incorporation of prior belief and experience

gives Bayesian learning an edge over frequentist statistics.

The Bayesian technique offers greater flexibility in system

modeling based on available data. It also provides clarity of

demonstrating parameter uncertainty which is accurately

inferred and there exists no requirement for building

sampling distributions from supporting null hypotheses.

Frequentist approaches for calculating ambiguity are

inconsistent and tough, whereas Bayesian approaches are

essentially intended to offer distinct demonstrations of

ambiguity. Frequentist techniques are comparatively more

cumbersome for building confidence intervals on parame-

ter. Though there are several advantages of the Bayesian

approach, there is an inherent need for an adequately

greater set of trials or assigning a confidence to the

established hypothesis.

Bayesian reasoning ensures the reorganization of cred-

ibility over likelihoods while incorporating fresh data. The

main objective of Bayesian estimation is to obtain the most

reliable parameter values for the model and this estimation

offers a total distribution of credibility over the space of

parameter values, not simply one ‘‘best’’ value. The crux of

Bayesian estimation is to correctly define how ambiguity

changes when fresh data are considered. It is seen that at

times that the parameters have significant dependencies on

one another. This ordering of dependencies among

parameters illustrates a hierarchical model. A hierarchical

model specifies dependencies among parameters in an

ordered manner based on the semantics of the parameters.

Considering data from entities within sets is a salient

hierarchical model application. A hierarchical model has

the flexibility to possess parameters for every entity that

define every discrete entity’s characteristics, and the dis-

tribution of different parameters inside a set is exhibited by

a higher order distribution with its own parameters that

define the tendency of the set. The entity level and set level

parameters are assessed concurrently. The hierarchical

approach is beneficial as it does not merge the entity’s data

together thereby preventing dilution of trends within enti-

ties. To summarize, hierarchical models have parameters

that implicitly define the data at several levels and link data

within & across levels.

The main objective of this work is to provide a flexible

Bayesian nonparametric approach that effectively incor-

porates various levels of uncertainties in determining the

weights, whereas the existing approaches focused on

improving the solution set without paying much attention

to the appropriate choice of weights. The novelty of the

proposed work lies in its coherent approach of considering

all the levels of uncertainty for determining the weights and

thereby improving the solution set. It is to be noted that the

novelty also lies in the technique of generating the weights

using the proposed Bayesian methodology which helps

develop a bona-fide Bayesian posterior distribution for the

optima, thus accurately quantifying the uncertainty about

the optima. This work, formulated on the Bayesian

framework, considers prior knowledge (realized through

prior distribution) of the relative significance of the con-

flicting objectives while generating the weights. Unlike the

existing techniques, this method can be applied with con-

venience to handle any number of objectives. As this

method yields a posterior probability distribution over the

weights, the stochastically generated weight vectors can be

used to obtain the points on the Pareto front with less

computational complications. Yet another novelty of this

work is its ability to work with small data samples as it is

not feasible at times to have a large sample dataset due to

time and associated cost factors.
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2 Literature survey

Zadeh popularized the weighted sum technique as a clas-

sical approach for solving such problems [2]. This method,

as the name suggests, scalarizes a set of conflicting

objective functions, by pre-multiplying each of the objec-

tive function by predefined weights. The e-constraints

method, introduced by Hamines et al. [3], focused on

minimizing the most significant objective function fs(x).

Another popular scalarizing technique is the goal attain-

ment technique [4] where the goals are stated for individual

objective function fs(x) and the process aims to reduce the

overall deviation from the goals. The hierarchical approach

[5] and the weighted metrics technique [6] are two more

techniques for solving such problems. However, the

weighted sum method has gained the most popularity

among these due to its simplicity. Although much research

has been devoted to the development of different algo-

rithms improving the solution set in multi-objective opti-

mization problems using weighted sum technique, to date,

a comprehensive model generating the weights using var-

ious sources of uncertainties seem to be lacking. The

weighted sum (WS) technique, a commonly used scalar-

izing technique in multi-objective algorithms, has distinc-

tive advantages of greater search efficiency and easier

computational capabilities. Nevertheless, it is frequently

critiqued for its inability to predict the logic behind the

weight selection as well as its incompetence to deal with

nonconvex problems.

It was suggested by Steuer [7] that the weights should

scientifically determine the decision-maker’s preference

for a particular objective. Das and Dennis [8] offered a

graphical explanation of this technique to elucidate few of

its drawbacks. The delusion between the hypothetical and

the realistic interpretation of the weights for the conflicting

objectives made the weight selection process quite ineffi-

cient. Various approaches have been suggested for weight

selection—Yoon and Hwang [9] suggested a ranking

technique whereby the objectives are ranked based on their

significance. The most important objective received the

largest weight with gradual decrease in weights to lesser

important objectives. It was quite similar to the catego-

rization technique in which the conflicting objectives were

grouped according to their varying degree of importance.

Saaty [10] proposed an eigenvalue process for attaining

weights, where n (n-1)/2 pair-wise evaluations were made

between these objective functions to generate a comparison

matrix; from this matrix the eigenvalues yielded the

weights. Wierzbicki [11] proposed a method for generating

weights, where the comparative significance of the objec-

tive functions is vague, based on the utopia and the aspi-

ration points. Another method for weight determination

was proposed based on fuzzy set theory by Rao and Roy

[12]. Though various techniques exist for weight determi-

nation, just the selection of the weights may not necessarily

generate a feasible solution. New weights may have to be

considered and the process may have to be executed again.

It was thus suggested by Messac [13] that weights should

be functions of the objectives and not simply constants to

simulate a task precisely. According to him, the weights

must address the issues related to both scaling and relative

preference of the objective functions to reflect the prefer-

ence appropriately.

Selection of appropriate weights leads to an algorithm’s

better performance. Timothy Ward Athan [14] proposed a

quasi-random weighted criteria system that produces

weights covering the Pareto set consistently. The method is

based on random probability distribution and involves a

large number of computations. Gennert and Yuille [15]

proposed a nonlinear weight determination algorithm

where an optimal point is obtained that is not in the vicinity

of the extreme points. Although a lot of work is available in

the literature regarding systematic selection of the weights

in solving a Multi-Objective Optimization problem, till

date a comprehensive data driven technique determining

weights reflecting the relative importance of the conflicting

objectives is lacking. Many authors including Das and

Dennis [8] have shown that choosing weights uniformly

over (0,1) does not guarantee uniform spread of Pareto

points on the Pareto front. In many cases it has been

observed that the points obtained using a uniform genera-

tion of weights are found to be clustered in certain regions

of the Pareto set. In their subsequent work, Das and Dennis

[16] have proposed a technique based on Normal-Boundary

Intersection, of obtaining an even spread of Pareto points.

Like many others, their method prioritizes the solution set

while deciding upon the choice of weights. J. G Lin [17]

point towards the scarcity of the number of Pareto Optimal

solutions obtained by the existing methods, in addition to

some of the solutions coinciding with extreme points. Lin

has proposed a method of solving multi-objective opti-

mization problems by transforming them into Single-ob-

jective optimization problem, by changing one of the

multi-objectives to proper equality constraints using

Lagrange multiplier.

Marler and Arora [18] explicated that the weighted sum

method is a simple method that delivers a linear estimate of

the preference function and need not necessarily reflect

one’s primary preferences. It is essentially inept of

including multifaceted preferences. In spite of determining

satisfactory weights a priori, the end solution need not

precisely display original preferences. Rui Wang et al. [19]

proposed a multi-objective decomposition-based Evolu-

tionary algorithm based on local application of the

weighted sum technique. They proposed that the optimal
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result for each of the search routes is obtained from

amongst its adjoining results. Experimental outcomes

confirmed that the MOEA/D-LWS outperformed the

remaining algorithms for majority of the cases. Zhang

proposed a dynamic weighted sum (DWS) technique [20]

to methodically alter the weights of individual conflicting

objectives for solving multi-objective optimization prob-

lems (MOO). He studied the search effect of the different

dynamic weighted aggregations namely bang-bang, linear,

sinusoidal and random weighted aggregations.

Jaini and Utyuzhnikov [21] proposed a compromise

grading method in a fuzzy multi-criteria choice-making

system. The fuzzy quantities symbolize the vague weights

of each of the conflicting objectives. The authors have

designed a fuzzy trade-off grading technique to rank

alternatives by awarding the smallest compromise solution

as the finest choice. Most of the work in the available

literature has focused on fixing the weights based on some

prior beliefs or information. The focus of the existing

methods is towards refining the distribution of Pareto

solutions provided by the WS technique [22], with less

emphasis on the stability and appropriateness of the choice

of weights for precise representation of the conflicting

objectives.

In contrast to the objective of weight determination of

the existing works, which aimed at choosing the set of

weights which stabilizes the solution set [23–25], this work

proposes to frame a model which determines a much

stable set of weights in comparison to that obtained

deterministically. The criticisms of the existing method-

ologies for determination of weights have motivated this

work and to propose the Bayesian model based on multi-

nomial and Dirichlet priors. As per the authors’ existing

knowledge, this work is first of its kind since none of the

earlier works had this motivation of searching for stability

in weights. Unlike the frequentist approach, the Bayesian

modelling is based on treating the uncertainties in the

parameters probabilistically. The Frequentist methodolo-

gies, not considering prior probabilities, come up with

estimates based mostly on the maximum likelihood or

confidence intervals while Bayesians, have a complete

posterior distribution over the possible parameter values.

This allows them to account for the uncertainty in the

estimate by integrating the entire distribution, and not just

the most likely value.

This work has been based on the Bayesian framework as

one can coherently consider any prior knowledge (reflected

through the prior distribution) about the relative impor-

tance of the conflicting objectives to generate the weights.

This prior knowledge (distribution) will then be updated

using data from the sample using Bayesian paradigm. The

sample data obtained from the pilot survey makes the

probability distribution narrower around the parameter’s

true but unknown values. The hierarchical Bayesian model

has been so developed as to reflect the relative importance

of the conflicting objectives through the respective weights,

which were stochastically estimated, based on the data

obtained from a pilot survey for the given purpose.

3 Statistical prerequisite

The proposed hierarchical Bayesian model methodology

for generating weights is based on the Multinomial and

Dirichlet distributions as priors, which are conjugate to

each other. A brief discussion on the statistical prerequi-

sites is given in this section.

3.1 Bayesian approach

Unlike frequentist approach which does not quantify the

uncertainty in fixed but unknown values of the parameters,

Bayesian approach, defines probability distributions over

possible values of a parameter. Let x denote the data and h
be the parameter of interest which is unknown. Let h 2 H
be the parametric space. Under Bayesian approach one can

quantify the prior belief about h by defining a prior prob-

ability distribution over H, the set of possible values of h.

The newly collected data makes the probability distribu-

tion over H narrower by updating the prior distribution to

posterior distribution (updated) h of using Bayes’ theorem

which states that

P hjDatað Þ ¼ P Datajhð ÞP hð Þ
P Datað Þ ð2Þ

where P(Data|hÞ is called the likelihood & P hjDatað Þ is the

posterior distribution of the parameter h.

3.2 Hierarchical Bayesian model

A model in which the prior distribution of some of the

model parameters depend on some other unknown

parameters, which are in turn modelled as random variables

following some other distribution is a Hierarchical Baye-

sian model. The level of hierarchy depends on the context

and complexity of the problem. Given the observed data x,

suppose x follows f(.|h), with h being distributed as a prior

p(u). If the parameters u can further assumed to be fol-

lowing f(t), the use of hierarchical models ensures a more

flexible account of data.

3.3 Multinomial distribution

It is a multivariate generalization of Binomial distribution.

Suppose an experiment is conducted such that each trial

has k (finite & fixed) mutually exclusive & exhaustive
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possible outcomes with probabilities p1; p2; . . .; pk such that

pi � 08i ¼ 1ð1Þk and
Pk

i¼1 pi ¼ 1. If Xi be the random

variable indicating the number of times category I is

observed over n independent trials of the experiment, then

the vector X ¼ X1;X2; . . .;Xkð Þ follows a Multinomial

Distribution with parameters n and p1; p2; . . .; pk. The

probability mass function of the multinomial distribution

is:

F X1 ¼ x1;X2 ¼ x2; . . .;Xk ¼ xkð Þ

¼ n!

x1!. . .xk!
px1

1 . . .p
xk�1

k�1 1 � p1 � pk�1ð Þn�x1�...�xk�1

ð3Þ

3.4 Dirichlet distribution

Dirichlet distribution is a multivariate generalization of

Beta distribution. Dirichlet distribution of order (k � 2)

with parameters a1; . . .; ak [ 0; has the following proba-

bility density function:

gðx1; x2; . . .; xkÞ ¼
Cð
Pk

i¼1 aiÞQk
i¼1 CðaiÞ

Yk

i¼1

xai�1
i ð4Þ

Here Xi’s are continuous random variables with xi � 08i
and

P
xi ¼ 1, that is, the support of Dirichlet distribution

is the set of k-dimensional vectors whose entries belong to

(0,1) and add up to one. The parameter vector p1; p2; . . .; pk
of the Multinomial distribution has the properties of the

xi’s above, as p = {p1,p2,_,pk}, where 0 B pi B 1 for

i [ [1,k] and
P

pi = 1 and hence can be modelled using an

appropriate Dirichlet distribution. Dirichlet distribution is a

family of continuous probability distribution for a discrete

probability distribution with k categories. The usefulness

of this method is explained with the help of a realistic

example. Considering a company produces six faced dice;

though manufacturing processes are precise nowadays,

they are still not 100% perfect—if one rolls a randomly

selected dice, getting an exact relative frequency of one

sixth for the outcomes is difficult due to a slight manu-

facturing defect. As one can always expect a probability

distribution over all possible values, 1, 2, 3, 4, 5 and 6; this

probability distribution can be modelled using Dirichlet

distribution.

3.5 Conjugate prior

In Bayesian probability theory if posterior and prior

probability distributions of the parameter h belong to the

same probability distribution family, the prior is then called

a conjugate prior. In other words, in Equation (2) if P(h)

and P(h|Data) are in the same family of distributions, they

are called conjugate distributions. It can be shown that

Dirichlet distribution acts as a conjugate prior for Multi-

nomial distribution.

3.6 Proposed methodology

As generation of the weights corresponding to different

conflicting objectives in a weighted sum problem is the

primary interest, the authors have considered the weights

wi in (1) as the unknown parameters.

Let M be a set of conflicting objectives in the objective

space defined as follows:

M ¼ f1 xð Þ; f2 xð Þ; . . .; fl xð Þ; hi xð Þ� =� 0; i ¼ 1; . . .; pf g
ð5Þ

where f 1 xð Þ; f 2 xð Þ; . . .; f l xð Þ are the conflicting objective

functions, hi(x) denotes the set of p constraints. The

Weighted Sum method scalarizes the vector objective

functions, f ¼ ðf 1 xð Þ; f 2 xð Þ; . . .; f l xð Þ)�Rl, where Rl is the

l dimensional Euclidean space, using the appropriately

selected vector of weights w ¼ ðw1; . . .;wlÞ 2 Rl such that

wi [ 0 and
Pl

i¼1 wi ¼ 1.

h ¼ w
0
f ¼ w1f1 þ � � � þ wlfl ð6Þ

It is to be noted that, h 2 R is a scalar. Without any loss

of generality one can assume the objective functions fi xð Þ
8i ¼ 1 1ð Þl to be normalized.

To determine the weights, suppose one obtains data on

the preferences of n individuals regarding the choice of

different categories (representing different conflicting

objectives) through a planned pilot survey. Individuals may

be asked to vote for the single most important category out

of a finite number of mutually exclusive and exhaustive set

of choices. Let ni= number of individuals who have voted

for category i (i = 1, 2,..., l; representing the ith objective

function) in the pilot survey. The multinomial distribution

is used for modeling the probability of counts in the dif-

ferent categories (representing the different objective

functions), as the individuals vote independently for

exactly one of the l categories. Then, (n1, n2,…,nl) *
Multinomial (n; w1, w2,…,wl), where wi is the population

proportion of individuals who will vote for category i or is

the probability that a randomly selected individual votes

for ith category. Probability mass function of multinomial

distribution is given by

f n1; n2; . . .; nlj w1; w2; . . .;wlð Þ

¼ n!

n1!n2!. . .nl!
wn1

1 wn2

2 � � �wnl�1

l�1 1 � w1 � � � � � wl�1ð Þn�n1�...nl�1

ð7Þ

As wi’s are continuous random variables, where
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wi � 08i, and
P

wi ¼ 1 it can be further assumed

that,(w1, w2,…,wl) * Dirichlet (a1, a2,…,al) having the

following form of density.

g w1; w2; . . .; wlð Þ ¼ Cð
Pl

i¼1 wiÞQl
i¼1 CðwiÞ

Yl

i¼1

wai�1
i ð8Þ

Here, Dirichlet distribution, being a distribution over a

probability simplex, is most appropriate for modelling (w1,

w2,…,wl). Dirichlet distribution is a multivariate general-

ization of Beta distribution a acts as a conjugate prior to

multinomial where a1, a2,…,al are the concentration

parameters such that ai[ 0 V i= 1 (1) l.

The marginal likelihood function is given by,

h ðn1; n2; . . .; nlja1; a2; . . .; alÞ ¼Z :

w1;w2;...;wl

f n1; n2; . . .; nljw1;w2; . . .;wlð Þ:

g w1;w2; . . .;wlð Þdw1dw2. . .dwl ¼
C
Pl

j¼1ðajÞQl
j¼1 C aj

� � :
n!

Ql
j¼1 nj!

:

Ql
j¼1 C nj þ aj

� �

Cð
Pl

j¼1 aj þ nÞ

ð9Þ

Equation (9) gives the conditional probability of

observing the data given a1, a2,…,al. The values of a1,

a2,…,al which maximizes (9) are considered as the esti-

mates. Now it can be shown that [w1, w2,…,wl | n1, n2,…,nl

* Dirichlet (a1?n1, a2?n2 ,…, al?nl ), i.e. the posterior

distribution of the weights given the data, follows Dirichlet

distribution with concentration parameters (a1?n1,

a2?n2,…,al?nl).

Posterior expectations of the weights are given by,

Wi� ¼ E wij n1; n2; n3ð Þ ¼ ai þ niP3
i¼1ðai þ niÞ

; i ¼ 1; 2; 3

ð10Þ

Hence, estimates of weights can be taken as

Ŵi� ¼ âi þ niP3
i¼1 âi þ nið Þ

ð11Þ

where â1, â2 and â3 are the values maximizing (9).

Hence, the objective function gets modified as follows:

Minimization of f ¼ Ŵ1 � f1 þ Ŵ2 � f2 þ Ŵ3 � f3 ð12Þ

The above modeling technique incorporates the uncer-

tainties in determination of the weights through a Bayesian

hierarchical model based on multinomial distribution with

Dirichlet prior. As observed ithe existing literature wi’s

have been estimated simply by the proportion of preference

in the respective categories,

Ŵi ¼ pi ¼ ni= n; i ¼ 1; 2; . . .; l; n ¼
Xl

i¼1

ni ð13Þ

The proposed algorithm for weight determination is as

follows:

Step 1: Read n1,. ….nl(votes for individual categories).

Step 2: Calculate sum n = n1?. …. ? nl.

Step 3: Calculate Probability Mass Function f(n1,-

n2,…,nl | w1, w2,…,wl) where wi is the population pro-

portion of individuals (unknown) who will vote for

category i

Step 4: Calculate Probability Density Function g (w1,

w2,…, wl | a1, a2,…,al) wi’s are continuous random vari-

ables and a1, a2,…,al are the concentration parameters.

Step 5: Calculate Marginal Likelihood Function h (n1,

n2,…, nl |a1, a2,…,al ): The values of a1, a2,…,al which

maximizes this expression are considered as the estimates.

For three variables, h=

gamma a1 þ a2 þ a3ð Þ
gamma a1ð Þ � gamma a2ð Þ � gamma a3ð Þ

� factorial nð Þ
factorial n1ð Þ � factorial n2ð Þ � factorial n3ð Þ

� gamma a1 þ n1ð Þ � gamma a2 þ n2ð Þ � gamma a3 þ n3ð Þ
gamma a1 þ a2 þ a3 þ 3nð Þ

Step 6: Calculate Posterior Expectations of weights Wi*

Step 7: Calculate Estimates of weights Ŵi*

Step 8: Exit

The corresponding MATLAB pseudo-code for obtaining

the weights is as follows:
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4 Results and discussion

Comparison of estimate of weights has been performed for

the Frequentist and Bayesian models. Results obtained

from the pilot survey are as follows:

n1 = 24, n2 = 11, n3 = 12, n = 47.

Under Frequentist setup, the estimated weights are

Ŵi ¼ ni= n ð14Þ

As ni *Binomial (n, pi) for i = 1, 2, 3, the error vari-

ance is given by:

V Ŵi

� �
¼ Var ni= nð Þ ¼ Ŵi 1 � Ŵi

� �
=n ð15Þ

Under Bayesian setup, estimates of weights are given in

Equation (11). Expression for variance with respect to

posterior Dirichlet (a1?n1, a2?n2, …, al?nl) distribution:

V Ŵi�
� �

¼ Var
âi þ niP3

i¼1 âi þ nið Þ

 !
¼

n ^Wi� 1 � ^Wi�
� �

P3
i¼1 âi þ nð Þ

n o2

ð16Þ

In order to compare the performance of proposed

Bayesian model with the existing frequentist method, one

needs to consider samples with varying sizes. The results

are shown in Table 1.

Although the weights seem to be close, it is clear from

the results that the new model outperforms the frequentist

one with respect to stability under small sample sizes.

Efficiency of estimator T2 with respect to T1 is given by

E ¼ V T1ð Þ
V T2ð Þ ð17Þ

Figure 1 depicts the performance of the two estimators

with respect to the relative gain in efficiency for varying

sample sizes. Suppose there are two estimators T1 and T2,

relative gain in efficiency of T2 with respect to T1 is given

by,

G ¼ V T1ð Þ � V T2ð Þð Þ
V T1ð Þ ð18Þ

Note that G & 0, indicates that the two estimators are

equally efficient. An estimator T2 is more efficient than T1

if V(T2) B V(T1), G [ 0. Calculating the relative gain in

efficiency in Table 1, it is observed that the gain in effi-

ciency due to the proposed method over the existing one is

quite high for small sample sizes.

It can be observed that the proposed estimator outper-

forms the existing one with respect to gain in efficiency for

small sample sizes. With the increase in sample sizes there

is a steady decrease in the gain in efficiency, indicating that

with respect to the given data, the two estimators become

equally competent for large sample sizes. But in reality, it

may be difficult to have a large sample data, thus the

effectiveness of the proposed method gains prominence.

Bayesian determination of weights is highly recommended

in such cases where conducting a large-scale survey is time

consuming, difficult to implement as well as expensive.

5 Application in parking route problem

The proposed methodology has been applied in the field of

Intelligent Transport System (ITS). Smart transportation is

the need of the hour for sustainable development in a

growing economy. Smart transportation supported by a

strong communication network and based on sound sta-

tistical techniques is a key for tomorrow’s smart cities.

This route optimization tool promotes environment con-

servation and sustainable development by providing the

most optimal route to a parking lot thereby saving time,

energy, and fuel. Discovering the most optimal parking lot

is a serious problem in the cities and it tends to aggravate

during peak hours of the day and at congested places.

Selecting the route depends on multiple conflicting objec-

tives, namely minimizing the distance to the parking lot,

maximizing the speed of the car, and lastly maximizing the

parking availability at the lot. The detailed problem defi-

nition, formulation, design methodology and implementa-

tion are available at [26]. A pilot survey was conducted

among 50 drivers. The Bayesian and frequentist weights

0.997
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0.656
0.665

0.286

0 0 00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 19 21 75 80 100 100 143 167 168 187 229

ni
nia

G
evit aleR

Effi
ci

en
cy

Sample Size

Fig. 1 Relative Gain in Efficiency vs Sample Size

Table 2 Weights-Frequentist

and Bayesian
Description Count Frequentist weight Bayesian weight

Highest priority to distance to parking lot: 16 0.32 0.29

Highest priority to travel speed on the route: 14 0.28 0.30

Highest priority to parking availability at parking lot: 20 0.40 0.41

1338 Int. j. inf. tecnol. (August 2021) 13(4):1331–1341

123



were calculated respectively using Equations (11) and (14)

and summarized in the Table 2.

Genetic Algorithm has been used to solve the Multi-

Objective optimization problem. The algorithm has been

designed to run for 30 generations as the fitness values

have stabilized by then in most cases. The fitness values

obtained across generations have been plotted and graphi-

cally represented in Table 3 and Figure 2.

It is observed that as the generations increases, the value

of the fitness function tend to decrease till it stabilizes at an

optimal value. In both cases it was seen that the Bayesian

weights produced lower fitness values consistently. The

process was then repeated for thirty different executions.

The fitness values obtained for both the Frequentist and

Bayesian weights were noted in Table 4 and plotted in

Figure 3.

Table 3, combined with Fig. 2, shows that the fitness

value exhibits a consistently decreasing trend as the num-

ber of generations increase across all time zones. Focusing

on the fitness values corresponding to a typical time zone,

here 12 am to 4 am, it can further be noticed from Table 5

that both the average fitness value and the best fitness value

were lower for the Bayesian weights than Frequentist

weights in 30 executions. Secondly the routes as well as the

parking lot vary depending on the time zone. This simu-

lates a real-life scenario where parking lots and routes are

bound to change as the values for the different factors

changes. Although distance remains constant but the

average speed and availability of parking lots changes with

time which gets finally reflected in the fitness function.

6 Conclusion

The Bayesian Hierarchical model provides a posterior

distribution on weights and is suitable for generating

weights to check the nature of the solution set. Moreover,

generation of weights using the proposed Bayesian

methodology can be used to develop a bona-fide Bayesian

posterior distribution for the optima, thus properly and

coherently quantifying the uncertainty about the optima. It

has been shown that the proposed estimator outperforms

the existing ones with respect to efficiency for small

sample sizes. In practice, as it is difficult to have a large

sample data, the effectiveness of the proposed method

gains prominence. Bayesian determination of weights finds

high applicability in cases where conducting a large-scale

survey is time consuming, difficult to implement as well as

expensive. This proposed model is designed to adequately

derive information from the collected data, rendering

highly efficient estimators for small data sizes. This tech-

nique has been analyzed for error variances thereby

quantifying the reliability of the estimates.

Table 3 Fitness values across Generations for Frequentist and

Bayesian Weights for two time slots 12AM–4AM and 12Noon–4PM

Gen Freq Bayes Freq Bayes

12–4 am 12–4 am 12–4 pm 12–4 pm

1 0.742 0.729 0.808 0.789

2 0.73 0.719 0.808 0.789

3 0.711 0.696 0.808 0.75

4 0.688 0.696 0.761 0.75

5 0.688 0.675 0.747 0.75

6 0.671 0.672 0.718 0.732

7 0.671 0.672 0.718 0.726

8 0.671 0.63 0.718 0.709

9 0.654 0.63 0.702 0.709

10 0.654 0.61 0.702 0.697

11 0.628 0.599 0.702 0.691

12 0.628 0.599 0.695 0.678

13 0.604 0.597 0.695 0.678

14 0.604 0.597 0.676 0.678

15 0.588 0.596 0.676 0.678

16 0.588 0.577 0.676 0.678

17 0.588 0.566 0.676 0.654

18 0.572 0.561 0.663 0.654

19 0.572 0.554 0.663 0.643

20 0.572 0.55 0.663 0.632

21 0.558 0.548 0.663 0.632

22 0.558 0.533 0.649 0.632

23 0.558 0.533 0.649 0.615

24 0.536 0.518 0.637 0.608

25 0.536 0.498 0.623 0.608

26 0.529 0.498 0.623 0.596

27 0.529 0.485 0.623 0.596

28 0.503 0.485 0.623 0.596

29 0.503 0.485 0.623 0.596

30 0.503 0.485 0.623 0.596

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

BAYES 12-4 am
FREQ 12-4 am
BAYES 12-4 pm
FREQ 12 -4 pm

Fig. 2 Plot of Fitness vs. Generations for two time slots 12AM–4AM

and 12 Noon–4PM showing how Fitness values change across 30

generations using frequentist (green) and Bayesian (red) weights

(Color figure online)
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When applied in the domain of route optimization in

discovering the most suitable parking lot, the proposed

methodology has produced results which display close

resemblance to the phenomenon observed in real life sit-

uations. This work relied on sound statistical techniques to

improve the weights representing the relative importance

of the possibly conflicting objective functions of the route

optimization process rather than improving the solution set

directly. It has also been observed that on an average the

fitness values obtained under weights generated by the

proposed methodology outperforms that obtained by

frequentist approach. If implemented in reality, this would

certainly ensure saving of time, energy and fuel, thus a

greener world.
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